1887

Chapter 5 : Biomaterials: Factors Favoring Colonization and Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biomaterials: Factors Favoring Colonization and Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap05-2.gif

Abstract:

For more than a decade, various aspects of medical device and biomaterial infections have been studied in an effort to develop a fundamental and applied basis for infection-resistant biomaterials. This chapter presents an approach and perspectives on factors favoring biomaterial colonization and infection. Infection is a potentially serious complication with implants and devices and a major impediment to the long-term clinical success of devices like vascular grafts, artificial heart valves, and ventricular assist devices. The microorganisms most frequently identified on infected polymer implants either are present in the host flora or are nosocomial in origin, most notably the coagulasenegative staphylococci, particularly . The virulence of the commensal is a result of the foreign-body implant, which acts to inhibit the normal host defense. Focal thrombosis is a common finding with cardiovascular devices such as prosthetic heart valves, vascular grafts, arteriovenous fistulas, and artificial hearts. Catastrophic failure with significant morbidity and possibly death may occur when infectious foci initiate thrombosis with subsequent septic embolization. Adhesion of bacteria to an implant surface through specific and nonspecific mechanisms is a critical initial step in the development of biomaterial-centered infection. The adhesion of directly on biomaterials appears to be governed by nonspecific interactions. The GRGDS pentapeptide sequence was selected as the inhibitor, since it binds to several platelet integrin receptors, including GPIIb/IIIa. The complement system and phagocytic leukocytes, which are the primary defense mechanisms against infection, are obvious targets for the down regulation of host defenses by the biomaterial.

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5

Key Concept Ranking

Bacterial Proteins
0.53036493
Bacterial Adhesion
0.47278467
Atomic Force Microscopy
0.4255062
0.53036493
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Interactions of with biomaterials. (A) Illustration of a multistage process, from mass transport to aggregation and biofilm formation. (B) Near-surface bacterial interaction leading to adhesion.

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Role of surface topography in bacterial adhesion to Dacron. Scanning electron micrograph (×2,000) showing turbulent-flow-induced physical entrapment of in Dacron fiber interstices (A). The inclusion of plasma proteins in solution, which adsorb to the Dacron fiber, significantly decreases overall microbial adhesion (B). (Reproduced from the Journal of Biomedical Materials Research , with permission of John Wiley & Sons, Inc.)

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Relative surface concentration of RP62A bound to contact-activated platelets vs. PE with adsorbed plasma proteins. (B) Atomic force microscopy image of (RP62A) and human platelets on PE. (C) Fluorescence microscopy image of (RP62A) and human platelets stained by acridine orange on PE. Note the large number of bacteria on the platelet relative to surrounding (protein-coated) PE surface. Test medium is platelet-rich plasma.

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

adhesion to platelets with replenished plasma and with the addition of platelet integrin inhibitor GRGDS. The inhibitor significantly decreases adhesion to platelets ( < 0.05).

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparison of RP62A adhesion with shear stress to PE modified by poly(ethylene oxide) and dextran surfactant polymers. The dextran surfactant polymer contains a branch ratio of dextran: hexanoyl of 1:5. The dashed line represents the unmodified PE control ( ).

