1887

Chapter 11 : Peptide Mimicry of the Polysaccharide Capsule of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Peptide Mimicry of the Polysaccharide Capsule of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818074/9781555811945_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818074/9781555811945_Chap11-2.gif

Abstract:

Organisms that possess a polysaccharide capsule, such as , type b, , and , are extremely important clinically because they are responsible for a majority of serious infections and for most deaths from meningitis. The reasons for searching for a peptide mimic of a carbohydrate structure are many-fold. In comparison to peptide chemistry, which is well-defined and relatively easy to manipulate, carbohydrate chemistry is more complex. is an environmentally ubiquitous encapsulated yeast that causes a life-threatening meningoencephalitis in 8% of AIDS patients in the United States and as many as 30% of HIV-infected people in Africa; it is the most common cause of central nervous system infections in New York City. Peptide binding monoclonal antibodies (MAbs) were obtained from mice immunized with P601E with the hope that their molecular structure would provide an explanation as to why they did not bind to glucuronoxylomannan (GXM). The antibody binding site of MAb 2H1 is a hydrophobic pocket delimited by CDR2 and CDR3 of the heavy chain and CDR1 and CDR3 of the light chain. The crystal structure of one of the peptides bound to MAb 2H1, combined with the molecular structure of the antipeptide MAbs elicited by another one of the peptides, provided a clue as to why our peptides were not good mimotopes. The 2H1 antibody does not change its conformation when it interacts with the peptide mimic, making it unlikely that changes in the site occur when it interacts with GXM.

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11

Key Concept Ranking

Amino Acids
0.48120627
Enzyme-Linked Immunosorbent Assay
0.44948268
Immune Systems
0.42093268
Aromatic Amino Acids
0.4013133
0.48120627
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

(A) Indirect immunofluorescence (IF; top row) and immunoelectron microscopy (IEM; bottom row) reveal differences in antibody localization within the capsule of serotype D. Protective MAb 12A1 (left column) binds to the outer rim of the capsule in an annular pattern, and nonprotective antibody 13F1 (right column) binds throughout the capsule in a punctate fashion. (B) Survival of A/J mice treated with MAbs or phosphate-buffered saline (PBS; controls) and infected with serotype D. MAb 12A1 has a statistically significant protective effect, whereas MAb 13F1 is no better than phosphate-buffered saline and may actually enhance infection ( ).

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Survival of A/J mice treated with MAbs or phosphate-buffered saline (PBS; controls) and infected with serotype D. MAb IgG3 3E5 does not protect mice against infection, whereas its IgG1 switch variant is protective. When these two MAbs are administered simultaneously, the protective efficacy of IgG1 is lost ( ). Similar results have been obtained when MAbs directed against protective and nonprotective epitopes are mixed (data not shown).

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Schematic diagram of filamentous bacteriophage fd depicting two sites for display of peptides: the major coat protein, pVIII, and the minor coat protein, pIII. Five molecules of pIII are expressed on one end of the phage, whereas approximately 2,700 molecules of pVIII are on the cylindrical surface of the viral capsid ( ). The vast difference in valence allows detection of both high- and low-affinity target peptides, respectively. An example of a 10-mer random peptide inserted into the pIII minor coat protein used to obtain mimics of GXM is shown. ssDNA, single-stranded DNA. (B) To screen a random phage library for a peptide of desired specificity, phage are electroporated into susceptible bacteria (infection) and allowed to grow (amplification). Bacteria and impurities are removed and phages are incubated with a screening MAb (equilibration). Bound phage are then captured on streptavidin-coated magnetic beads bearing biotinylated antibodies directed against the isotype of the screening MAb (capture). Selected phage are then purified (washing and elution) and passed through successive rounds of panning with lower concentrations of screening antibody and shorter equilibration times to obtain peptides with specificity and high affinity for the screening antibody.

