1887

Chapter 11 : Influence of Fungi on the Environmental Mobility of Metals and Metalloids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Influence of Fungi on the Environmental Mobility of Metals and Metalloids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap11-2.gif

Abstract:

Metals and their derivatives can interact with fungi in various ways depending on the metal species, organism, and environment, while fungal metabolic activities can also influence speciation and mobility. This chapter seeks to highlight the physicochemical and biochemical mechanisms by which fungi can interact with and transform toxic metal species between soluble and insoluble forms, the significance of these processes in the environment, and their potential for use in bioremediation. A simple method of screening fungi for the solubilization of insoluble metal compounds is based on observing clear zones of solubilization around colonies growing on solid medium amended with the desired insoluble metal compound. Metal immobilization by fungi may be metabolism independent, occurring whether the biomass is dead or alive, or metabolism dependent, comprising processes which sequester, precipitate, internalize, or transform the metal species and may involve both organic and inorganic extracellular metabolites. Several species of fungi, including unicellular and filamentous forms, can transform metals, metalloids, and organometallic compounds by reduction, methylation, and dealkylation, these are processes of environmental importance, since transformation of a metal or metalloid may modify its mobility and toxicity. The biological methylation (biomethylation) of metalloids has been demonstrated in filamentous fungi and yeasts, and this frequently results in their volatilization. Many species of fungi are able to remove, or leach, metals ("heterotrophic leaching") from industrial wastes and by-products, low-grade ores, and metal-bearing minerals, a process relevant to metal recovery and recycling and/or bioremediation of contaminated solid wastes.

Citation: Gadd G, Sayer J. 2000. Influence of Fungi on the Environmental Mobility of Metals and Metalloids, p 237-256. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch11

Key Concept Ranking

Cell Wall Components
0.40845156
0.40845156
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Simple model for the biogeochemical significance of metal and metalloid transformations by fungi. Their influence in effecting changes in metal solubility is emphasized, as well as the influence of environmental factors on these processes and on fungal growth, morphogenesis, and physiology. The relative balance between the processes will depend on the environment, organism(s), and interactions with other organisms including animals, plants and anthropogenic activities. 1, Metal solubilization by, e.g., heterotrophic leaching, siderophores, metabolite excretion including organic acids and H, redox reactions, methylation, and biodegradation of organometal(loid)s. 2, Effects of soluble metal species on fungi and metal immobilization by, e.g., biosorption, transport, intracellular sequestration and compartmentation, redox reactions, precipitation, and crystallization. 3, Effects of insoluble metal species on fungi, particulate adsorption, and entrapment by polysaccharide and/or mycelial network. 4, Metal immobilization by, e.g., precipitation, crystallization, or reduction. 5, Influence of environmental factors, e.g., pH, O, CO, nutrients, salinity, toxic metals, and other pollutants, on fungal growth, metabolism, and morphogenesis. 6, Influence of fungal activities on the environment, e.g., alterations in pH, O, CO, and redox potential; depletion of nutrients; and enzyme and metabolite excretion. 7 and 8, Environmental factors which direct the equilibrium between soluble and insoluble metal species towards metal mobilization (step 7) or metal immobilization (step 8) ( ).

Citation: Gadd G, Sayer J. 2000. Influence of Fungi on the Environmental Mobility of Metals and Metalloids, p 237-256. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanisms and cellular location of key fungal transformations of metals and metalloids. The list of interactions is not exhaustive, and considerable differences may occur between different species and strains. The location of some processes, especially certain sequestration and transformation reactions, is still uncertain, and this diagram does not include the possible involvement of other organelles, e.g., mitochondria, endoplasmic reticulum, and nucleus, in metal homeostasis and compartmentation.

Citation: Gadd G, Sayer J. 2000. Influence of Fungi on the Environmental Mobility of Metals and Metalloids, p 237-256. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Some metal ion transport sytems of . The separate high-affinity transport systems ensure the accumulation of essential metals that are present at low external concentrations. Note that iron uptake has two phases: reduction by Fe(III) reductases of Fe(III) to Fe(II) followed by cellular entry of Fe(II) ( does not produce siderophores, in contrast to many other fungi [133]). In the high-affinity copper uptake system, the FREl gene product reduces Cu(II) to Cu(I) before transport of Cu(I). ?, incomplete characterization. The values for the high- and low-affinity systems for Fe(II), Mn, and Zn are 0.15 and 30 µM, 0.3 and 60 µM, and 1 and 10 µM, respectively ( ). Adapted from reference 33 with permission of the American Society for Microbiology.

