1887

Chapter 5 : Biomaterials: Factors Favoring Colonization and Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biomaterials: Factors Favoring Colonization and Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap05-2.gif

Abstract:

For more than a decade, various aspects of medical device and biomaterial infections have been studied in an effort to develop a fundamental and applied basis for infection-resistant biomaterials. This chapter presents an approach and perspectives on factors favoring biomaterial colonization and infection. Infection is a potentially serious complication with implants and devices and a major impediment to the long-term clinical success of devices like vascular grafts, artificial heart valves, and ventricular assist devices. The microorganisms most frequently identified on infected polymer implants either are present in the host flora or are nosocomial in origin, most notably the coagulasenegative staphylococci, particularly . The virulence of the commensal is a result of the foreign-body implant, which acts to inhibit the normal host defense. Focal thrombosis is a common finding with cardiovascular devices such as prosthetic heart valves, vascular grafts, arteriovenous fistulas, and artificial hearts. Catastrophic failure with significant morbidity and possibly death may occur when infectious foci initiate thrombosis with subsequent septic embolization. Adhesion of bacteria to an implant surface through specific and nonspecific mechanisms is a critical initial step in the development of biomaterial-centered infection. The adhesion of directly on biomaterials appears to be governed by nonspecific interactions. The GRGDS pentapeptide sequence was selected as the inhibitor, since it binds to several platelet integrin receptors, including GPIIb/IIIa. The complement system and phagocytic leukocytes, which are the primary defense mechanisms against infection, are obvious targets for the down regulation of host defenses by the biomaterial.

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5

Key Concept Ranking

Bacterial Proteins
0.53036493
Bacterial Adhesion
0.47278467
Atomic Force Microscopy
0.4255062
0.53036493
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Interactions of with biomaterials. (A) Illustration of a multistage process, from mass transport to aggregation and biofilm formation. (B) Near-surface bacterial interaction leading to adhesion.

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Role of surface topography in bacterial adhesion to Dacron. Scanning electron micrograph (×2,000) showing turbulent-flow-induced physical entrapment of in Dacron fiber interstices (A). The inclusion of plasma proteins in solution, which adsorb to the Dacron fiber, significantly decreases overall microbial adhesion (B). (Reproduced from the Journal of Biomedical Materials Research , with permission of John Wiley & Sons, Inc.)

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Relative surface concentration of RP62A bound to contact-activated platelets vs. PE with adsorbed plasma proteins. (B) Atomic force microscopy image of (RP62A) and human platelets on PE. (C) Fluorescence microscopy image of (RP62A) and human platelets stained by acridine orange on PE. Note the large number of bacteria on the platelet relative to surrounding (protein-coated) PE surface. Test medium is platelet-rich plasma.

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

adhesion to platelets with replenished plasma and with the addition of platelet integrin inhibitor GRGDS. The inhibitor significantly decreases adhesion to platelets ( < 0.05).

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparison of RP62A adhesion with shear stress to PE modified by poly(ethylene oxide) and dextran surfactant polymers. The dextran surfactant polymer contains a branch ratio of dextran: hexanoyl of 1:5. The dashed line represents the unmodified PE control ( ).

