1887

Chapter 17 : Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818074/9781555811945_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555818074/9781555811945_Chap17-2.gif

Abstract:

This chapter introduces and explains the rat insulin promoter (RIP)-lymphocytic choriomeningitis virus (LCMV) model of vitally induced autoimmune diabetes. Special emphasis is given to the issues of molecular mimicry, the potential involvement of several viral infections in inducing or abrogating insulin-dependent diabetes mellitus (IDDM), new therapeutic perspectives, and pathogenically important findings that stem from the use of this model. The chapter discusses these issues, as well as other factors that precipitate or prevent IDDM. The RIP-LCMV transgenic mouse model differs in some important aspects from other established antigen-specific models of autoimmunity as well as from the nonobese diabetic (NOD) mouse model of spontaneous IDDM. The RIP-LCMV transgenic mouse model is ideally suited for the testing of novel approaches to antigen-specific immune therapy. The induction of IDDM by viral infection can be controlled and is directed to a known and well-characterized self-antigen, the LCMV transgene expressed by the B cells. Mice that expressed LCMV-NP as a transgene in their β cells developed IDDM after LCMV infection. Subsequent inoculation of plasmid DNA that encoded the insulin B chain reduced the incidence of this virally induced autoimmune diabetes by 50%. The protection provided by insulin B-chain DNA proceeded through induction of anti-self, regulatory CD4 lymphocytes that reacted with the insulin B chain, secreted IL-4, and locally reduced the activities of LCMV-NP autoreactive cytotoxic lymphocytes (CTLs) in the pancreatic draining lymph nodes.

Citation: von Herrath M. 2000. Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, p 235-255. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch17

Key Concept Ranking

Tumor Necrosis Factor alpha
0.48435035
Transforming Growth Factor beta
0.45838657
0.48435035
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Principle of RIP-LCMV transgenic mouse model. Pancreatic β cells of RIP-LCMV transgenic (tg) mice express the NP or GP of LCMV under control of RIP. As the viral gene is integrated into the host's genome and passed on to progeny mice, it becomes essentially a host self-antigen. These mice are not tolerant to the LCMV (self) transgene but are unresponsive since naive autoreactive (LCMV-specific) lymphocytes escape thymic selection and are present in the periphery. Such cells are not activated under normal circumstances. However, infection with LCMV or expression of certain cytokines (IFN-γ) or activation molecules (B7.1) breaks this unresponsiveness, and as a consequence, activated LCMV (anti-self)-specific lymphocytes attack the p cells that express the appropriate LCMV proteins. The result is that autoimmune diabetes develops in 95 to 100% of RIP-LCMV transgenic mice after LCMV infection.

Citation: von Herrath M. 2000. Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, p 235-255. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Histological findings in the RIP-LCMV transgenic models of slow- and rapid-onset IDDM. RIP-LCMV transgenic mice without thymic expression of the viral self-antigens expressed in their β cells develop CD4 independent, rapid-onset IDDM. A predominance of INF-γ-producing lymphocytes enters the islets. In contrast, the slow-onset IDDM that develops in mice with thymic expression is CD4 dependent and has a lag phase before IDDM occurs. This is a nondiabetic period during which lymphocytes mainly appear around, but not in, islets. Of the lymphocytes found within islets, the majority express or secrete IL-4 during this stage. He, hematoxylineosin staining.

Citation: von Herrath M. 2000. Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, p 235-255. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Important events (numbered 1 through 10) in the pathogenesis of IDDM. Autoreactive lymphocytes (events 1 and 3), once activated, enter the islets in large numbers. There, CD8 CTLs kill (event 1b) some β cells using perforin, but not a sufficient amount to cause clinical IDDM. Antigens released by the dying β cells (event 2) are taken up in the islets by professional APCs (event 5), such as dendritic cells or macrophages. Additionally, an external noxious factor like viral infection (event 4) of the pancreas or another inflammation is likely needed to recruit and activate enough APCs into the area. These APCs (event 5) can then present β-cell antigens to infiltrating CD4 and CD8 lymphocytes (events 6 and 7) and provide crucial costimulatory signals, for example, through B7.1 and B7.2 CD28 interactions (event 8). As a result, the infiltrating lymphocyte population is expanded and can attack more β cells (event 9). Inflammatory cytokines are also secreted and may directly contribute to β-cell destruction (event 10). In this way, the autoimmune process is perpetuated locally until all islet cells are destroyed so that IDDM results. The three main players in this model, autoreactive lymphocytes, activated APCs, and regulatory factors, are all targets with immunotherapeutic potential.