Citation: Gadd G, Sayer J. 2000. Influence of Fungi on the Environmental Mobility of Metals and Metalloids, p 237-256. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Scanning electron micrographs of metal oxalate crystals ( ). (a) Strontium oxalate produced by grown on strontium nitrate-containing malt extract agar, (b) Chemically synthesized strontium oxalate crystals made by allowing 100 mM oxalic acid to diffuse from wells cut in strontium nitrate-containing malt extract agar; crystals were purified from the agar surrounding the wells, (c and d) Manganese oxalate crystals produced by grown on malt extract agar amended with the manganese-containing mineral rhodochrosite (c) or manganese phosphate (d). Bars, 100 µm.

Citation: Gadd G, Sayer J. 2000. Influence of Fungi on the Environmental Mobility of Metals and Metalloids, p 237-256. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap11
1. Allison, M. J.,, S. L. Daniel,, and N. A. Cornick,. 1995. Oxalate degrading bacteria, p. 131168. In S. R. Khan (ed.), Calcium Oxalate in Biological Systems. CRC Press, Inc., Boca Raton, Fla.
2. Anderson, P.,, C. M. Davidson,, D. Littlejohn,, A. M. Ure,, C. A. Shand,, and M. V. Cheshire. 1997. The translocation of caesium and silver by fungi in some Scottish soils. Commun. Soil Sci. Plant Anal. 28: 635650.
3. Arter, H. E.,, K. W. Hanselmann,, and R. Bachofen. 1991. Modelling of microbial-degradation processes—the behaviour of microorganisms in a waste repository. Experientia 47: 542548.
4. Avery, S. V. 1995. Caesium accumulation by microorganisms—uptake mechanisms, cation competition, compartmentalization and toxicity. J. Ind. Microbiol. 14: 7684.
5. Avery, S. V.,, and J. M. Tobin. 1992. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58: 38833889.
6. Avery, S. V.,, and J. M. Tobin. 1993. Mechanisms of adsorption of hard and soft metal-ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl. Environ. Microbiol. 59:28512856.
7. Bakken, L. R.,, and R. A. Olsen. 1990. Accumulation of radiocaesium in fungi. Can. J. Microbiol. 36: 704710.
8. Banks, M. K.,, A. P. Schwabb,, G. R. Fleming,, and B. A. Herrick. 1994. Effects of plants and soil microflora on leaching of zinc from mine tailings. Chemosphere 29: 16911699.
9. Bamg, G. 1981. Microbial degradation of bis(tributyltin) oxide. Chemosphere 10: 11451154.
10. Birch, L.,, and R. Bachofen. 1990. Complexing agents from microorganisms. Experientia 46: 827834.
11. Bode, H.-P.,, M. Dumschat,, S. Garotti,, and G. F. Fuhrmann. 1995. Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 228:337342.
12. Borst-Pauwels, G. W. F. H. 1981. Ion transport in yeast. Biochim. Biophys. Acta 650: 149156.
13. Borst-Pauwels, G. W. F. H. 1989. Ion transport in yeast including lipophilic ions. Methods Enzymol. 174: 603616.
14. Bradley, R.,, A. J. Burt,, and D. J. Read. 1981. Mycorrhizal infection and resistance to heavy metals. Nature 292: 335337.
15. Brady, J. M.,, and J. M. Tobin. 1994. Adsorption of metal-ions by Rhizopus arrhizus biomass—characterization studies. Enzyme Microb. Technol. 16: 671675.
16. Brady, J. M.,, and J. M. Tobin. 1995. Binding of hard and soft metal-ions to Rhizopus arrhizus biomass. Enzyme Microb. Technol. 17: 791796.
17. Brady, J. M.,, J. M. Tobin,, and G. M. Gadd. 1996. Volatilization of selenite in aqueous medium by a Penicillium species. Mycol. Res. 100: 955961.
18. Burgstaller, W.,, and F. Schinner. 1993. Leaching of metals with fungi. J. Biotechnol. 27: 91116.
19. Challenger, F. 1945. Biological methylation. Chem. Rev. 36: 1561.
20. Chang, J. C., 1993. Solubility product constants, p. 39. In D. R. Lide (ed.), CRC Handbook of Chemistry and Physics. CRC Press, Inc., Boca Raton, Fla.
21. Collins, Y. E.,, and G. Stotzky. 1992. Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl. Environ. Microbiol. 58: 15921600.