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818067.chap5
1. Absolom, D. R. 1988. The role of bacterial hydrophobicity in infection: bacterial adhesion and phagocytic ingestion. J. Microbiol. 15:391396.
2. Absolom, D. R.,, F. F. Lamberti,, Z. Policova,, C. J. Zingg,, C. J. van Oss,, and A. W. Neumann. 1983. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46:9097.
3. Amiji, M.,, and K. Park. 1992. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/ PPO/PEO triblock copolymers. Biomaterials 13:682691.
4. An, Y. H.,, and R. J. Friedman. 1998. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43:338348.
5. An, H. A.,, R. J. Friedman,, R. A. Draughn,, E. A. Smith,, and J. F. John. 1996. Bacterial adhesion to biomaterial surfaces, p. 1957. In Human Biomaterials Applications. Humana Press, N.J.
6. Andrieux, A.,, G. Hudry-Clergeon,, J.-J. Ryckewaert,, A. Chapel,, M. H. Ginsberg,, E. F. Plow,, and G. Marguerie. 1989. Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GPIIbnia. J. Biol. Chem. 264:92589265.
7. Arciola, C. R.,, R. Caramazza,, and A. Pizzoferrato. 1994. In vitro adhesion of Staphylococcus epidermidis on heparin-surface-modified intraocular lenses. J. Cataract Refract. Surg. 20:158161.
8. Arciola, C. R.,, L. Radin,, P. Alvergna,, E. Cenni,, and A. Pizzoferrato. 1993. Heparin surface treatment of poly(methylmethacrylate) alters adhesion of a Staphylococcus aureus strain: utility of bacterial fatty acid analysis. Biomaterials 14:161164.
9. Ballard, J.,, T. Bunt,, and J. Malone. 1992. Major complications of angioaccess surgery. Am. J. Surg. 164:229232.
10. Bandyk, D.,, and G. E. Esses. 1994. Prosthetic graft infection. Surg. Clin. N. Am. 74(3):571590.
11. Bengston, S. 1993. Prosthetic osteomyelitis with special reference to the knee: risks, treatment, and costs. Ann. Med. 25:523529.
12. Bos, H. M.,, R. A. De Boer,, G. L. Burns,, and S. F. Mohammad 1996. Evidence that bacteria prefer to adhere to thrombus. ASAIO J. 42:881884.
13. Bridgett, M. J.,, M. C. Davies,, and S. P. Denyer. 1992. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials 13:411416.
14. Brunstedt, M. R.,, K. R. Rubin,, K. M. Kieswetter,, S. Sapatnekar,, N. P. Ziats,, K. Merritt,, and P. Cahalan. 1995. Bacteria/blood/material interactions. I. Injected and preseeded slime forming Staphylococcus epidermidis in flowing blood with biomaterials. J. Biomed. Mater. Res. 29:455466.
15. Cheung, A. K.,, M. Hohnholt,, and J. Gilson. 1991. Adherence of neutrophils to hemodialysis membranes: role of complement receptors. Kidney Int. 40:11231133.
16. Cheung, A. K.,, C.J. Parker,, and M. Hohnholt. 1993. (32 integrins are required for neutrophil degranulation induced by hemodialysis membranes. Kidney Int. 43:649660.
17. Christensen, G. D. 1987. The confusing and tenacious coagulase-negative staphylococci. Adv. Intern. Med. 32:177192.
18. Chugh, T. D.,, G. J. Burns,, H. J. Shuhaiber,, and G. M. Bahr. 1990. Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated by lipoteichoic acid. Infect. Immun. 58:315319.
19. Collignon, P. 1994. Intravascular catheter associated sepsis: a common problem. Med. J. Aust. 161:374378.
20. Davies, J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375382.
21. Desai, N. P.,, S. F. Hossainy,, and J. A. Hubbell. 1992. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13:417420.
22. Desai, N. P.,, and J. A. Hubbell. 1991. A solution technique to incorporate polyethylene oxide and other water soluble polymers into surfaces of polymeric biomaterials. Biomaterials 20:144153.