Citation: von Herrath M. 2000. Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, p 235-255. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Concept of bystander suppression in treating autoimmune diseases. Destructive lymphocytes reactive with self-antigen A can be negatively influenced in the target organ by regulatory (bystander suppressor) lymphocytes reactive with a different self-antigen B.

Citation: von Herrath M. 2000. Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, p 235-255. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

“The battle for the islet”: therapeutic approaches to prevention of autoimmune diabetes. Infiltration and destruction of islet cells by autoreactive lymphocytes and APCs constitute a complex process that can be reversed by various mechanisms even after its initiation. Not clear, at this point, is whether “attack” of an islet cell results in increased regeneration of β cells as a way for the islet cells to fight back and prevent their own destruction. Apparently, from present evidence, islet cell destruction should be viewed as a dynamic process that largely depends on the amount of local inflammatory mediators and destructive versus protective lymphocytes.

Citation: von Herrath M. 2000. Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, p 235-255. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818074.chap17
1. Adams, T. E.,, S. Alpert,, and D. Hanahan. 1987. Non tolerance and autoantibodies to a transgenic self-antigen expressed in pancreatic beta-cells. Nature 325:223228.
2. Akhtar, I.,, J. P. Gold,, L. Y. Pan,, J. L. Ferrara,, X. D. Yang,, J. I. Kim,, and K. N. Tan. 1995. CD4+ beta islet cell-reactive T cell clones that suppress autoimmune diabetes in nonobese diabetic mice. J. Exp. Med. 182:8797.
3. al-Sabbagh, A.,, A. Miller,, L. M. Santos,, and H. L. Weiner. 1994. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. J. Immunol. 24:21042109.
4. Bach, J.-F.,, and D. Mathis. 1997. The NOD mouse. Res. Immunol. 148:281370.
5. Bachmaier, K.,, N. Neu,, L. M. de la Maza,, S. Pal,, A. Hessel,, and J. M. Penninger. 1999. Chlamydia infections and heart disease linked through antigenic mimicry. Science 283:13351339.
6. Baekkeskov, S.,, H. J. Anastoot,, S. Christgau,, A. Reetz,, M. Solimena,, M. Cascalho,, F. Folli,, H. Richter-Dlesen,, P. DeCamillin,, and P. D. Camilli. 1990. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347:151156.
7. Baekkeskov, S.,, and B. Hansen. 1990. Human diabetes. Curr. Top. Microbiol Immunol. 164:1193.
8. Benson, J. M.,, and C. C. Whitacre. 1997. The role of clonal deletion and anergy in oral tolerance. Res. Immunol. 148:533541.
9. Bergerot, I.,, N. Fabien,, V. Maguer,, and C. Thivolet. 1994. Oral administration of human insulin to NOD mice generates CD4+ T cells that suppress adoptive transfer of diabetes. J. Autoimmunity 7:655663.
10. Borrow, P.,, and M. B. A. Oldstone,. 1997. Lymphocytic choriomeningitis virus, p. 593627. In N. Nathanson (ed.), Viral Pathogenesis. Lippincott-Raven, Philadelphia, Pa.
11. Buchmeier, M.,, R. Welsh,, F. Dutko,, and M. B. A. Oldstone. 1980. The virology and immunobiology of LCMV infection. Adv. Immunol. 30:275331.
12. Chan, S.,, M. Correia-Neves,, A. Dierich,, C. Benoist,, and D. Mathis. 1998. Visualization of CP4/CD8 T cell commitment. J. Exp. Med. 188:23212333.
13. Chen, Y.,, J. Inobe,, V. K. Kuchroo,, J. L. Baron,, C. A. Jane wayJr.,, and H. L. Weiner. 1996. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc. Natl. Acad. Set USA 93:388391.
14. Chen, Y.,, J. Inobe,, and H. L. Weiner. 1995. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J. Immunol. 155:910916.