22. Colpaert, J. V.,, and K. K. Van Tichelen,. 1996. Mycorrhizas and environmental stress, p. 109128. In J. C. Frankland,, N. Magan,, and G. M. Gadd (ed.), Fungi and Environmental Change. Cambridge University Press, Cambridge, United Kingdom.
23. Connolly, J. H.,, and J. Jellison. 1997. Two-way translocation of cations by the brown rot fungus Gloeophyllum trabeum. Int. Biodeterior. Biodegrad. 39: 181188.
24. Crichton, R. R. 1991. Inorganic Biochemistry of Iron Metabolism. Ellis Horwood, Chichester, United Kingdom.
25. Cunningham, J. E.,, and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphates by Penicillium bilaii. Appl. Environ. Microbiol. 58: 14511458.
26. Dameron, C. T.,, R. N. Reese,, R. K. Mehra,, A. R. Kortan,, P. J. Carrol,, M. L. Steigerwald,, L. E. Brus,, and D. R. Winge. 1989. Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338: 596597.
27. Denevre, O.,, J. Garbaye,, and B. Botton. 1996. Release of complexing organic acids by rhizosphere fungi as a factor in Norway Spruce yellowing in acidic soils. Mycol Res. 100: 13671374.
28. de Rome, L.,, and G. M. Gadd. 1987. Measurement of copper uptake in Saccharomyces cerevisiae using a Cu2+-selective electrode. FEMS Microbiol Lett. 43: 283287.
29. de Rome, L.,, and G. M. Gadd. 1987. Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum. Appl. Microbiol. Biotechnol 26: 8490.
30. Dighton, J.,, and G. Terry,. 1996. Uptake and immbilization of caesium in UK grassland and forest soils by fungi, following the Chernobyl accident, p. 184200. In J. C. Frankland,, N. Magan,, and G. M. Gadd (ed.), Fungi and Environmental Change. Cambridge University Press, Cambridge, United Kingdom.
31. Dighton, J.,, G. M. Clint,, and J. Poskitt. 1991. Uptake and accumulation of l37Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol. Res. 95: 10521056.
32. Drever, J. I.,, and L. L. Stillings. 1997. The role of organic acids in mineral weathering. Colloids Surf. 120: 167181.
33. Eide, D.,, and M. L. Guerinot. 1997. Metal ion uptake in eukaryotes. ASM News 63: 199205.
34. Flemming, H.-K. 1995. Sorption sites in biofilms. Water Sci. Technol. 32: 2733.
35. Fourest, E.,, and J.-C. Roux. 1992. Heavy metal biosorption by fungal mycelial by-products, mechanisms and influence of pH. Appl Microbiol Biotechnol 37: 399403.
36. Fox, T. R.,, and N. B. Comerford. 1990. Low-molecular weight organic acids in selected forest soils of the southeastern USA. Soil Sci. Soc. Am. J. 54: 11391144.
37. Francis, A. J. 1994. Microbial transformations of radioactive wastes and environmental restoration through bioremediation. J. Alloys Compounds 213/214: 226231.
38. Francis, A. J.,, C. J. Dodge,, and J. B. Gillow. 1992. Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature 356: 140142.
39. Franz, A.,, W. Burgstaller,, B. Muller,, and F. Schinner. 1993. Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum. J. Gen. Microbiol. 139: 21012107.
40. Gadd, G. M., 1990. Fungi and yeasts for metal binding, p. 249275. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
41. Gadd, G. M. 1993. Interactions of fungi with toxic metals. New Phytol. 124: 2560.
42. Gadd, G. M. 1993. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11: 297316.
43. Gadd, G. M., 1995. Signal transduction in fungi, p. 183210. In N. A. R. Gow, and G. M. Gadd (ed.), The Growing Fungus. Chapman & Hall, Ltd., London, United Kingdom.
44. Gadd, G. M. 1996. Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20: 150156.
45. Gadd, G. M. 1997. Roles of microorganisms in the environmental fate of radionuclides. CIBA Found. Symp. 203:94108.
46. Gadd, G. M. Microbial interactions with tributyltin compounds: detoxification, accumulation, environmental fate and effects. Sci. Total Environ., in press.
47. Gadd, G. M. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41:4792.
48. Gadd, G. M.,, and A. J. Griffiths. 1978. Microorganisms and heavy metal toxicity. Microb. Ecol 4: 303317.
49. Gadd, G. M.,, and A. J. Griffiths. 1980 Influence of pH on copper uptake and toxicity in Aureobasidium pullulans. Trans. Br. Mycol. Soc. 75:9195.
50. Gadd, G. M.,, and C. White. 1985. Copper uptake by Penicillium ochro-chloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. J. Gen. Microbiol. 131:18751879.
