1887

Chapter 12 : Bacterial Surface-Mediated Mineral Formation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bacterial Surface-Mediated Mineral Formation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap12-2.gif

Abstract:

This chapter focuses on the role of bacterial cell surfaces in catalyzing biomineralization processes and in promoting microfossil formation. Ultrathin sections were prepared by conventional embedding without the addition of osmium tetroxide or uranyl acetate as heavy-metal fixatives and contrasting agents. The electron density in these ultrathin sectioned samples as well as in the whole mounts presented in this chapter was provided by the naturally immobilized metals. The domains and the represent the two major bacterial groups that have been identified based on 16S rRNA phylogenetic studies. The domain is divided into the gram-positive or gram-negative groups based on cell envelope structure and chemistry (although gram-variable organisms also exist). The formation of many secondary minerals in natural as well as laboratory systems is catalyzed by microorganisms. These precipitation reactions have been divided into two general categories: passive and active mineralization. Metal precipitates on bacterial surfaces are generally hydrous, amorphous aggregates and become crystalline minerals only by lithification. However, poorly crystallized phases may also reorder and become more crystalline with time. The bacteriological processes ( and ) that have produced the geologically recognized deposits are still occurring today.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12

Key Concept Ranking

Bacteria and Archaea
0.5427453
Outer Membrane Proteins
0.47430927
Sodium Dodecyl Sulfate
0.43461612
Transmission Electron Microscopy
0.4113184
Dissimilatory Metal Reduction
0.4113184
Transmission Electron Microscopy
0.4113184
0.5427453
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Unstained transmission electron micrograph of a water sample from the Golden Giant mine tailings pond (Hemlo gold region, Marathon, Ontario, Canada) prepared by drying an aliquot of water onto a Formvar-carbon coated 200 mesh Cu-TEM grid and examined using a Philips EM300 electron microscope (a whole mount). Not all of these bacteria have precipitated fine-grained iron-arsenic minerals on their surface. Elemental analysis was performed using a Philips EM400T electron microscope equipped with a LINK X-ray analyzer for energy-dispersive X-ray spectroscopy (data not shown). The immobilization of metal on bacterial cell surfaces occurs at distinct nucleation sites, resulting in the development of fine-grained minerals. Bar, 1 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Unstained, ultrathin section transmisison electron micrograph of a mineralized biofilm from the Copper Rand mine tailings pond (Chibougamou. Quebec. Canada), revealing an unmineralized bacterium, mineralized bacteria, and inorganic particulate material that has been trapped by the biofilm. The nonmineralized cell is presumably viable, containing a hydronium “cloud” produced by its proton motive force. The proton motive force creates an acidic environment at the bacterial cell surface and prevents or limits heavy-metal binding, while the other two cells probably exhibited little or no metabolic activity at the time of sampling and are mineralized. Bar, 0.5 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Unstained, ultrathin-section transmission electron micrograph of a mineralized biofilm from the Lemoine tailings pond (Chibougamau, Quebec, Canada), demonstrating how capsular material is capable of protecting a bacterial micro-colony from mineralization. Bar, 0.5 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Unstained ultrathin-section transmission electron micrograph of a sp. which has been cultured in the presence of 100 ppm of Fe, resulting in the precipitation of amorphous FeS (reference and data not shown). FeS precipitation at the cell surface is caused by the presence of HS. released as a by-product of SRB metabolism, presumably forming an HS rich microenvironment around the individual SRB. Even in active surface catalysis systems, the surface of the bacteria has an uneven distribution of minerals. Bar. 0.5 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Unstained ultrathin-section transmission electron micrograph of an SRB culture/diagenesis system that has been incubated at 21°C for 6 months. Bacterial diagenesis promoted the nucleation of iron disulfide as a bilayer on the inner and outer surfaces of the SRB, representing the earliest and dominant stage of bacterial mineral diagenesis. Bar. 100 nm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap12