15. Chen, Y.,, V. K. Kuchroo,, J. I. Inobe,, D. A. Hafler,, and H. L. Weiner. 1994. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265:12371240.
16. Cope, A.,, R. Ettinger,, and H. McDivitt. 1997. The role of TNF alpha and related cytokines in the development and function of the autoreactive T-cell repertoire. Res. Immunol. 148:307312.
17. Forster, I.,, R. Hirose,, J. M. Arbeit,, B. E. Clausen,, and D. Hanahan. 1995. Limited capacity for tolerization of CD4+ T cells specific for a pancreatic beta cell neo-antigen. Immunity 2:573585.
18. Garside, P.,, M. Steel,, F. Y. Liew,, and A. M. Mowat. 1995. CD4+ but not CD8+ T cells are required for the induction of oral tolerance. Int. Immunol. 7:501504.
19. Garside, P.,, M. Steel,, E. A. Worthey,, A. Satoskar,, J. Alexander,, H. Bluethmann,, F. Y. Liew,, and A. M. Mowat. 1995. T helper 2 cells are subject to high dose oral tolerance and are not essential for its induction. J. Immunol. 154:56495655.
20. Genain, C.,, D. Lee-Parritz,, M. Nguyen,, L. Massacesi,, N. Joshi,, R. Ferrante,, K. Hoffman,, K. Moseley,, N. Letvin,, and S. Hauser. 1994. In healthy primates, circulating autoreactive T-cells mediate autoimmune disease. J. Clin. Investig. 94:13391345.
21. Gianani, R.,, and N. Sarvetnick. 1996. Viruses, cytokines, antigens, and autoimmunity. Proc. Natl. Acad. Sci. USA 93:22572259.
22. Guerder, S.,, J. Meyerhoff,, and R. Flavell. 1994. The role of the T cell costimulator B7-1 in autoimmunity and the induction and maintenance of tolerance to peripheral antigen. Immunity 1:155166.
23. Guerder, S.,, D. E. Picarella,, P. S. Linsley,, and R. A. Flavell. 1994. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor α leads to autoimmunity in transgenic mice. Proc. Natl. Acad. Sci. USA 91:51385142.
24. Hanahan, D. 1998. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr. Opin. Immunol. 10:656662.
25. Harding, F. A.,, and J. P. Allison. 1993. CD28-B7 interactions allow the induction of CD8+ cytotoxic T-lymphocytes in the absence of exogenous help. J. Exp. Med. 177:17911796.
26. Harrison, L. C.,, M. Dempsey-Collier,, D. R. Kramer,, and K. Takahashi. 1996. Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184:21672174.
27. Haskins, K.,, and D. Wegmann. 1996. Diabetogenic T-cell clones. Perspect. Diabetes 45:12991305.
28. Healey, D.,, P. Ozegbe,, S. Arden,, P. Chandler,, J. Hutton,, and A. Cooke. 1995. In vivo activity and in vitro specificity of CD4+ Th1 and Th2 cells derived from the spleens of diabetic NOD mice. J. Clin. Investig. 95:29792985.
29. Herbelin, A.,, J.-M. Gombert,, F. Lepault,, J.-F. Bach,, and L. Chatenoud. 1998. Mature mainstream TCRαβ+CD4+ thymocytes expressing L-selectin mediate "active tolerance" in the nonobese diabetic mouse. J. Immunol. 161:26202628.
30. Homo-Delarche, F.,, and C. Boitard. 1996. Autoimmune diabetes: the role of the islets of Langerhans. Immunol. Today 17:456460.
31. Horwitz, M. S.,, L. M. Bradley,, J. Harbertson,, T. Krahl,, J. Lee,, and N. Sarvetnick. 1998. Diabetes induced by coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med. 4:781785.
32. Horwitz, M. S.,, K. T. Krahl,, C. Fine,, J. Lee,, and N. Sarvetnick. 1999. Protection from lethal coxsack-ievirus-induced pancreatitis by expression of gamma interferon. J. Virol. 73:17561766.
33. Jenson, A. B.,, H. S. Rosenberg,, and A. L. Notkins. 1980. Pancreatic islet cell damage in children with fatal viral infections. Lancet 2:354358.
34. Kagi, D.,, B. Ledermann,, K. Burki,, P. Seiler,, B. Odermatt,, K. J. Olsen,, E. R. Podack,, R. M. Zinkernagel,, and H. Hengartner. 1994. Cytotoxicity mediated by T cells and natural killer cells greatly impaired in perforin-deficient mice. Nature 369:17.