51. Gadd, G. M.,, and C. White,. 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, p. 1938. In R. K. Poole, and G. M. Gadd (ed.), Metal-Microbe Interactions. IRL Press, Oxford, United Kingdom.
52. Gadd, G. M.,, and C. White. 1990. Biosorption of radionuclides by yeast and fungal biomass. J. Chem. Technol. Biotechnol. 49: 331343.
53. Gadd, G. M.,, and C. White. 1992. Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J. Chem. Technol. Biotechnol. 55: 3944.
54. Gadd, G. M.,, and O. S. Lawrence. 1996. Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae—specificity and kinetics. Microbiology 142: 11591167.
55. Galli, U.,, H. Schuepp,, and C. Brunold. 1994. Heavy metal binding by mycorrhizal fungi. Physiol. Plant. 92: 364368.
56. Geesey, G.,, and L. Jang,. 1990. Extracellular polymers for metal binding, p. 223275. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
57. Gharieb, M. M.,, and G. M. Gadd. 1999. Influence of nitrogen source on the solubilization of natural gypsum (CaSO4 2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi. Mycol. Res. 103: 473481.
58. Gharieb, M. M.,, J. A. Sayer,, and G. M. Gadd. 1998. Solubilization of natural gypsum (CaSO4 2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantiodes. Mycol. Res. 102: 825830.
59. Gharieb, M. M.,, S. C. Wilkinson,, and G. M. Gadd. 1995. Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J. Ind. Microbiol. 14: 300311.
60. Gray, S. N.,, J. Dighton,, and D. H. Jennings. 1996. The physiology of basidiomycete linear organs. 3. Uptake and translocation of radiocaesium within differentiated mycelia of Armillaria spp. growing in microcosms and in the field. New Phytol. 132: 471482.
61. Green, F.,, C. A. Clausen,, T. A. Kuster,, and T. L. Highley. 1995. Induction of polygalacturonase and the formation of oxalic acid by pectin in brown rot fungi. World J. Microbiol. Biotechnol. 11: 519524.
62. Haselwandter, K.,, and M. Berreck,. 1994. Accumulation of radionuclides in fungi, p. 259277. In G. Winkelmann, and D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dekker, Inc., New York, N.Y.
63. Hayashi, Y.,, and N. Mutoh,. 1994. Cadystin (phytochelatin) in fungi, p. 311337. In G. Winkelmann, and D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dekker, Inc., New York, N.Y.
64. Hockertz, S.,, J. Schmid,, and G. Auling. 1987. A specific transport system for manganese in the filamentous fungus Aspergillus niger. J. Gen. Microbiol. 133: 35133519.
65. Howe, R.,, R. L. Evans,, and S. W. Ketteridge. 1997. Copper binding proteins in ectomycorrhizal fungi. New Phytol. 135: 123131.
66. Hughes, M. N.,, and R. K. Poole. 1991. Metal speciation and microbial growth—the hard (and soft) facts. J. Gen. Microbiol. 137: 725734.
67. Huysmans, K. D.,, and W. T. Frankenberger. 1991. Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water. Sci. Total Environ. 105:1328.
68. Inouhe, M.,, M. Sumiyoshi,, H. Tohoyama,, and M. Joho. 1996. Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts. Plant Cell Physiol. 37:341346.
69. Irving, H.,, and R. J. P. Williams. 1948. Order of stability of metal complexes. Nature 162: 746747.
70. Joho, M.,, M. Inouhe,, H. Tohoyama,, and T. Murayama. 1995. Nickel resistance mechanisms in yeasts and other fungi. J. Ind. Microbiol. 14: 164168.
71. Jones, D.,, W. J. McHardy,, M. J. Wilson,, and D. Vaughan. 1992. Scanning electron microscopy of calcium oxalate on mantle hyphae of hybrid larch roots from a farm forestry experimetal site. Micron Microsc. Acta 23: 315317.
72. Jones, D. L.,, and L. V, Kochian. 1996. Aluminium-organic acid interactions in acid soils. Plant Soil 182: 221228.
73. Jones, R. P.,, and G. M. Gadd. 1990. Ionic nutrition of yeast—physiological mechanisms involved and implications for biotechnology. Enzyme Microb. Technol. 12: 402418.
74. Karamushka, V. L.,, J. A. Sayer,, and G. M. Gadd. 1996. Inhibition of H+ efflux from Saccharomyces cerevisiae by insoluble metal phosphates and protection by calcium and magnesium: inhibitory effects a result of soluble metal cations? Mycol. Res. 100: 707713.