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818067.chap5
1. Absolom, D. R. 1988. The role of bacterial hydrophobicity in infection: bacterial adhesion and phagocytic ingestion. J. Microbiol. 15: 391 396.
2. Absolom, D. R.,, F. F. Lamberti,, Z. Policova,, C. J. Zingg,, C. J. van Oss,, and A. W. Neumann. 1983. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46: 90 97.
3. Amiji, M.,, and K. Park. 1992. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/ PPO/PEO triblock copolymers. Biomaterials 13: 682 691.
4. An, Y. H.,, and R. J. Friedman. 1998. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43: 338 348.
5. An, H. A.,, R. J. Friedman,, R. A. Draughn,, E. A. Smith,, and J. F. John. 1996. Bacterial adhesion to biomaterial surfaces, p. 19 57. In Human Biomaterials Applications. Humana Press, N.J.
6. Andrieux, A.,, G. Hudry-Clergeon,, J.-J. Ryckewaert,, A. Chapel,, M. H. Ginsberg,, E. F. Plow,, and G. Marguerie. 1989. Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GPIIbnia. J. Biol. Chem. 264: 9258 9265.
7. Arciola, C. R.,, R. Caramazza,, and A. Pizzoferrato. 1994. In vitro adhesion of Staphylococcus epidermidis on heparin-surface-modified intraocular lenses. J. Cataract Refract. Surg. 20: 158 161.
8. Arciola, C. R.,, L. Radin,, P. Alvergna,, E. Cenni,, and A. Pizzoferrato. 1993. Heparin surface treatment of poly(methylmethacrylate) alters adhesion of a Staphylococcus aureus strain: utility of bacterial fatty acid analysis. Biomaterials 14: 161 164.
9. Ballard, J.,, T. Bunt,, and J. Malone. 1992. Major complications of angioaccess surgery. Am. J. Surg. 164: 229 232.
10. Bandyk, D.,, and G. E. Esses. 1994. Prosthetic graft infection. Surg. Clin. N. Am. 74( 3): 571 590.
11. Bengston, S. 1993. Prosthetic osteomyelitis with special reference to the knee: risks, treatment, and costs. Ann. Med. 25: 523 529.
12. Bos, H. M.,, R. A. De Boer,, G. L. Burns,, and S. F. Mohammad 1996. Evidence that bacteria prefer to adhere to thrombus. ASAIO J. 42: 881 884.
13. Bridgett, M. J.,, M. C. Davies,, and S. P. Denyer. 1992. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials 13: 411 416.
14. Brunstedt, M. R.,, K. R. Rubin,, K. M. Kieswetter,, S. Sapatnekar,, N. P. Ziats,, K. Merritt,, and P. Cahalan. 1995. Bacteria/blood/material interactions. I. Injected and preseeded slime forming Staphylococcus epidermidis in flowing blood with biomaterials. J. Biomed. Mater. Res. 29: 455 466.
15. Cheung, A. K.,, M. Hohnholt,, and J. Gilson. 1991. Adherence of neutrophils to hemodialysis membranes: role of complement receptors. Kidney Int. 40: 1123 1133.
16. Cheung, A. K.,, C.J. Parker,, and M. Hohnholt. 1993. (32 integrins are required for neutrophil degranulation induced by hemodialysis membranes. Kidney Int. 43: 649 660.
17. Christensen, G. D. 1987. The confusing and tenacious coagulase-negative staphylococci. Adv. Intern. Med. 32: 177 192.
18. Chugh, T. D.,, G. J. Burns,, H. J. Shuhaiber,, and G. M. Bahr. 1990. Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated by lipoteichoic acid. Infect. Immun. 58: 315 319.
19. Collignon, P. 1994. Intravascular catheter associated sepsis: a common problem. Med. J. Aust. 161: 374 378.
20. Davies, J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375 382.
21. Desai, N. P.,, S. F. Hossainy,, and J. A. Hubbell. 1992. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13: 417 420.
22. Desai, N. P.,, and J. A. Hubbell. 1991. A solution technique to incorporate polyethylene oxide and other water soluble polymers into surfaces of polymeric biomaterials. Biomaterials 20: 144 153.