23. Dunkirk, S. G.,, S. L. Gregg,, L. W. Duran,, J. D. Monflls,, J. E. Haapala,, J. A. Marcy,, D. L. Clapper,, R. A. Amos,, and P. E. Guire. 1991. Photochemical coatings for the prevention of bacterial colonization. J. Biomat. Appl. 6:131156.
24. Fang, G.,, T. Keys,, L. Gentry,, A. Harris,, N. Rivera,, K. Getz,, P. Fuchs,, M. Gustafson,, E. Wong,, A. Goetz,, M. M. Wagener,, and V. L. Yu. 1993. Prosthetic valve endocarditis resulting from nosocomial bacteremia. A prospective, multicenter study. Ann. Intern. Med. 119:560567.
25. Ferreiros, C. M.,, J. Carballo,, M. T. Craido,, V. Sainz,, and M. C. del Rio. 1989. Surface free energy and interaction of Staphylococcus epidermidis with biomaterials. FEMS Microbiol. Lett. 59160:8994.
26. Fitzgerald, R. H. 1992. Total hip arthroplasty sepsis. Orthop. Clin. N. Am. 23(2):259264.
27. Galliani, S.,, A. Cremieux,, P. van der Auwera,, and M. Viot. 1996. Influence of strain, biomaterial, proteins, and oncostatic chemotheraphy on Staphylococcus epidermidis adhesion to intravascular catheters in vitro. J. Lab. Clin. Med. 127:7180.
28. Galliani, S.,, M. Viot,, A. Cremieux,, and P. van der Auwera. 1994. Early adhesion of bacteremic strains of Staphylococcus epidermidis to polystyrene: influence of hydrophobicity, slime production, plasma, albumin, fibrinogen, and fibronectin. J. Lab. Clin. Med. 123:685692.
29. Gilbert, P.,, D. J. Evans,, E. Evans,, I. G. Duguid,, and M. R. Brown. 1991. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. Appl. Bacteriol. 71:7277.
30. Giridhar, G.,, Q. N. Myrvik,, and A. G. Gristina. 1995. Biomaterial-induced dysfunction in the capacity of rabbit alveolar macrophages to kill Staphylococcus epidermidis RP12. J. Biomed. Mater. Res. 29:11791183.
31. Gristina, A.,, G. Giridhar,, B. Gabriel,, P. Nay lor,, and Q. N. Myrvik. 1993. Cell biology and molecular mechanisms in artificial device infections. Int. J. Artif. Org. 16(11):755764.
32. Gristina, A.,, G. Giridhar,, and Q. N. Mayrvil,. 1994. Bacteria and biomaterials, p. 131148. In R. S. Greco (ed.), Implantation Biology. CRC Press, Boca Raton, Fla.
33. Gristina, A. G.,, P. T. Naylor,, and Q. N. Myrvik,. 1990. Biomaterial-centered infections: microbial adhesion versus tissue integration, p. 193216. In T. Wadstrom,, I. Eliasson,, I. A. Holder,, and A. Ljungh (ed.), Pathogenesis of Wound and Biomaterial-Associated Infections. Springer Verlag, London, England.
34. Henke, P. K.,, T. M. Bergamini,, S. M. Rose,, and J. D. Richardson. 1998. Current options in prosthetic vascular graft infection. Am. Surg. 64:3946.
35. Herrmann, M.,, P. E. Vaudaux,, D. Pittet,, R. Auckenthaler,, P. D. Lew,, F. Schumacher-Perdreau,, G. Peters,, and F. A. Waldvogel. 1988. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J. Infect. Dis. 158:693701.
36. Higashi, J. M. 1997. Mechanisms of Staphylococcus epidermidis adhesion to model biomaterial surfaces: establishing a link between thrombosis and infection. Ph.D. Thesis. Case Western Reserve University, Cleveland, Ohio.
37. Higashi, J. M.,, and R. E. Marchant,. Implant infections. In A. F. von Recom (ed.), Handbook of Biomaterials Evaluation, 2nd ed. Taylor & Francis, Washington, D.C.
38. Higashi, J. M.,, I. Wang,, D. M. Shlaes,, J. M. Anderson,, and R. E. Marchant. 1998. Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J. Biomed. Mater. Res. 39:341350.
39. Himmelfarb, J.,, J. M. Lazarus, and R. Hakim. 1991. Reactive oxygen species production by monocytes and polymorphonuclear leukocytes during dialysis. Am. J. Kidney Dis. 17:271276.