75. Kierans, M.,, A. M. Staines,, H. Bennett,, and G. M. Gadd. 1991. Silver tolerance and accumulation in yeasts. Biol. Metals 4: 100106.
76. Klionsky, D. J.,, P. K. Herman,, and S. D. Emr. 1990. The fungal vacuole: composition, function and biogenesis. Microbiol. Rev. 54: 266292.
77. Kosman, D. J., 1994. Transition metal ion uptake in yeasts and filamentous fungi, p. 138. In G. Winkelmann, and D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dekker, Inc., New York, N.Y.
78. Krantz-Rulcker, C.,, B. Allard,, and J. Schnurer, 1993. Interactions between a soil fungus, Trichoderma harzianum and IIB metals—adsorption to mycelium and production of complexing metabolites. Biometals 6: 223230.
79. Krantz-Rulcker, C.,, B. Allard,, and J. Schnurer. 1996. Adsorption of IIB metals by 3 common soil fungi—comparison and assessment of importance for metal distribution in natural soil systems. Soil Biol. Biochem. 28: 967975.
80. Lapeyrie, F.,, G. A. Chilvers,, and C. A. Bhem. 1987. Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus. New Phytol. 106: 139146.
81. Lapeyrie, F.,, J. Ranger,, and D. Vairelles. 1991. Phosphate solubilizing activity of ectomycorrhizal fungi in vitro. Can. J. Bot. 69: 342346.
82. Ledin, M.,, C. Krantz-Rulcker,, and B. Allard. 1996. Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in multicompartment systems. Soil Biol. Biochem. 28:791799.
83. Lesuisse, E.,, and P. Labbe,. 1994. Reductive iron assimilation in Saccharomyces cerevisiae, p. 149178. In G. Winkelmann, and D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dekker, Inc., New York, N.Y.
84. Leyval, C.,, T. Surtinlngish,, and J. Berthelin. 1993. Mobilization of P and Cd from rock phosphates by rhizosphere microorganisms (phosphate dissolving bacteria and ectomycorrhizal fungi). Phosphorus Sulfur Sil 77: 133136.
85. Macaskie, L. E.,, and A. C. R. Dean. 1987. Trimethyllead degradation by an alkyllead-tolerant yeast. Environ. Technol. Lett. 8: 635640.
86. Macaskie, L. E.,, and A. C. R. Dean. 1990. Trimethyl lead degradation by free and immobilized cells of an Arthrobacter sp. and by the wood decay fungus Phaeolus schweintzii. Appl. Microbiol. Biotechnol. 38: 8187.
87. Macreadie, I. G.,, A. K. Sewell,, and D. R. Winge,. 1994. Metal ion resistance and the role of metallothionein in yeast, p. 279310. In G. Winkelmann, and D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dekker, Inc., New York, N.Y.
88. Mattey, M. 1992. The production of organic acids. Crit. Rev. Biotechnol. 12: 87132.
89. Mehra, R. K.,, and D. R. Winge. 1991. Metal ion resistance in fungi: molecular mechanisms and their related expression. J. Cell. Biochem. 45: 3040.
90. Meixner, O.,, H. Mischack,, C. P. Kubicek,, and M. Rohr. 1985. Effect of manganese deficiency on plasma-membrane lipid composition and glucose uptake in Aspergillus niger. FEMS Microbiol. Lett. 26: 271274.
91. Metting, F. B., 1992. Structure and physiological ecology of soil microbial communities, p. 325, In F. B. Metting (ed.), Soil Microbial Ecology, Applications and Environmental Management. Marcel Dekker, Inc., New York, N.Y.
92. Miller, A. J.,, G. Vogg,, and D. Sanders. 1990. Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc. Natl. Acad. Sci. USA 87: 93489352.
93. Morley, G. F.,, and G. M. Gadd. 1995. Sorption of toxic metals by fungi and clay minerals. Mycol. Res. 99: 14291438.
94. Morley, G. F.,, J. A. Sayer,, S. C. Wilkinson,, M. M. Gharieb,, and G. M. Gadd,. 1996. Fungal sequestration, solubilization and transformation of toxic metals, p. 235256. In J. C. Frankland,, N. Magan,, and G. M. Gadd (ed.), Fungi and Environmental Change. Cambridge University Press, Cambridge, United Kingdom.
95. Morris, S. J.,, and M. F. Allen. 1994. Oxalate metabolizing microorganisms in sagebrush steppe soil. Biol. Fertil Soils 18: 255259.