1. Adams, L. F.,, and W. C. Ghiorse. 1986. Physiology and ultrastructure of Leptothrix discophera SS-1. Arch. Microbiol. 145: 126 135.
2. Adams, L. F.,, and W. C. Ghiorse. 1987. Characterization of extracellular Mn 2+-oxidizing activity and isolation of an Mn 2+-oxidizing protein from Leptothrix discophora SS-1. J. Bacteriol. 169: 1279 1285.
3. Adams, L. F.,, and W. C. Ghiorse. 1988. Oxidation state of Mn in the Mn-oxide produced by Leptothrix discphora SS-1. Geochim. Cosmochim. Acta 52: 2073 2076
4. Amy, P. S.,, D. L. Haldeman,, D. Ringelberg,, D. H. Hall,, and C. Russell. 1992. Comparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurface. Appl. Environ. Microbiol. 58: 3367 3373.
5. Appanna, V. D.,, and C. M. Preston. 1987. Manganese elicits the synthesis of a novel exopolysaccharide in an arctic Rhizobium. FEBS Lett. 215: 79 82.
6. Barghoorn, E. S.,, and S. A. Tyler. 1965. Microorganisms from the Gunflint Chert. Science 147: 563 577.
7. Barns, S. M.,, and S. A. Nierzwicki-Bauer. 1997. Microbial diversity in ocean, surface and subsurface environments. Rev. Mineral. 35: 35 79.
8. Baumeister, W.,, I. Wildhaber,, and B. M. Phipps. 1989. Principles of organization in eubacterial and archaebacterial surface proteins. Can. J. Microbiol. 35: 215 227.
9. Beveridge, T. J. 1981. Ultrastructure, chemistry, and function of the bacterial wall. Int. Rev. Cytol. 72: 229 317.
10. Beveridge, T. J. 1988. The bacterial surface: general considerations towards design and function. Can. J. Microbiol. 34: 363 372.
11. Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43: 147 171.
12. Beveridge, T. J.,, C. W. Forsberg,, and R. J. Doyle. 1982. Major sites of metal binding in Bacillus licheniformis walls. J. Bacteriol. 150: 1438 1448.
13. Beveridge, T. J.,, and W. S. Fyfe. 1985. Metal fixation by bacterial cell walls. Can. J. Earth Sci. 22: 1893 1898.
14. Beveridge, T. J.,, and S. F. Koval. 1981. Binding of metals to cell envelopes of Escherichia coli K-12. Appl. Environ. Microbiol. 42: 325 335
15. Beveridge, T. J.,, J. D. Meloche,, W.S. Fyfe,, and R. G. E. Murray. 1983. Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl. Environ. Microbiol. 45: 1094 1108.
16. Beveridge, T. J.,, and R. G. E. Murray. 1976. Reassembly in vitro of the superficial wall components of Spirillum putridiconchylium. J. Ultrastruct. Res. 55: 105 118.
17. Beveridge, T. J.,, and R. G. E. Murray. 1976b. Uptake and retention of metals by cell walls of Bacillus subtilis. J. Bacteriol. 127: 1502 1518.
18. Beveridge, T. J.,, and R. G. E. Murray. 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141: 876 887.
19. Bhatti, T. M.,, J. M. Bigham,, L. Carlson,, and O. H. Tuovinen. 1993. Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 59: 1984 1990.
20. Bigham, J. M.,, U. Schuertmann,, L. Carlson,, and E. Murad. 1990. A poorly crystallized oxyhydroxy sulfate of iron formed by bacterial oxidation of Fe (II) in acid mine waters. Geochim. Cosmochim. Acta 54: 2743 2758.
21. Birnbaum, S. J.,, and J. W. Wireman. 1985. Sulfate-reducing bacteria and silica solubility: a possible mechanism for evaporite diagenesis and silica precipitation in banded iron formations. Can. J. Earth Sci. 22: 1904 1909.
22. Boogerd, F. C.,, and J. P. M. de Vrind. 1987. Manganese oxidation by Leptothrix discophora. J. Bacteriol. 169: 489 494.
23. Bubela, B.,, and J. A. McDonald. 1969. Formation of banded sulphides: metal ion separation and precipitation by inorganic and microbial sulphide sources. Nature 221: 465 466.
24. Burne, R. V.,, and L. S. Moore. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2: 241 254
25. Chauhan, D. S. 1979. Phosphate-bearing stromatolites of the Precambrian Aravalli phosphate deposits of the Udaipur region, their environmental significance and genesis of phosphorite. Precambr. Res. 8: 95 126.
26. Choi, S.-C.,, T. Chase, and R. Bartha. 1994. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 60: 4072 4077.
27. Cloud, P. E. 1973. Paleoecological significance of the banded iron-formation. Econ. Geol. 68: 1135 1143.
28. Cloud, P. E. Jr.,, and G. R. Licari. 1968. Microbiotas of the banded iron formations. Proc. Natl. Acad. Sci. USA 61: 779 786.