23. Dunkirk, S. G.,, S. L. Gregg,, L. W. Duran,, J. D. Monflls,, J. E. Haapala,, J. A. Marcy,, D. L. Clapper,, R. A. Amos,, and P. E. Guire. 1991. Photochemical coatings for the prevention of bacterial colonization. J. Biomat. Appl. 6: 131 156.
24. Fang, G.,, T. Keys,, L. Gentry,, A. Harris,, N. Rivera,, K. Getz,, P. Fuchs,, M. Gustafson,, E. Wong,, A. Goetz,, M. M. Wagener,, and V. L. Yu. 1993. Prosthetic valve endocarditis resulting from nosocomial bacteremia. A prospective, multicenter study. Ann. Intern. Med. 119: 560 567.
25. Ferreiros, C. M.,, J. Carballo,, M. T. Craido,, V. Sainz,, and M. C. del Rio. 1989. Surface free energy and interaction of Staphylococcus epidermidis with biomaterials. FEMS Microbiol. Lett. 59160: 89 94.
26. Fitzgerald, R. H. 1992. Total hip arthroplasty sepsis. Orthop. Clin. N. Am. 23( 2): 259 264.
27. Galliani, S.,, A. Cremieux,, P. van der Auwera,, and M. Viot. 1996. Influence of strain, biomaterial, proteins, and oncostatic chemotheraphy on Staphylococcus epidermidis adhesion to intravascular catheters in vitro. J. Lab. Clin. Med. 127: 71 80.
28. Galliani, S.,, M. Viot,, A. Cremieux,, and P. van der Auwera. 1994. Early adhesion of bacteremic strains of Staphylococcus epidermidis to polystyrene: influence of hydrophobicity, slime production, plasma, albumin, fibrinogen, and fibronectin. J. Lab. Clin. Med. 123: 685 692.
29. Gilbert, P.,, D. J. Evans,, E. Evans,, I. G. Duguid,, and M. R. Brown. 1991. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. Appl. Bacteriol. 71: 72 77.
30. Giridhar, G.,, Q. N. Myrvik,, and A. G. Gristina. 1995. Biomaterial-induced dysfunction in the capacity of rabbit alveolar macrophages to kill Staphylococcus epidermidis RP12. J. Biomed. Mater. Res. 29: 1179 1183.
31. Gristina, A.,, G. Giridhar,, B. Gabriel,, P. Nay lor,, and Q. N. Myrvik. 1993. Cell biology and molecular mechanisms in artificial device infections. Int. J. Artif. Org. 16( 11): 755 764.
32. Gristina, A.,, G. Giridhar,, and Q. N. Mayrvil,. 1994. Bacteria and biomaterials, p. 131 148. In R. S. Greco (ed.), Implantation Biology. CRC Press, Boca Raton, Fla.
33. Gristina, A. G.,, P. T. Naylor,, and Q. N. Myrvik,. 1990. Biomaterial-centered infections: microbial adhesion versus tissue integration, p. 193 216. In T. Wadstrom,, I. Eliasson,, I. A. Holder,, and A. Ljungh (ed.), Pathogenesis of Wound and Biomaterial-Associated Infections. Springer Verlag, London, England.
34. Henke, P. K.,, T. M. Bergamini,, S. M. Rose,, and J. D. Richardson. 1998. Current options in prosthetic vascular graft infection. Am. Surg. 64: 39 46.
35. Herrmann, M.,, P. E. Vaudaux,, D. Pittet,, R. Auckenthaler,, P. D. Lew,, F. Schumacher-Perdreau,, G. Peters,, and F. A. Waldvogel. 1988. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J. Infect. Dis. 158: 693 701.
36. Higashi, J. M. 1997. Mechanisms of Staphylococcus epidermidis adhesion to model biomaterial surfaces: establishing a link between thrombosis and infection. Ph.D. Thesis. Case Western Reserve University, Cleveland, Ohio.
37. Higashi, J. M.,, and R. E. Marchant,. Implant infections. In A. F. von Recom (ed.), Handbook of Biomaterials Evaluation, 2nd ed. Taylor & Francis, Washington, D.C.
38. Higashi, J. M.,, I. Wang,, D. M. Shlaes,, J. M. Anderson,, and R. E. Marchant. 1998. Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J. Biomed. Mater. Res. 39: 341 350.
39. Himmelfarb, J.,, J. M. Lazarus, and R. Hakim. 1991. Reactive oxygen species production by monocytes and polymorphonuclear leukocytes during dialysis. Am. J. Kidney Dis. 17: 271 276.