40. Himmelfarb, J.,, P. Zaoui,, R. Hakim,, and D. Holbrook. 1992. Modulation of granulocyte LAM-1 and MAC-1 during dialysis-a prospective, randomized controlled trial. Kidney Int. 41:388395.
41. Holland, N. B. 1999. Polymers, Surfactants and proteins at biomaterial interfaces, Ph.D. Thesis. Case Western Reserve University, Cleveland, Ohio.
42. Holland, N.,, Y. Qiu,, M. Ruegsegger,, and R. Marchant. 1998. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392:799801.
43. Holmes, C. 1995. Hemodialyzer performance: biological indices. Artif. Organs 19:11261135.
44. Israelachvili, J.,, and R. Pashley. 1982. The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300:341342.
45. Jansen, B.,, and W. Kohnen. 1995. Prevention of biofilm formation by polymer modification. J. Ind. Microbiol. 15:391396.
46. Jansen, B.,, and G. Peters. 1991. Modern strategies in the prevention of polymer-associated infections. J. Hosp. Infect. 19:8388.
47. Johnson, K.,, M. Liska,, L. Joyce,, and R. Emery. 1992. Registry report use of total artificial hearts: summary of world experience, 1969-1991. ASAIO J. 38:M486M492.
48. Jones, L.,, B. D. Braithwaite,, B. Davies,, B. P. Heather,, and J. J. Earnshaw, 1997. Mechanism of late prosthetic vascular graft infection. Cardiovasc. Surg. 5:486489.
49. Kao, W. J.,, S. Sapatnekar,, A. Hiltner,, and J. M. Anderson. 1996. Complement-mediated leukocyte adhesion on poly(etherurethane ureas) under shear stress in vitro. J. Biomed. Mater. Res. 32:99109.
50. Kaplan, S. S.,, R. E. Bedford,, E. Mora,, M. H. Jeong,, and R. L. Simmons. 1992. Biomaterial-induced alterations of neutrophil superoxide production. J. Biomed. Mater. Res. 26:10391051.
51. Kiremitci-Gumusderelioglu, M.,, and A. Pesmen. 1996. Microbial adhesion to ionogenic PHEMA, PU and PP implants. Biomaterials 17:443449.
52. Kloos, W. E.,, and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7:117140.
53. Kottke-Marchant, K.,, J. M. Anderson,, K. M. Miller,, R. E. Marchant,, and H. Lazarus. 1987. Vascular graft-associated complement activation and leukocyte in an artificial circulation. J. Biomed. Mater. Res. 21: 379397.
54. Labarre, D.,, B. Montdargent,, M. P. Carreno,, and F. Maillet. 1993. Strategy for in-vitro evaluation of the interactions between biomaterials and complement system. J. Appl. Biomat. 4:231240.
55. Lewis, S. L. 1991. C5a receptors on neutrophils and monocytes from chronic dialysis patients. Adv. Exp. Med. Biol. 297:167181.
56. Lundberg, F.,, S. Schliamser,, and A. Ljungh. 1997. Vitronectin may mediate staphylococcal adhesion to polymer surfaces in perfusing human cerebrospinal fluid. J. Med. Microbiol. 46:285296.
57. Malchesky, P.,, V. Chamberlain,, C. Scott-Conner,, B. Salis,, and C. Wallace. 1995. Reprocessing of reusable medical devices. ASAIO J. 41:146151.
58. Marchant, R. E.,, S. Yuan,, and G. Szakalas-Gratzl. 1994. Interactions of plasma proteins with a novel polysaccharide surfactant physisorbed to polyethylene. J. Biomater. Sci. Polymer Educ. 6:549564.
59. Mohammad, S. F.,, N. S. Topham,, G. L. Burns,, and D. B. Olsen. 1988. Enhanced bacterial adhesion on surfaces pretreated with fibrinogen and fibronectin. ASAIO Trans. 27:391395.
60. Nilson, M.,, L. Frykberg,, J. I. Flock,, L. Pei,, M. Lindberg,, and B. Guss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66:26662673.
61. O'Neill, M. 1968. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Eng. Sci. 23: 12931298.
62. Osterberg, E.,, K. Bergstrom,, K. Holmberg,, T. Schuman,, J. Riggs,, N. Burns,, J. Van Alstine,, and J. Harris. 1995. Protein-rejecting ability of surface bound dextran in end-on and side-on configurations: Comparison to PEG. J. Biomed. Mater. Res. 29:741747.