35. Kapp, J. A.,, and Y. Ke. 1997. The role of gamma delta TCR-bearing T cells in oral tolerance. Res. Immunol. 148:561567.
36. Katz, J.,, C. Benoist,, and D. X. Mathis. 1995. T helper cell subsets in IDDM. Science 268:11851188.
37. Kaufman, D. L.,, M. G. Clare-Salzler,, J. Tian,, T. Forsthuber,, G. Ting,, P. Robinson,, M. A. Atkinson,, E. E. Sercarz,, A. J. Tobin,, and P. V. Lehmann. 1993. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366:6972.
38. Kaufman, D. L.,, M. G. Erlander,, M. J. Clare-Salzler,, M. A. Atkinson,, N. K. Maclaren,, and A. J. Tobin. 1992. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J. Clin. Investig. 89:283292.
39. Ke, Y.,, K. Pearce,, J. P. Lake,, H. K. Ziegler,, and J. A. Kapp. 1997. Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol. 158:36103618.
40. King, C.,, J. Davies,, R. MueUer,, M. S. Lee,, T. Krahl,, B. Yeung,, E. O'Connor,, and N. Sarvetnick. 1998. TGF-betal alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 5:601603.
41. King, M. L.,, A. Shaikh,, D. Bidwell,, A. Voller,, and J. E. Banatvala. 1983. Coxsackie B virus specific IgM responses in children with insulin-dependent (juvenile-onset, type 1) diabetes mellitus. Lancet i:13971399.
41a. Kurts, C.,, W. R. Heath,, H. Kosada,, J. F. Miller,, and F. R. Carbone. 1998. The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95 (FAS,Apo-l).J. Exp. Med. 188:415420.
42. Lamont, A. 1994. Are we closer to selective immunotherapy for autoimmune diseases? Immunol. Today 15:4547.
43. Lee, M. S.,, R. Mueller,, L. S. Wicker,, L. B. Peterson,, and N. Sarvetnick. 1996. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J. Exp. Med. 183:26632668.
44. Lee, M.-S.,, R. Mueller,, L. S. Wicker,, L. B. Peterson,, and N. Sarvetnick. 1996. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J. Exp. Med. 183:26632668.
45. Lee, M.-S.,, M. G. von Herrath,, H. Reiser,, M. B. A. Oldstone,, and N. Sarvetnick. 1995. Sensitization to self antigens by in situ expression of interferon-y. J. Clin. Investig. 95:486492.
46. Lee, M.-S.,, M. G. von Herrath,, S. Sawyer,, M. Arnush,, T. Krahl,, M. B. A. Oldstone,, and N. Sarvetnick. 1996. TGF-beta fails to inhibit allograft rejection in transgenic mice. Transplantation 71:110.
47. Li, Q.,, A. E. Borovitskaya,, M. G. DeSilva,, C. Wasserfall,, N. K. Maclaren,, A. L. Notkins,, and M. S. Lan. 1997. Autoantigens in insulin-dependent diabetes mellitus: molecular cloning and characterization of human IA-2β. Proc. Assoc. Am. Physicians 109:429439.
48. Liblau, R. S.,, S. M. Singer,, and H. McDevitt 1995. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol. Today 16:3438.
49. Lider, O.,, L. M. Santos,, C. S. Lee,, P. J. Higgins,, and H. L. Weiner. 1989. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. II. Suppression of disease and in vitro immune responses is mediated by antigen-specific CD8+ T lymphocytes. J. Immunol. 142:748752.
50. Matzinger, P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:9911045.
51. McMenamin, C.,, M. McKersey,, P. Kuhnlein,, T. Hunig,, and P. G. Holt 1995. Gamma delta T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J. Immunol. 154:43904394.
52. McMenamin, C.,, C. Pimm,, M. McKersey,, and P. G. Holt 1994. Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma deltaT cells. Science 265:18691871.
53. Mengel, J.,, F. Cardillo,, L. S. Aroeira,, O. Williams,, M. Russo,, and N. M. Vaz. 1995. Anti-gamma delta T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol. Lett. 48:97102.
54. Menser, M. A.,, J. Forrest and,, R. Bransby. 1978. Rubella infection and diabetes mellitus. Lancet i:5760.