40. Himmelfarb, J.,, P. Zaoui,, R. Hakim,, and D. Holbrook. 1992. Modulation of granulocyte LAM-1 and MAC-1 during dialysis-a prospective, randomized controlled trial. Kidney Int. 41: 388 395.
41. Holland, N. B. 1999. Polymers, Surfactants and proteins at biomaterial interfaces, Ph.D. Thesis. Case Western Reserve University, Cleveland, Ohio.
42. Holland, N.,, Y. Qiu,, M. Ruegsegger,, and R. Marchant. 1998. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392: 799 801.
43. Holmes, C. 1995. Hemodialyzer performance: biological indices. Artif. Organs 19: 1126 1135.
44. Israelachvili, J.,, and R. Pashley. 1982. The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300: 341 342.
45. Jansen, B.,, and W. Kohnen. 1995. Prevention of biofilm formation by polymer modification. J. Ind. Microbiol. 15: 391 396.
46. Jansen, B.,, and G. Peters. 1991. Modern strategies in the prevention of polymer-associated infections. J. Hosp. Infect. 19: 83 88.
47. Johnson, K.,, M. Liska,, L. Joyce,, and R. Emery. 1992. Registry report use of total artificial hearts: summary of world experience, 1969-1991. ASAIO J. 38: M486 M492.
48. Jones, L.,, B. D. Braithwaite,, B. Davies,, B. P. Heather,, and J. J. Earnshaw, 1997. Mechanism of late prosthetic vascular graft infection. Cardiovasc. Surg. 5: 486 489.
49. Kao, W. J.,, S. Sapatnekar,, A. Hiltner,, and J. M. Anderson. 1996. Complement-mediated leukocyte adhesion on poly(etherurethane ureas) under shear stress in vitro. J. Biomed. Mater. Res. 32: 99 109.
50. Kaplan, S. S.,, R. E. Bedford,, E. Mora,, M. H. Jeong,, and R. L. Simmons. 1992. Biomaterial-induced alterations of neutrophil superoxide production. J. Biomed. Mater. Res. 26: 1039 1051.
51. Kiremitci-Gumusderelioglu, M.,, and A. Pesmen. 1996. Microbial adhesion to ionogenic PHEMA, PU and PP implants. Biomaterials 17: 443 449.
52. Kloos, W. E.,, and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7: 117 140.
53. Kottke-Marchant, K.,, J. M. Anderson,, K. M. Miller,, R. E. Marchant,, and H. Lazarus. 1987. Vascular graft-associated complement activation and leukocyte in an artificial circulation. J. Biomed. Mater. Res. 21: 379 397.
54. Labarre, D.,, B. Montdargent,, M. P. Carreno,, and F. Maillet. 1993. Strategy for in-vitro evaluation of the interactions between biomaterials and complement system. J. Appl. Biomat. 4: 231 240.
55. Lewis, S. L. 1991. C5a receptors on neutrophils and monocytes from chronic dialysis patients. Adv. Exp. Med. Biol. 297: 167 181.
56. Lundberg, F.,, S. Schliamser,, and A. Ljungh. 1997. Vitronectin may mediate staphylococcal adhesion to polymer surfaces in perfusing human cerebrospinal fluid. J. Med. Microbiol. 46: 285 296.
57. Malchesky, P.,, V. Chamberlain,, C. Scott-Conner,, B. Salis,, and C. Wallace. 1995. Reprocessing of reusable medical devices. ASAIO J. 41: 146 151.
58. Marchant, R. E.,, S. Yuan,, and G. Szakalas-Gratzl. 1994. Interactions of plasma proteins with a novel polysaccharide surfactant physisorbed to polyethylene. J. Biomater. Sci. Polymer Educ. 6: 549 564.
59. Mohammad, S. F.,, N. S. Topham,, G. L. Burns,, and D. B. Olsen. 1988. Enhanced bacterial adhesion on surfaces pretreated with fibrinogen and fibronectin. ASAIO Trans. 27: 391 395.
60. Nilson, M.,, L. Frykberg,, J. I. Flock,, L. Pei,, M. Lindberg,, and B. Guss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666 2673.
61. O'Neill, M. 1968. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Eng. Sci. 23: 1293 1298.
62. Osterberg, E.,, K. Bergstrom,, K. Holmberg,, T. Schuman,, J. Riggs,, N. Burns,, J. Van Alstine,, and J. Harris. 1995. Protein-rejecting ability of surface bound dextran in end-on and side-on configurations: Comparison to PEG. J. Biomed. Mater. Res. 29: 741 747.