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

ELISA data showing free peptides in competition with Fab of MAb 2H1 for binding to phage 601E (A) and GXM (B) ( ). P315 is an irrelevant control peptide (CKVMVHDPHSLA). Results similar to those presented in panel A were found for phage 514 and A1 (data not shown). OD, optical density. Symbols: ◊, P315; ■, P514, ●, P601E; ▲, PA1.

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Anti-GXM titers in BALB/c mice 14 days after secondary immunization with peptide conjugated to KLH. Mean titers are represented by gray bars; peak titers are indicated by horizontal lines. In comparing these peptides, it appears that as their affinity for MAb 2H1 increases they induce higher titers of anti-GXM antibodies.

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Crystal structure of PA1 bound to MAb 2H1. (For color version of figure, see Color Plates, p. 276.) (A) Looking down on PA I resting in the binding site of 2H1, which is shown in white, with positively charged regions in blue and negatively charged areas in red. Antibody heavy-chain CDR2 and CDR3 and light-chain CDR1 and CDR3 are denoted by H2, H3, L1, and L3, respectively. (B) Side view showing the cutaway surface of MAb 2H1 in white and the molecular surface of PA1 as a lilac mesh. The orientation of the peptide is similar to that in panel A. and the residues corresponding to the PA1 motif are colored as follows: T5. blue-green: P6. purple; W8. pink; M9, orange; L10, green. The remainder of the peptide is shown in yellow. The surfaces of two cavities between the antibody and the bound peptide are colored yellow, green, and orange according to their proximity to the antibody light chain, antibody heavy chain, and peptide, respectively.