55. Miller, A.,, A. al-Sabbagh,, L. M. Santos,, M. P. Das,, and H. L. Weiner. 1993. Epitopes of myelin basic protein that trigger TGF-beta release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J. Immunol. 151:73077315.
56. Miller, A.,, O. Lider,, and H. L. Weiner. 1991. Antigen-driven bystander suppression after oral administration of antigens. J. Exp. Med. 174:791798.
57. Miller, J. F.,, W. R. Heath,, J. Allison,, G. Morahan,, M. Hoffmann,, C. Kurts,, and H. Kosaka. 1997. T cell tolerance and autoimmunity. Ciba Found. Symp. 204:159168.
58. Modlin, R.,, and T. B. Nutman. 1993. Type 2 cytokines and negative immune regulation in human infections. Curr. Opin. Immunol. 5:511517.
59. Morgan, D.,, R. Liblau,, B. Scott,, S. Fleck,, H. O. McDevitt,, N. Sarvetnick,, D. Lo,, and L. Sherman. 1996. CD8+ T cell-mediated spontaneous diabetes in neonatal mice. J. Immunol. 157:978984.
60. Mueller, R. T.,, and N. Sarvetnick. 1996. Pancreatic expression of IL-4 abrogates insulitis and diabetes in NOD mice. J. Exp. Med. 184:10931099.
61. Notkins, A. L.,, and J. W. Yoon,. 1984. Virus-induced diabetes mellitus, p. 241247. In A. L. Notkins, and M. B. A. Oldstone (ed.), Concepts in Viral Pathogenesis. Springer-Verlag, New York, N.Y.
62. Nussenblatt, R. B.,, R. R. Caspi,, R. Mahdi,, C. C. Chan,, F. Roberge,, O. Lider,, and H. L. Weiner. 1990. Inhibition of S-antigen induced experimental autoimmune uveoretinitis by oral induction of tolerance with S-antigen. J. Immunol. 144:16891695.
63. Ohashi, P.,, S. Oehen,, K. Buerki,, H. Pircher,, C. Ohashi,, B. Odermatt,, B. Malissen,, R. Zinkernagel,, and H. Hengartner. 1991. Ablation of tolerance and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305317.
64. Oldstone, M. B. A. 1987. Molecular mimicry and autoimmune disease. Cell 50:819820.
65. Oldstone, M. B. A. 1989. Molecular mimicry as a mechanism for the cause and as a probe uncovering etiologic agent(s) of autoimmune disease. Curr. Top. Microbiol. Immunol. 145:127135.
66. Oldstone, M. B. A.,, M. Nerenberg,, P. Southern,, J. Price,, and H. Lewicki. 1991. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65:319331.
67. Oldstone, M. B. A.,, M. G. von Herrath,, C. F. Evans,, and M. S. Horwitz. 1996. Virus-induced autoimmune disease: transgenic approach to mimic insulin-dependent diabetes mellitus and multiple sclerosis. Curr. Top. Microbiol. Immunol. 206:6783.
68. Patterson, K.,, R. Chandra,, and A. Jenson. 1981. Congenital rubella, insulitis and diabetes mellitus in an infant. Lancet 1:10481049.
69. Plebanski, M.,, E. A. M. Lee,, C. M. Hannan,, K. L. Flanagan,, S. C. Gilbert,, M. B. Gravenor,, and A. V. S. Hill. 1999. Altered peptide ligands narrow the repertoire of cellular immune responses by interfering with T-cell priming. Nat. Med. 5:565571.
70. Prince, G.,, A. B. Jenson,, L. Billups,, and A. L. Notkins. 1978. Infection of human pancreatic beta cell cultures with mumps virus. Nature 27:158161.
71. Refaeli, Y.,, L. Van Parijs,, C. A. London,, J. Tschopp,, and A. K. Abbas. 1998. Biochemical mechanisms of IL-2-regulated fas-mediated T cell apoptosis. Immunity 8:615623.
72. Roman, L.,, L. F. Simons,, R. E. Hammer,, J. F. Sambrook,, and M. J. Gething. 1990. The expression of influenza virus hemagglutinin in the pancreatic beta-cells of tg mice results in autoimmune diabetes. Cell 61:383396.
73. Ruiz, P. J.,, H. Garren,, D. L. Hirschberg,, A. M. Langer-Gould,, M. Levite,, M. V. Karpuj,, S. South-wood,, A. Sette,, P. Conlon,, and L. Steinman. 1999. Microbial epitopes act as altered peptide ligands to prevent experimental autoimmune encephalomyelitis. J. Exp. Med. 189:12751283.