96. Murasugi, A.,, C. Wada,, and Y. Hayashi. 1983. Occurrence of acid labile sulfide in cadmium binding peptide 1 from fission yeast. J. Biochem. 93: 661664.
97. Murphy, R. J.,, and J. F. Levy. 1983. Production of copper oxalate by some copper tolerant fungi. Trans. Br. Mycol. Soc. 81: 165168.
98. Neilands, J. B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50: 715731.
99. Nelson, N.,, C. Beltran,, F. Supek,, and H. Nelson. 1992 Cell biology and evolution of proton pumps. Cell. Physiol. Biochem. 2: 150158.
100. Nieuwenhuis, B. J. W. M.,, A. G. M. Weijers,, and G. W. F. H. Borst-Pauwels. 1981. Uptake and accumulation of Mn2+ and Sr2+ in Saccharomyces cerevisiae. Biochim. Biophys. Acta 649:8388.
101. Ohsumi, Y.,, and Y. Anraku. 1983. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 41: 1722.
102. Okorokov, L. A., 1985. Main mechanisms of ion transport and regulation of ion concentrations in the yeast cytoplasm, p. 463472. In I. S. Kulaev,, E. A. Dawes,, and D. W. Tempest (ed.), Environmental Regulation of Microbial Metabolism. Academic Press, Ltd., London, United Kingdom.
103. Okorokov, L. A. 1994. Several compartments of Saccharomyces cerevisiae are equipped with Ca2+ ATPase(s). FEMS Microbiol. Lett. 117:311318.
104. Okorokov, L. A.,, L. P. Lichko,, and I. S. Kulaev. 1980. Vacuoles: main compartments of potassium, magnesium and phosphate in Saccharomyces carlsbergensis cells. J. Bacteriol. 144: 661665.
105. Okorokov, L. A.,, T. V. Kulakovskaya,, L. P. Lichko,, and E. V. Polorotova. 1985. H+/ion antiport as the principal mechanism of transport systems in the vacuolar membrane of the yeast Saccharomyces carlsbergensis. FEBS Lett. 192: 303306.
106. Orsler, R. J.,, and G. E. Holland. 1982. Degradation of tributyltin oxide by fungal culture filtrates. Int. Biodeterior. Bull. 18: 9598.
107. Ortiz, D. F.,, D. F. Kreppel,, D. M. Speiser,, G. Scheel,, G. McDonald,, and D. W. Ow. 1992. Heavy-metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11: 34913499.
108. Ortiz, D. F.,, T. Ruscitti,, K. F. McCue,, and D. W. Ow. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 270: 47214728.
109. Ow, D. W. 1993. Phytochelatin-mediated cadmium tolerance in Schizosaccharomyces pombe. In Vitro Cell. Dev. Biol. Plant 29P:213219.
110. Ow, D. W.,, D. F. Ortiz,, D. M. Speiser,, and K. F. McCue,. 1994. Molecular genetic analysis of cadmium tolerance in Schizosaccharomyces pombe, p. 339359. In G. Winkelmann, and D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dekker, Inc., New York, N.Y.
111. Parkin, M. J.,, and I. S. Ross. 1986. The specific uptake of manganese in the yeast Candida utilis. J. Gen. Microbiol. 132: 21552160.
112. Peberdy, J. F., 1990. Fungal cell walls—a review, p. 530. In P. J. Kuhn,, A. P. J. Trinci,, M. J. Jung,, M. W. Coosey,, and L. E. Copping (ed.), Biochemistry of Cell Walls and Membranes in Fungi. Springer-Verlag KG, Berlin, Germany.
113. Perkins, J.,, and G. M. Gadd. 1993. Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 107: 255260.
114. Perkins, J.,, and G. M. Gadd. 1993. Caesium toxicity, accumulation and intracellular localization in yeasts. Mycol. Res. 97: 717724.
115. Perkins, J.,, and G. M. Gadd. 1996. Interactions of Cs+ and other monovalent cations (Li+ , Na+, K+, Rb+ , NH4+ ) with K+-dependent pyruvate-kinase and malate-dehydrogenase from the yeasts Rhodotorula rubra and Saccharomyces cerevisiae. Mycol. Res. 100: 449454.
116. Pilz, E.,, G. Auling,, D. Stephan,, U. Rau,, and F. Wagner. 1981. A high affinity Zn2+ uptake system controls growth and biosynthesis of an extracellular, branched β-l,3-β-l,6-glucan in Sclerotium rolfsii ATCC 15205. Exp. Mycol. 15: 181192.