63. Owens, N. F.,, and D. Gingell. 1987. Inhibition of cell adhesion by a synthetic polymer adsorbed to glass shown under defined hydrodynamic stress. J. Cell Sci. 87:667675.
64. Pascual, M.,, O. Piastre,, B. Montdargent,, D. Labarre,, and J. A. Schifferli. 1993. Specific interactions of polystyrene biomaterials with factor D of human complement. Biomaterials 14:665670.
65. Patel, K. D.,, M. U. Nollert,, and R. P. McEver. 1995. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J. Cell Biol. 131:1893.
66. Paulsson, M.,, I. Gouda,, O. Larm,, and A. Ljungh. 1994. Adherence of coagulase-negative staphylococci to heparin and other glycosaminoglycans immobilized on polymer surfaces. J. Biomed. Mater. Res. 28: 311317.
67. Paulsson, M.,, M. Kober,, C. Freij-Larsson,, M. Stollenwerk,, B. Wesslen,, and A. Ljungh. 1993. Adhesion of staphylococci to chemically modified and native polymers, and the influence of preadsorbed fibronectin, vitronectin and fibrinogen. Biomaterials 14:845853.
68. Pfeiffer, D.,, W. Jung,, W. Fehske,, T. Korte,, M. Manz,, R. Moosdorf,, and B. Luderitz. 1994. Complications of pacemaker defibrillator devices: diagnosis and management. Am. Heart J. 127:10731080.
69. Portoles, M.,, M. F. Refojo,, and F. L. Leong. 1993. Reduced bacterial adhesion to heparin-surface-modified intraocular lenses. J. Cataract Refract. Surg. 19:755759.
70. Prime, K. L.,, and G. M. Whitesides. 1993. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115: 1071410721.
71. Qiu, Y. X.,, T. H. Zhang,, M. Ruegsegger,, and R. E. Marchant. 1998. Novel nonionic oligosaccharide surfactant polymers derived from poly(vinylamine) with pendant dextran and hexanoyl groups. Macromolecules 31:165171.
72. Quirynen, M. 1994. The clinical meaning of the surface-roughness and the surface free-energy of intraoral hard substrate on the microbiology of the supragingival and subgingival plaque: results of in-vitro and in-vivo experiments. J. Dent. 22:S13.
73. Quirynen, M.,, and C. M. Bollen. 1995. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J. Clin. Periodontal. 22:114.
74. Randrup, E. R. 1995. Clinical experience with 180 inflatable penile prostheses. South. Med. J. 88(1):4751.
75. Rinder, C. S.,, H. M. Rinder,, B. R. Smith,, J. C. K. Fitch,, M. J. Smith,, J. B. Tracey,, L. A. Matis,, S. P. Squinto,, and S. A. Rollins. 1995. Blockade of C5a and C5b-9 generation inhibits leukocyte and platelet activation during extracorporeal circulation. J. Clin. Invest. 96:15641572.
76. Rodgers, K. G. 1994. Antibiotic use in prosthetic device infections. Emerg. Clin. N. Am. 12(3):863881.
77. Russell, P. B.,, J. K. Kline,, M. C. Yoder,, and R. A. Polin. 1987. Staphylococcal adherence to polyvinyl chloride and heparin-bonded polyurethane catheters is species dependent and enhanced by fibrinogen. J. Clin. Microbiol. 25:10831087.
78. Saffman, P. 1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22:385400.
79. Sanderson, N. M.,, B. Guo,, A. E. Jacob,, P. S. Handley,, J. G. Cunniffe,, and M. N. Jones. 1996. The interaction of cationic liposomes with the skin-associated bacterium Staphylococcus epidermidis: effects of ionic strength and temperature. Biochim. Biophys. Acta 1283:207214.
80. Sapatnekar, S.,, W. J. Kao,, and J. M. Anderson. 1997. Leukocyte/biomaterial interaction in the presence of Staphylococcus epidermidis: flow cytometric evaluation of leukocyte activation. J. Biomed. Mater. Res. 35:409420.