74. Sarvetnick, N.,, J. Shizuru,, D. Liggitt,, L. Martin,, B. Mclntyre,, A. Gregory,, T. Parslow,, and T. Stewart. 1990. Loss of pancreatic islet tolerance induced by B-cell expression of interferon-gamma. Nature 346:844847.
75. Scott, B.,, R. Liblau,, S. Degermann,, L. A. Marconi,, L. Ogata,, A. J. Caton,, H. O. McDevitt,, and D. Lo. 1994. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1:7382.
76. Sempe, P.,, M. F. Richard,, J. F. Bach,, and C. Boitard. 1994. Evidence of CD4+ regulatory T cells in the non-obese diabetic male mouse. Diabetologia 37:337343.
77. Shrinivasappa, J.,, J. Saegusa,, B. Prabhakar,, M. Gentry,, M. Buchmeier,, T. Wiktor,, H. Koprowski,, M. Oldstone,, and A. Notkins. 1986. Frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J Virol. 57:397401.
78. Smith, K. M.,, D. C. Olson,, R. Hirose,, and D. Hanahan. 1997. Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int. Immunol. 9:13551365.
79. Sonderstrup, G.,, and H. McDevitt. 1998. Identification of autoantigen epitopes in MHC class II transgenic mice. Immunol. Rev. 164:129138.
80. Steinman, L. 1996. A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc. Natl. Acad. Sci. USA 93:22532256.
81. Swain, S. L. 1994. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1:543552.
82. Tada, Y.,, A. Ho,, D. R. Koh,, and T. W. Mak. 1996. Collagen-induced arthritis in CD4- or CD8-deficient mice: CD8+ T cells play a role in initiation and regulate recovery phase of collagen-induced arthritis. J. Immunol. 156:45204526.
83. Tisch, R.,, and H. McDevitt 1994. Antigen specific immunotherapy: is it a real possibility to combat T-cell medicated autoimmunity? Proc. Natl. Acad. Sci. USA 91:437438.
84. Vella, A.,, T. K. Teague,, J. Dile,, J. Kappler,, and P. Marrack. 1997. Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4. J. Exp. Med. 186:325330.
85. von Herrath, M. G.,, J. Allison,, J. F. Miller,, and M. B. Oldstone. 1995. Focal expression of interleukin-2 does not break unresponsiveness to "self (viral) antigen expressed in beta cells but enhances development of autoimmune disease (diabetes) after initiation of an anti-self immune response. J. Clin. Investig. 95:477485.
86. von Herrath, M. G.,, B. Coon,, H. Lewicki,, H. Mazarguil,, J. E. Gairin,, and M. B. A. Oldstone. 1998. In vivo treatment with a MHC class I-restricted blocking peptide can prevent virus-induced autoimmune diabetes. J. Immunol. 161:50875096.
87. von Herrath, M. G.,, J. Dockter,, M. Nerenberg,, J. E. Gairin,, and M. B. A. Oldstone. 1994. Thymic selection and adaptability of cytotoxic T lymphocyte responses in transgenic mice expressing a viral protein in the thymus. J. Exp. Med. 180:19011910.
88. von Herrath, M. G.,, J. Dockter,, and M. B. A. Oldstone. 1994. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1:231242.
89. von Herrath, M. G.,, T. Dyrberg,, and M. B. A. Oldstone. 1996. Oral insulin treatment suppresses virus-induced antigen-specific destruction of beta cells and prevents autoimmune diabetes in transgenic mice. J. Clin. Investig. 98:13241331.
90. von Herrath, M. G.,, S. Guerder,, H. Lewicki,, R. Flavell,, and M. B. A. Oldstone. 1995. Coexpression of B7.1 and viral (self) transgenes in pancreatic P-cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 3:727738.
91. von Herrath, M. G.,, and A. Holz. 1997. Pathological changes in the islet milieu precede infiltration of islets and destruction of p-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J. Autoimmun. 10:231238.
92. von Herrath, M. G.,, A. Holz,, D. Homann,, and M. B. A. Oldstone. 1998. Role of viruses in type I diabetes. Semin. Immunol. 10:87100.