117. Purvis, O. W. 1984. The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist 16: 197204.
118. Purvis, O. W.,, and C. Halls. 1996. A review of lichens in metal-enriched environments. Lichenologist 28: 571601.
119. Ramadan, S. E.,, A. A. Razak,, Y. A. Yousseff,, and N. M. Sedky. 1988. Selenium metabolism in a strain of Fusarium. Biol. Trace Elem. Res. 18: 161170.
120. Ramos, S.,, P. Pena,, E. Valle,, L. Bergillos,, F. Parra,, and P. S. Lazo,. 1985. Coupling of protons and potassium gradients in yeast, p. 351357. In I. S. Kulaev,, E. A. Dawes,, and D. W. Tempest (ed.), Environmental Regulation of Microbial Metabolism. Academic Press. Ltd., London, United Kingdom.
121. Ramsay, L. M.,, and G. M. Gadd. 1997. Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett. 152: 293298.
122. Ramsay, L. M.,, J. A. Sayer,, and G. M. Gadd,. 1998. Stress responses of fungal colonies towards toxic metals, p. 178200. In N. A. R. Gow,, G. D. Robson, and G. M. Gadd (ed.), The Fungal Colony. Cambridge University Press, Cambridge, United Kingdom.
123. Rauser, W. E. 1995. Phytochelatins and related peptides. Plant Physiol. 109: 11411149.
124. Read, D. J. 1991. Mycorrhizas in ecosystems. Experientia 47: 376391.
125. Sanders, D. 1990. Kinetic modelling of plant and fungal membrane transport systems. Annu. Rev. Plant Physiol Plant Mol. Biol. 41: 77107.
126. Sayer, J. A.,, and G. M. Gadd. 1997. Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res. 101: 653661.
127. Sayer, J. A.,, C. White,, T. A. M. Bridge,, and G. M. Gadd,. Metals and metalloids. In H. Eccles (ed.), Bioremediation: Sustainable Technology for the Twenty-First Century, in press. Taylor & Francis, London, United Kingdom.
128. Sayer, J. A.,, M. Kierans,, and G. M. Gadd. 1997. Solubilization of some naturally-occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol. Lett. 154: 2935.
129. Sayer, J. A.,, S. L. Raggett,, and G. M. Gadd. 1995. Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol. Res. 99: 987993.
130. Sayer, J. A.,, J. D. Cotter-Howells,, C. Watson,, S. Hillier,, and G. M. Gadd. 1999. Lead mineral transformation by fungi. Curr. Biol. 9: 691694.
131. Schinner, F.,, and W. Burgstaller. 1989. Extraction of zinc from an industrial waste by a Penicillium sp. Appl. Environ. Microbiol 55: 11531156.
132. Schrickz, J. M.,, M. J. H. Raedts,., A. H. Southamer,, and H. W. van Versveld. 1994. Organic acid production by Aspergillus niger in recycling culture analysed by capillary electrophoresis. Anal. Biochem. 231: 175181.
133. Smith, D. G. 1974. Tellurite reduction in Schizosaccharomvces pombe. J. Gen. Microbiol 83: 389392.
134. Starling, A. P.,, and I. S. Ross. 1991. Uptake of zinc by Penicillium notatum. Mycol Res. 95: 712714.
135. Strasser, H.,, W. Burgstaller,, and F. Schinner. 1994. High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol. Lett. 119: 365370.
136. Sukla, L. B.,, R. N. Kar,, and V. Panchanadikar. 1992. Leaching of copper converter slag with Aspergillus niger culture filtrate. Biometals 5: 169172.
137. Sutter, H.-P.,, E. B. G. Jones,, and O. Walchi. 1984. Occurrence of crystalline hyphal sheaths in Poria placenta (Fr.) Cke. J. Inst. Wood Sci. 10: 1923.
138. Tamaki, S.,, and W. T. Frankenberger. 1992. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol. 124: 79110.
139. Tezuka, T.,, and Y. Takasaki. 1988. Biodegradation of phenylmercuric acetate by organomercuryresistant Penicillium sp. MR-2. Agric. Biol Chem. 52: 31833185.
140. Thompson-Eagle, E. T.,, and W. T. Frankenberger,. 1992. Bioremediation of soils contaminated with selenium, p. 261309. In R. Lai, and B. A. Stewart (ed.). Advances in Soil Science. Springer- Verlag, New York, N.Y.
141. Thompson-Eagle, E. T.,, W. T. Frankenberger,, and U. Karlson. 1989. Volatilization of selenium by Alternaria alternata. Appl. Environ. Microbiol. 55: 14061413.