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818074.chap11
1. Adey, N. B.,, A. H. Mataragnon,, J. E. Rider,, J. M. Carter,, and B. K. Kay. 1995. Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene 156:2731.
2. Agadjanyan, M.,, P. Luo,, M. A. Westerink,, L. A. Carey,, W. Hutchins,, Z. Steplewski,, D. B. Weiner,, and T. Kieber-Emmons. 1997. Peptide mimicry of carbohydrate epitopes on human immunodeficiency virus. Nat. Biotechnol. 15:547551.
3. Ahman, H.,, H. Kayhty,, H. Lehtonen,, O. Leroy,, J. Froeschle,, and J. Eskola. 1998. Streptococcus pneumoniae capsular polysaccharide-diphtheria toxoid conjugate vaccine is immunogenic in early infancy and able to induce immunologic memory. Pediatr. Infect. Dis. J. 17:211216.
4. Arnon, R.,, and M. H. Van Regenmortel. 1992. Structural basis of antigenic specificity and design of new vaccines. FASEB J.6:32653274.
5. Austrian, R. 1985. Polysaccharide vaccines. Ann. Inst. Pasteur Microbiol. 136B:295307.
6. Bittle, J. L.,, R. A. Houghten,, H. Alexander,, T. M. Shinnick,, J. G. SutclifTe,, R. A. Lerner,, D. J. Rowlands,, and F. Brown. 1982. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298:3033.
7. Bona, C. 1993. Molecular characteristics of anti-polysaccharide antibodies. Springer Semin. Immunopathol. 15:103118.
8. Butterworth, A. E.,, R. Bensted-Smith,, A. Capron,, M. Capron,, P. R. Dalton,, D. W. Dunne,, J. M. Grzych,, H. C. Kariuki,, J. Khalife,, and D. Koech. 1987. Immunity in human Schistosomiasis mansoni: prevention by blocking antibodies of the expression of immunity in young children. Parasitology 94:(Pt. 2):281300.
9. Carson, P. J.,, R. L. Schut,, M. L. Simpson,, J. O'Brien,, and E. N. Janoff. 1995. Antibody class and subclass responses to pneumococcal polysaccharides following immunization of human immunodeficiency virus-infected patients. J. Infect. Dis. 172:340345.
10. Casadevall, A. 1995. Antibody immunity and invasive fungal infections. Infect. Immun. 63:42114218.
11. Casadevall, A.,, and J. R. Perfect. 1998. Cryptococcus neoformans. ASM Press, Washington, D.C.
12.Centers for Disease Control and Prevention. 1999. Impact of vaccines universally recommended for children: United States, 1990-1998. Morbid. Mortal. Weekly Rep. 48:243248.
13. Chapman, P. B.,, and A. N. Houghton. 1991. Induction of IgG antibodies against GD3 ganglioside in rabbits by an anti-idiotypic monoclonal antibody. J. Clin. Invest. 88:186192.
14. Cherniak, R.,, and J. B. Sundstrom. 1994. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect. Immun. 62:15071512.
15. Chothia, C.,, A. M. Lesk,, E. Gherardi,, I. M. Tomlinson,, G. Walter,, J. D. Marks,, M. B. Llewelyn,, and G. Winter. 1992. Structural repertoire of the human VH segments. J. Mol. Biol. 227:799817.
16. Clumeck, N.,, J. Sonnet,, H. Taelman,, F. Mascart-Lemone,, M. De Bruyere,, P. Vandeperre,, J. Dasnoy,, L. Marcelis,, M. Lamy,, and C. Jonas. 1984. Acquired immunodeficiency syndrome in African patients. N. Engl. J. Med. 310:492497.
17. Currie, B. P.,, and A. Casadevall. 1994. Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin. Infect. Dis. 19:10291033.
18. Cygler, M.,, D. R. Rose,, and D. R. Bundle. 1991. Recognition of a cell-surface oligosaccharide of pathogenic Salmonella by an antibody Fab fragment. Science 253:442445.
19. Diwan, M.,, A. Misra,, R. K. Khar,, and G. P. Taiwan 1997. Long-term high immune response to diphtheria toxoid in rodents with diphtheria toxoid conjugated to dextran as a single contact point delivery system. Vaccine 15:18671871.
20. Dong, Z. M.,, and J. W. Murphy. 1995. Effects of the two varieties of Cryptococcus neoformans cells and culture filtrate antigens on neutrophil locomotion. Infect. Immun. 63:26322644.
21. Elliott, J. 1.1990. Epitope-specific regulation and the literature. Scand. J. Immunol. 32:193195.