63. Owens, N. F.,, and D. Gingell. 1987. Inhibition of cell adhesion by a synthetic polymer adsorbed to glass shown under defined hydrodynamic stress. J. Cell Sci. 87: 667 675.
64. Pascual, M.,, O. Piastre,, B. Montdargent,, D. Labarre,, and J. A. Schifferli. 1993. Specific interactions of polystyrene biomaterials with factor D of human complement. Biomaterials 14: 665 670.
65. Patel, K. D.,, M. U. Nollert,, and R. P. McEver. 1995. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J. Cell Biol. 131: 1893.
66. Paulsson, M.,, I. Gouda,, O. Larm,, and A. Ljungh. 1994. Adherence of coagulase-negative staphylococci to heparin and other glycosaminoglycans immobilized on polymer surfaces. J. Biomed. Mater. Res. 28: 311 317.
67. Paulsson, M.,, M. Kober,, C. Freij-Larsson,, M. Stollenwerk,, B. Wesslen,, and A. Ljungh. 1993. Adhesion of staphylococci to chemically modified and native polymers, and the influence of preadsorbed fibronectin, vitronectin and fibrinogen. Biomaterials 14: 845 853.
68. Pfeiffer, D.,, W. Jung,, W. Fehske,, T. Korte,, M. Manz,, R. Moosdorf,, and B. Luderitz. 1994. Complications of pacemaker defibrillator devices: diagnosis and management. Am. Heart J. 127: 1073 1080.
69. Portoles, M.,, M. F. Refojo,, and F. L. Leong. 1993. Reduced bacterial adhesion to heparin-surface-modified intraocular lenses. J. Cataract Refract. Surg. 19: 755 759.
70. Prime, K. L.,, and G. M. Whitesides. 1993. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115: 10714 10721.
71. Qiu, Y. X.,, T. H. Zhang,, M. Ruegsegger,, and R. E. Marchant. 1998. Novel nonionic oligosaccharide surfactant polymers derived from poly(vinylamine) with pendant dextran and hexanoyl groups. Macromolecules 31: 165 171.
72. Quirynen, M. 1994. The clinical meaning of the surface-roughness and the surface free-energy of intraoral hard substrate on the microbiology of the supragingival and subgingival plaque: results of in-vitro and in-vivo experiments. J. Dent. 22: S13.
73. Quirynen, M.,, and C. M. Bollen. 1995. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J. Clin. Periodontal. 22: 1 14.
74. Randrup, E. R. 1995. Clinical experience with 180 inflatable penile prostheses. South. Med. J. 88( 1): 47 51.
75. Rinder, C. S.,, H. M. Rinder,, B. R. Smith,, J. C. K. Fitch,, M. J. Smith,, J. B. Tracey,, L. A. Matis,, S. P. Squinto,, and S. A. Rollins. 1995. Blockade of C5a and C5b-9 generation inhibits leukocyte and platelet activation during extracorporeal circulation. J. Clin. Invest. 96: 1564 1572.
76. Rodgers, K. G. 1994. Antibiotic use in prosthetic device infections. Emerg. Clin. N. Am. 12( 3): 863 881.
77. Russell, P. B.,, J. K. Kline,, M. C. Yoder,, and R. A. Polin. 1987. Staphylococcal adherence to polyvinyl chloride and heparin-bonded polyurethane catheters is species dependent and enhanced by fibrinogen. J. Clin. Microbiol. 25: 1083 1087.
78. Saffman, P. 1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22: 385 400.
79. Sanderson, N. M.,, B. Guo,, A. E. Jacob,, P. S. Handley,, J. G. Cunniffe,, and M. N. Jones. 1996. The interaction of cationic liposomes with the skin-associated bacterium Staphylococcus epidermidis: effects of ionic strength and temperature. Biochim. Biophys. Acta 1283: 207 214.
80. Sapatnekar, S.,, W. J. Kao,, and J. M. Anderson. 1997. Leukocyte/biomaterial interaction in the presence of Staphylococcus epidermidis: flow cytometric evaluation of leukocyte activation. J. Biomed. Mater. Res. 35: 409 420.