142. Thompson-Eagle, E. T.,, W. T. Frankenberger,, and K. E. Longley,. 1991. Removal of selenium from agricultural drainage water through soil microbial transformations, p. 169186. In A. Dinar, and D. Zilberman (ed.), The Economics and Management of Water and Drainage in Agriculture. Kluwer Academic Publishers, New York, N.Y.
143. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1990. Investigation of the mechanism of metal uptake by denatured Rhizopus arrhizus biomass. Enzyme Microb. Technol. 12: 591595.
144. Tobin, J. M.,, C. White,, and G. M. Gadd. 1994. Metal accumulation by fungi—applications in environmental biotechnology. J. Ind. Microbiol. 13: 126130.
145. Tohoyama, H.,, M. Inouhe,, M. Joho,, and T. Murayama. 1995. Production of metallothionein in copper-resistant and cadmium-resistant strains of Saccharomyces cerevisiae. J. Ind. Microbiol. 14: 126131.
146. Tsezos, M.,, and B. Volesky. 1982. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24: 385401.
147. Tsezos, M.,, and B. Volesky. 1982. The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24: 955969.
148. Tzeferis, P. G. 1994. Leaching of a low-grade hematitic laterite ore using fungi and biologically produced acid metabolites. Int. J. Miner. Proc. 42: 267283.
149. Tzeferis, P. G.,, S. Agatzini,, and E. T. Nerantzis. 1994. Mineral leaching of non-sulphide nickel ores using heterotrophic micro-organisms. Lett. Appl. Microbiol. 18: 209213.
150. Vieira, M. J.,, and L. F. Melo. 1995. Effect of clay particles on the behaviour of biofilms formed by Pseudomonas fluorescens. Water Sci. Technol. 32: 4552.
151. Vivier, H.,, B. Marcant,, and M.-N. Pons. 1994. Morphological shape characterization: application to oxalate crystals. Part. Part. Syst. Char. 11: 150155.
152. Wainwright, M. 1988. Metabolic diversity of fungi in relation to growth and mineral cycling in soil—a review. Trans. Br. Mycol. Soc. 90: 159170.
153. Wainwright, M.,, and G. M. Gadd,. 1997. Fungi and industrial pollutants, p. 8597. In D. T. Wicklow, and B. E. Soderstrom (ed.), The Mycota. V. Environmental and Microbial Relationships. Springer-Verlag UG, Berlin, Germany.
154. Wakatsuki, T.,, S. Hayakawa,, T. Hatayama,, T. Kitamura,, and H. Imahara. 1991. Solubilization and properties of copper reducing enzyme systems from the yeast cell surface in Debaromyces hansenii. J. Ferment. Bioeng. 72: 7986.
155. Wakatsuki, T.,, S. Hayakawa,, T. Hatayama,, T. Kitamura,, and H. Imahara. 1991. Purification and some properties of copper reductase from cell surface of Debaromyces hansenii. J. Ferment. Bioeng. 72: 158161.
156. White, C.,, and G. M. Gadd. 1986. Uptake and cellular distribution of copper, cobalt and cadmium in strains of Saccharomyces cerevisiae cultured on elevated concentrations of these metals. FEMS Microbiol. Ecol. 38: 277283.
157. White, C.,, and G. M. Gadd. 1987. Inhibition of H+ efflux and induction of K+ efflux in yeast by heavy metals. Toxic. Assess. 2: 437444.
158. White, C.,, and G. M. Gadd. 1987. The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J. Gen. Microbiol. 133: 727737.
159. White, C.,, J. A. Sayer,, and G. M. Gadd. 1997. Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol. Rev. 20: 503516.
160. Wu, J. S.,, H. Y. Sung,, and R. J. Juang. 1995. Transformation of cadmium-binding complexes during cadmium sequestration in fission yeast. Biochem. Mol. Biol. Int. 36: 11691175.
161. Yannai, S.,, I. Berdicevsky,, and L. Duek. 1991. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 57: 245247.
162. Yu, W.,, R. A. Farrell,, D. J. Stillman,, and D. R. Winge. 1996. Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 24642472.
163. Zhao, H.,, and D. Eide. 1996. The yeast ZRTI gene encodes the zinc transporter of a high affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. USA 93: 24542458.
164. Zhao, H.,, and D. Eide. 1996. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J. Biol. Chem. 271:23203123210.

Tables

Generic image for table
Table 1

Solubility products of some metal oxalates

Citation: Gadd G, Sayer J. 2000. Influence of Fungi on the Environmental Mobility of Metals and Metalloids, p 237-256. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error