22. Evans, S. V.,, D. R. Rose,, R. To,, N. M. Young,, and D. R. Bundle. 1994. Exploring the mimicry of polysaccharide antigens by anti-idiotypic antibodies. The crystallization, molecular replacement, and refinement to 2.8 Å resolution of an idiotope-anti-idiotope Fab complex and of the unliganded anti-idiotope Fab. J. Mol. Biol. 241:691705.
23. Fields, B. A.,, F. A. Goldbaum,, X. Ysern,, R. J. Poljak,, and R. A. Mariuzza. 1995. Molecular basis of antigen mimicry by an anti-idiotope. Nature: 374:739742.
24. Grzych, J. M.,, M. Capron,, C. Dissous,, and A. Capron. 1984. Blocking activity of rat monoclonal antibodies in experimental schistosomiasis. J. Immunol. 133:9981004.
25. Hoess, R.,, U. Brinkmann,, T. Handel,, and I. Pastan. 1993. Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3. Gene 128:4349.
26. Ishikawa, D.,, H. Kikkawa,, K. Ogino,, Y. Hirabayashi,, N. Oku,, and T. Taki. 1998. GDI alpha-replica peptides functionally mimic GDlalpha, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasis. FEBS Lett. 441:2024.
27. Jerne, N. K. 1974. Towards a network theory of the immune system. Ann. Immunol. (Paris) 125C:373389.
28. Joiner, K. A.,, R. Scales,, K. A. Warren,, M. M. Frank,, and P. A. Rice. 1985. Mechanism of action of blocking immunoglobulin G for Neisseria gonorrhoeae. J. Clin. Invest. 76:17651772.
29. Kay, B. K.,, J. Winter,, and J. McCafferty. 1996. Phage Display of Peptides and Proteins. Academic Press, Inc., San Diego, Calif.
30. Luo, P.,, M. Agadjanyan,, J. Qiu,, M. A. Westerink,, Z. Steplewski,, and T. Kieber-Emmons. 1998. Antigenic and immunological mimicry of peptide mimotopes of Lewis carbohydrate antigens. Mol. Immunol. 35:865879.
31. Men, Y.,, B. Gander,, H. P. Merkle,, and G. Corradin. 1996. Induction of sustained and elevated immune responses to weakly immunogenic synthetic malarial peptides by encapsulation in biodegradable polymer microspheres. Vaccine 14:14421450.
32. Mond, J. J.,, A. Lees,, and C. M. Snapper. 1995. T cell-independent antigens type 2. Annu. Rev. Immunol. 13:655692.
33. Mukherjee, J.,, A. Casadevall,, and M. D. Scharff. 1993. Molecular characterization of the humoral responses to Cryptococcus neoformans infection and glucuronoxylomannan-tetanus toxoid conjugate immunization. J.Exp. Med. 177:11051116.
34. Mukherjee, J.,, G. Nussbaum,, M. D. Scharff,, and A. Casadevall. 1995. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J. Exp. Med. 181:405409.
35. Mukherjee, J.,, M. D. Scharff,, and A. Casadevall. 1992. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect. Immun. 60:45344541.
36. Mukherjee, S.,, S. C. Lee,, and A. Casadevall. 1995. Antibodies to Cryptococcus neoformans glucuronoxy-lomannan enhance antifungal activity of murine macrophages. Infect. Immun. 63:573579.
37. Murphy, J. W.,, and G. C. Cozad. 1972. Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infect. Immun. 5:896901.
38. Nussbaum, G.,, W. Cleare,, A. Casadevall,, M. D. Scharff,, and P. Valadon. 1997. Epitope location in the Cryptococcus neoformans capsule is a determinant of antibody efficacy. J. Exp. Med. 185:685694.
39. Nussbaum, G.,, R. Yuan,, A. Casadevall,, and M. D. Scharff. 1996. Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans. J. Exp. Med. 183:19051909.
40. Nussbaum, G.,, S. Anandasabapathy,, J. Mukherjee,, M. Fan,, A. Casadevall,, and M. D. Scharff. 1999. Molecular and idiotypic analyses of the antibody response to Cryptococcus neoformans glucuronoxyloman-nan-protein conjugate vaccine in autoimmune and nonautoimmune mice. Infect. Immun. 67:44694476.
41. Oldenburg, K. R.,, D. Loganathan,, I. J. Goldstein,, P. G. Schultz,, and M. A. Gallop. 1992. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc. Natl. Acad. Sci. USA 89:53935397.
42. Olds, G. R.,, and T. F. Kresina. 1987. Protective anti-idiotype vaccine against Schistosoma mansoni infection. Trans. Assoc. Am. Physicians 100:215221.
43. Padlan, E. A. 1990. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins 7:112124.