81. Sapatnekar, S.,, K. M. Kieswetter,, K. Merritt,, J. M. Anderson,, L. Cahalan,, M. Verhoeven,, M. Hendriks,, B. Fouache,, and P. Cahalan. 1995. Blood-biomaterial interactions in a flow system in the presence of bacteria. Effect of protein adsorption. J. Biomed. Mater. Res. 29: 247 256.
82. Shive, M. S.,, S. M. Hasan,, and J. M. Anderson. 1999. Shear stress effects on bacterial adhesion, leukocyte adhesion, and leukocyte oxidative capacity on a polyetherurethane. J. Biomed. Mater. Res. 46: 511 519.
83. Skvarla, J. 1993. A physico-chemical model of microbial adhesion. J. Chem. Soc. Faraday Trans. 89: 2913 2921.
84. Stickler, D. J.,, and R. J. C. McLean. 1995. Biomaterials associated infections: the scale of the problem. Cells Mater. 5: 167 182.
85. Tabor, B.,, B. Geissler,, R. Odell,, B. Schmidt,, M. Blumenstein,, and K. Schindhelm. 1998. Dialysis neutropenia: the role of the cytoskeleton. Kidney Int. 53: 783 789.
86. Thylen, P.,, J. Lundahl,, E. Fernvik,, J. Hed,, S. B. Svension,, and S. H. Jacobsen. 1992. Mobilization of an intracellular glycoprotein (Mac-1) on monocytes and granulocytes during hemodialysis. Am. J. Nephrol. 12: 393 400.
87. Vacheethasanee, K.,, J. M. Anderson,, and R. E. Manchant. 2000. Surface-induced assembly of Staphylococcus epidermidis resistant surfaces using comb-like surfactant polymers. J. Biomed. Mater. Res. 50: 302 312.
88. Vacheethasanee, K.,, J. S. Temenoff,, J. M. Higashi,, A. Gary,, J. M. Anderson,, R. Bayston,, and R. E. Marchant. 1998. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J. Biomed. Mater. Res. 142: 425 432.
89. van der Mei, H. C.,, and H. J. Busscher. 1996. Detection by physicochemical techniques of an amphiphilic surface component on Streptococcus mitis strains involved in non-electrostatic binding to surfaces. Eur. J. Oral Sci. 104: 48 55.
90. Vanholder, R.,, R. Dell-Aquila,, R. Jacobs,, A. Dhondt,, N. Veys,, M. A. Waterloos,, N. Van Landschoot,, W. Van Biesen,, and S. Ringoir. 1993. Depressed phagocytosis in hemodialysis patients: in vivo and in vitro mechanisms. Nephron 63: 409 415.
91. Vigeant, M. A.,, and R. M. Ford. 1997. Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl. Environ. Microbiol. 63: 3474 3479.
92. Wang, I.,, J. M. Anderson,, and R. E. Marchant. 1993. Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets. J. Infect. Dis. 167: 329 336.
93. Wang, I.,, J. M. Anderson,, and R. E. Marchant. 1993. Platelet-mediated adhesion of Staphylococcus epidermidis to hydrophobic NHLBI reference polyethylene. J. Biomed. Mater. Res. 27: 1119 1128.
94. Wang, I.-W.,, M. Danilich,, J. Anderson,, and R. E. Marchant. 1995. Adhesion of Staphylococcus epidermidis to biomedical polymers: contributions of surface thermodynamics and hemodynamic shear conditions. J. Biomed. Mater. Res. 29: 485 493.
95. Wiencek, K. M.,, and M. Fletcher. 1995. Bacterial adhesion to hydroxyl- and methyl-terminated alkanethiol self-assembled monolayers. J. Bacteriol. 177: 1959 1966.
96. Yu, J.,, M. N. Montelius,, M. Paulsson,, I. Gouda,, O. Larm,, L. Montelius,, and A. Ljungh. 1994. Adhesion of coagulase-negative staphylococci and adsorption of plasma proteins to heparinized polymer surfaces. Biomaterials 15: 805 814.

Tables

Generic image for table
Table 1

Device-centered infections

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Generic image for table
Table 2

Microbiology of implant infections

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5
Generic image for table
Table 3

SO release by fresh or pre-exposed PMNs on PEUU in response to different stimuli

Citation: Anderson J, Marchant R. 2000. Biomaterials: Factors Favoring Colonization and Infection, p 89-109. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error