93. von Herrath, M. G.,, and D. Homann. 1997. Treatment of virus-induced autoimmune diabetes by oral administration of insulin: study on the mechanism by which oral antigens can abrogate autoimmunity. Endocrinol. Diabetes 105:2425.
94. von Herrath, M. G.,, and M. B. Oldstone. 1996. Virus-induced autoimmune disease. Curr. Opin. Immunol. 8:878885.
95. von Herrath, M. G.,, and M. B. A. Oldstone. 1997. IFN-gamma is essential for β-cell destruction by CTL. J. Exp. Med. 185:531539.
96. Weiner, H. L. 1997. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today 18:335343.
97. Weiner, H. L.,, A. Friedman,, A. Miller,, S. J. Khoury,, A. Al-Sabbagh,, L. Santos,, M. Sayegh,, R. B. Nussenblatt,, D. E. Trentham,, and D. A. Hafler. 1994. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 12:809837.
98. Weiner, H. L.,, A. Friedman,, A. Miller,, S. J. Khoury,, A. Al-Sabbagh,, L. Santos,, M. Sayegh,, R. B. Nussenblatt,, D. E. Trentham,, and D. A. Hafler. 1994. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoanti-gens. Annu. Rev. Immunol. 12:809837.
99. Wicker, L. S.,, J. A. Todd,, and L. B. Peterson. 1995. Genetic control of autoimmune diabetes in the NOD mouse. Annu. Rev. Immunol. 13:179200.
100. Wildner, G.,, and S. R. Thurau. 1995. Orally induced bystander suppression in experimental autoimmune uveoretinitis occurs only in the periphery and not in the eye. Eur. J. Immunol. 25:12921297.
100a. Wong, F. S.,, J. Karttunen,, C. Dumont,, L. Wen,, I. Visintin,, I. M. Pilip,, N. Shastri,, E. G. Pamer,, and C. A. JanewayJr.. 1999. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med. 5:10261031.
101. Wucherpfennig, K. W.,, and J. L. Strominger. 1995. Molecular mimicry in T-cell mediated autoimmunity: viral peptides activate human T-cell clones specific for myelin basic protein. Cell 80:695705.
102. Wucherpfennig, K. W.,, B. Yu,, K. Bhol,, D. S. Monos,, E. Argyris,, R. W. Karr,, A. R. Ahmed,, and J. L. Strominger. 1995. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-pep-tides in pemphigus vulgaris. Proc. Natl. Acad. Sci. USA 92:1193511939.
103. Yoon, J. W.,, M. Austin,, T. Onodera,, and A. L. Notkins. 1979. Virus-induced diabetes mellitus: isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N. Engl. J. Med. 300:11731179.
104. Yoon, J.-W.,, C.-S. Yoon,, H.-W. Lim,, Q. Q. Huang,, Y. Kang,, K. H. Pyun,, K. Hirasawa,, R. S. Sherwin,, and H.-S. Jun. 1999. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284:11831187.
105. Yoshida, H.,, S. Hachimura,, K. Hirahara,, T. Hisatsune,, K. Nishfjima,, A. Shiraishi,, and S. Kamino-gawa. 1998. Induction of oral tolerance in splenocyte-reconstituted SCID mice. Clin. Immunol. Immunopathol. 87:282291.
106. Yoshino, S.,, E. Quattrocchi,, and H. L. Weiner. 1995. Suppression of antigen-induced arthritis in Lewis rats by oral administration of type II collagen. Arthritis Rheum. 38:10921096.
107. Zang, J. A.,, L. Davidson,, G. Eisenbarth,, and H. Weiner. 1991. Suppression of diabetes in NOD mice by oral administration of porcine insulin. Proc. Natl. Acad. Sci. USA 88:1025210256.
108. Zhang, Z. Y.,, C. S. Lee,, O. Lider,, and H. L. Weiner. 1990. Suppression of adjuvant arthritis in Lewis rats by oral administration of type II collagen. J. Immunol. 145:24892493.

Tables

Generic image for table
Table 1

Why the RIP-LCMV model?

Citation: von Herrath M. 2000. Contributions of Viruses and Immunity as Causes of Diabetes and Development of Strategies for Treatment and Prevention of Autoimmune Disease, p 235-255. In Cunningham M, Fujinami R (ed), Molecular Mimicry, Microbes, and Autoimmunity. ASM Press, Washington, DC. doi: 10.1128/9781555818074.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error