44. Pettoello-Mantovani, M.,, A. Casadevall,, T. R. Kollmann,, A. Rubinstein,, and H. Goldstein. 1992. Enhancement of HIV-1 infection by the capsular polysaccharide of Cryptococcus neoformans. Lancet 339:2123.
45. Phalipon, A.,, A. Folgori,, J. Arondel,, G. Sgaramella,, P. Fortugno,, R. Cortese,, P. J. Sansonetti,, and F. Felici. 1997. Induction of anti-carbohydrate antibodies by phage library-selected peptide mimics. Eur. J. Immunol. 27:26202625.
46. Pirofski, L. A.,, and A. Casadevall. 1998. Use of licensed vaccines for active immunization of the immunocompromised host. Clin. Microbiol. Rev. 11:126.
47. Reason, D. C.,, M. Y. Kitamura,, and A. H. Lucas. 1994. Induction of a protective human polysaccharide-specific antibody response in hu-PBL SCID mice by idiotypic vaccination. J. Immunol. 152:50095013.
48. Rice, P. A.,, and D. L. Kasper. 1982. Characterization of serum resistance of Neisseria gonorrhoeae that disseminate. Roles of blocking antibody and gonococcal outer membrane proteins. J. Clin. Investig. 70:157167.
49. Rini, J. M.,, U. Schulze-Gahmen,, and I. A. Wilson. 1992. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 255:959965.
50. Robbins, J. B.,, R. Schneerson,, P. Anderson,, and D. H. Smith. 1996. The 1996 Albert Lasker Medical Research Awards. Prevention of systemic infections, especially meningitis, caused by Haemophilus influenzae type b. Impact on public health and implications for other polysaccharide-based vaccines. JAMA 276:11811185.
51. Sacks, D. L.,, L. V. Kirchhoff,, S. Hieny,, and A. Sher. 1985. Molecular mimicry of a carbohydrate epitope on a major surface glycoprotein of Trypanosoma cruzi by using anti-idiotypic antibodies. J. Immunol. 135:41554159.
52. Saleh, M. N.,, J. D. Stapleton,, M. B. Khazaeli,, and A. F. LoBuglio. 1993. Generation of a human anti-idiotypic antibody that mimics the GD2 antigen. J. Immunol. 151:33903398.
53. Schreiber, J. R.,, K. L. Nixon,, M. F. Tosi,, G. B. Pier,, and M. B. Patawaran. 1991. Anti-idiotype-induced, lipopolysaccharide-specific antibody response to Pseudomonas aeruginosa. II. Isotype and functional activity of the anti-idiotype-induced antibodies. J. Immunol. 146:188193.
54. Schreiber, J. R.,, M. Patawaran,, M. Tosi,, J. Lennon,, and G. B. Pier. 1990. Anti-idiotype-induced, lipopolysaccharide-specific antibody response to Pseudomonas aeruginosa. J. Immunol. 144:10231029.
55. Scott, J. K.,, D. Loganathan,, R. B. Easley,, X. Gong,, and I. J. Goldstein. 1992. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc. Natl. Acad. Sci. USA 89:53985402.
56. Scott, J. K.,, and G. P. Smith. 1990. Searching for peptide ligands with an epitope library. Science 249:386390.
57. Singh, M.,, X. M. Li,, H. Wang,, J. P. McGee,, T. Zamb,, W. Koff,, C. Y. Wang,, and D. T. O'Hagan. 1997. Immunogenecity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine. Infect. Immun. 65:17161721.
58. Sorensen, R. U.,, L. E. Leiva,, R. A. Giangrosso,, B. Butter,, E. C. Javier III,, D. M. Sacerdote,, N. Bradford,, and C. Moore. 1998. Response to a heptavalent conjugate Streptococcus pneumoniae vaccine in children with recurrent infections who are unresponsive to the polysaccharide vaccine. Pediatr. Infect. Dis. J. 17:685691.
59. Stein, K. E.,, and T. Soderstrom. 1984. Neonatal administration of idiotype or antiidiotype primes for protection against Escherichia coli K13 infection in mice. J. Exp. Med. 160:10011011.
60. Taki, T.,, D. Ishikawa,, H. Hamasaki,, and S. Handa. 1997. Preparation of peptides which mimic glyco-sphingolipids by using phage peptide library and their modulation on beta-galactosidase activity. FEBS Lett. 418:219223.
61. Tarn, J. P. 1988. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc. Natl. Acad. Sci. USA 85:54095413.
62. Tam, J. P.,, P. Clavyo,, Y. A. Lu,, V. Nussenzweig,, R. Nussenzweig,, and F. Zavala. 1990. Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J. Exp. Med. 171:299306.
63. Tam, J. P.,, and Y. A. Lu. 1989. Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc. Natl. Acad. Sci. USA 86:90849088.