81. Sapatnekar, S.,, K. M. Kieswetter,, K. Merritt,, J. M. Anderson,, L. Cahalan,, M. Verhoeven,, M. Hendriks,, B. Fouache,, and P. Cahalan. 1995. Blood-biomaterial interactions in a flow system in the presence of bacteria. Effect of protein adsorption. J. Biomed. Mater. Res. 29:247256.
82. Shive, M. S.,, S. M. Hasan,, and J. M. Anderson. 1999. Shear stress effects on bacterial adhesion, leukocyte adhesion, and leukocyte oxidative capacity on a polyetherurethane. J. Biomed. Mater. Res. 46:511519.
83. Skvarla, J. 1993. A physico-chemical model of microbial adhesion. J. Chem. Soc. Faraday Trans. 89: 29132921.
84. Stickler, D. J.,, and R. J. C. McLean. 1995. Biomaterials associated infections: the scale of the problem. Cells Mater. 5:167182.
85. Tabor, B.,, B. Geissler,, R. Odell,, B. Schmidt,, M. Blumenstein,, and K. Schindhelm. 1998. Dialysis neutropenia: the role of the cytoskeleton. Kidney Int. 53:783789.
86. Thylen, P.,, J. Lundahl,, E. Fernvik,, J. Hed,, S. B. Svension,, and S. H. Jacobsen. 1992. Mobilization of an intracellular glycoprotein (Mac-1) on monocytes and granulocytes during hemodialysis. Am. J. Nephrol. 12:393400.
87. Vacheethasanee, K.,, J. M. Anderson,, and R. E. Manchant. 2000. Surface-induced assembly of Staphylococcus epidermidis resistant surfaces using comb-like surfactant polymers. J. Biomed. Mater. Res. 50: 302312.
88. Vacheethasanee, K.,, J. S. Temenoff,, J. M. Higashi,, A. Gary,, J. M. Anderson,, R. Bayston,, and R. E. Marchant. 1998. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J. Biomed. Mater. Res. 142:425432.
89. van der Mei, H. C.,, and H. J. Busscher. 1996. Detection by physicochemical techniques of an amphiphilic surface component on Streptococcus mitis strains involved in non-electrostatic binding to surfaces. Eur. J. Oral Sci. 104:4855.
90. Vanholder, R.,, R. Dell-Aquila,, R. Jacobs,, A. Dhondt,, N. Veys,, M. A. Waterloos,, N. Van Landschoot,, W. Van Biesen,, and S. Ringoir. 1993. Depressed phagocytosis in hemodialysis patients: in vivo and in vitro mechanisms. Nephron 63:409415.
91. Vigeant, M. A.,, and R. M. Ford. 1997. Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl. Environ. Microbiol. 63:34743479.
92. Wang, I.,, J. M. Anderson,, and R. E. Marchant. 1993. Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets. J. Infect. Dis. 167:329336.
93. Wang, I.,, J. M. Anderson,, and R. E. Marchant. 1993. Platelet-mediated adhesion of Staphylococcus epidermidis to hydrophobic NHLBI reference polyethylene. J. Biomed. Mater. Res. 27:11191128.
94. Wang, I.-W.,, M. Danilich,, J. Anderson,, and R. E. Marchant. 1995. Adhesion of Staphylococcus epidermidis to biomedical polymers: contributions of surface thermodynamics and hemodynamic shear conditions. J. Biomed. Mater. Res. 29:485493.
95. Wiencek, K. M.,, and M. Fletcher. 1995. Bacterial adhesion to hydroxyl- and methyl-terminated alkanethiol self-assembled monolayers. J. Bacteriol. 177:19591966.
96. Yu, J.,, M. N. Montelius,, M. Paulsson,, I. Gouda,, O. Larm,, L. Montelius,, and A. Ljungh. 1994. Adhesion of coagulase-negative staphylococci and adsorption of plasma proteins to heparinized polymer surfaces. Biomaterials 15:805814.

Tables

Generic image for table
Table 1

Device-centered infections

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Generic image for table
Table 2

Microbiology of implant infections

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Generic image for table
Table 3

SO release by fresh or pre-exposed PMNs on PEUU in response to different stimuli

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error