64. Taub, R.,, and M. I. Greene. 1992. Functional validation of ligand mimicry by anti-receptor antibodies: structural and therapeutic implications. Biochemistry 31:74317435.
65. Tunkel, A. R.,, and W. M. Scheld,. 1995. Acute meningitis, p. 831865. In G. L. Mandell,, J. E. Bennett,, and R. Dolin (ed.), Principles and Practice of Infectious Diseases, 4th ed., vol. 1. Churchill Livingstone, New York, N.Y.
66. Valadon, P.,, G. Nussbaum,, L. F. Boyd,, D. H. Margulies,, and M. D. Scharff. 1996. Peptide libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus neoformans. J. Mol. Biol. 261:1122.
67. Valadon, P.,, G. Nussbaum,, J. Oh,, and M. D. Scharff. 1998. Aspects of antigen mimicry revealed by immunization with a peptide mimetic of Cryptococcus neoformans polysaccharide. J. Immunol. 161:18291836.
68. van Dam, J. E.,, A. Fleer,, and H. Snippe. 1990. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Leeuwenhoek 58:147.
69. Van Regenmortel, M. H.,, G. Guichard,, N. Benkirane,, J. P. Briand,, S. Muller,, and F. Brown. 1998. The potential of retro-inverso peptides as synthetic vaccines. Dev. Biol. Stand. 92:139143.
70. Vargas-Madrazo, E.,, F. Lara-Ochoa,, and J. C. Almagro. 1995. Canonical structure repertoire of the antigen-binding site of immunoglobulins suggests strong geometrical restrictions associated to the mechanism of immune recognition. J. Mol. Biol. 254:497504.
71. Verdaguer, N.,, M. G. Mateu,, J. Bravo,, E. Domingo,, and I. Fita. 1996. Induced pocket to accommodate the cell attachment Arg-Gly-Asp motif in a neutralizing antibody against foot-and-mouth-disease virus. J. Mol. Biol. 256:364376.
72. Westerink, M. A.,, P. C. Giardina,, M. A. Apicella,, and T. Kieber-Emmons. 1995. Peptide mimicry of the meningococcal group C capsular polysaccharide. Proc. Natl. Acad. Sci. USA 92:40214025.
73. Wien, M. W.,, D. J. Filman,, E. A. Stura,, S. Guillot,, F. Delpeyroux,, R. Crainic,, and J. M. Hogle. 1995. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat. Struct. Biol. 2:232243.
74. Wilson, I. A.,, and R. L. Stanfield. 1994. Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4:857867.
75. Yi, X. Y.,, A. J. Simpson,, R. de Rossi,, and S. R. Smithers. 1986. The presence of antibody in mice chronically infected with Schistosoma mansoni which blocks in vitro killing of schistosomula. J. Immunol. 137:39553958.
76. Young, A. C.,, P. Valadon,, A. Casadevall,, M. D. Scharff,, and J. C. Sacchettini. 1997. The three-dimensional structures of a polysaccharide binding antibody to Cryptococcus neoformans and its complex with a peptide from a phage display library: implications for the identification of peptide mimotopes. J. Mol. Biol. 274:622634.
77. Zhang, H.,, Z. Zhong,, and L. A. Pirofski. 1997. Peptide epitopes recognized by a human anti-cryptococcal glucuronoxylomannan antibody. Infect. Immun. 65:11581164.
78. Zuger, A.,, E. Louie,, R. S. Holzman,, M. S. Simberkoff,, and J. J. Rahal. 1986. Cryptococcal disease in patients with the acquired immunodeficiency syndrome. Diagnostic features and outcome of treatment. Ann. Intern. Med. 104:234240.

Tables

Generic image for table
Table 1

Three motifs derived from several peptides isolated from hexa- and decapeptide libraries screened by 2H1

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Generic image for table
Table 2

Peptides selected by either protective MAb 12A1 or nonprotective MAb 13F1

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Generic image for table
Table 3

Characteristics of MAbs obtained following immunization with P601E

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11
Generic image for table
Table 4

Evolution of a peptide mimotope for GXM

Citation: Beenhouwer D, Valadon P, May R, Scharff M. 2000. Peptide Mimicry of the Polysaccharide Capsule of , p 143-160. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error