29. Coleman, M. L.,, D. B. Hedrick,, D. R. Lovley,, D. C. White,, and K. Pye. 1993. Reduction of Fe(III) in sediments by sulfate-reducing bacteria. Nature 361: 436 438.
30. Conway de Macario, E. H. Konig, and A. J. L. Macario. 1986. Antigenic determinants distinctive of Methanospirillum hungatei and Methanogenium cariaci identified by monoclonal antibodies. Arch. Microbiol. 144: 20 24.
31. Conway de Macario, E.,, M. J. Wolin,, and A. J. L. Macario. 1981. Immunology of archaebacteria that produce methane gas. Science 214: 74 75.
32. Corpe, W. 1964. Factors influencing growth and polysaccharide formation by strains of Chromobacterium violaceum. J. Bacteriol. 88: 1433 1437.
33. Corstjens, P. L. A. M.,, J. P. M. de Vrind,, P. Westbroek,, and E. W. de Vrind-de Jong. 1992. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. Appl. Environ. Microbiol. 58: 450 454.
34. Cowen, J. P.,, and K. W. Bruland. 1985. Metal deposits associated with bacteria: implications for Fe and Mn marine biogeochemistry. Deep-Sea Res. 32: 253 272.
35. Crerar, D. A.,, G. W. Knox,, and J. L. Means. 1979. Biogeochemistry of bog iron in the New Jersey pine barrens. Chem. Geol. 24: 111 135.
36. Dahanayake, K.,, and W. E. Krumbein. 1985. Ultrastructure of a microbial mat generated phosphorite. Miner. Depos. 20: 260 265.
37. Daughney, C. J.,, and J. B. Fein. 1998. The effect of ionic strength on the adsorption of H + , Cd 2+, Pb 2+, and Cu 2+ by Bacillus subtilis and Bacillus licheniformis: a surface complexation model. J. Colloid Interface Sci. 198: 53 77.
38. Daughney, C. J.,, J. B. Fein,, and N. Yee. 1998. A comparison of the thermodynamics of metal adsorption onto two common bacteria. Chem. Geol. 144: 161 176.
39. Degens, E. T.,, and V. Ittekkot. 1982. In situ metal-staining of biological membranes in sediments. Nature 298: 262 264.
40. Degens, E. T.,, S. W. Watson,, and C. C. Remsen. 1970. Fossil membranes and cell wall fragments from a 7000-year-old Black Sea Sediment. Science 168: 1207 1208.
41. Diels, L.,, and M. Mergeay. 1990. DNA-probe mediated detection of new bacteria resistant to heavy metals. Appl. Environ. Microbiol. 56: 1485 1491.
42. Donald, R.,, and G. Southam. 1999. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochim. Cosmochim. Acta 63: 2019 2023.
43. Doyle, R. J.,, T. H. Matthews,, and U. N. Streips. 1980. Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J. Bacteriol 143: 471 480.
44. Ehrlich, H. L. 1975. The formation of ores in the sedimentary environment of the deep sea with microbial participation: the case for ferromanganese concretions. Science 119: 36 41.
45. Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chem. Geol 132: 5 9.
46. Emerson, D.,, and W. C. Ghiorse. 1992. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl. Environ. Microbiol. 58: 4001 4010.
47. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl. Environ. Microbiol. 60: 4022 4031.
48. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl. Environ. Microbiol. 60: 4032 4038.
49. Fein, J. B.,, C. J. Daughney,, N. Yee,, and T. Davis. 1997. A chemical equilibrium model of metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta 61: 3319 3328.
50. Ferris, F. G.,, and T. J. Beveridge. 1984. Binding of a paramagnetic metal cation to Escherichia coli K-12 outer membrane vesicles. FEMS Microbiol Lett. 24: 43 46.
51. Ferris, F. G.,, and T. J. Beveridge. 1986. Physicochemical roles of soluble metal cations in the outer membrane of Escherichia coli K-12. Can. J. Microbiol 32: 594 601.
52. Ferris, F. G.,, T. J. Beveridge,, and W. S. Fyfe. 1986. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature 320: 609 611.
53. Ferris, F. G.,, C. M. Fratton,, J. P. Gerits,, S. Schultze-Lam,, and B. Sherwood-Lollar. 1995. Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiol. J. 13: 57 67.
54. Ferris, F. G.,, W. S. Fyfe,, and T. J. Beveridge. 1987. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem. Geol 63: 225 232.
55. Ferris, F. G.,, W. S. Fyfe,, and T. J. Beveridge. 1988. Metallic ion activity by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16: 149 152.
56. Ferris, F. G.,, W. S. Fyfe,, T. Whitten,, S. Schultze,, and T. J. Beveridge. 1989. Effect of mineral substrate hardness on the population density of epilithic microorganisms in two Ontario rivers. Can. J. Microbiol. 35: 744 747.
57. Ferris, F. G.,, S. Schultze,, T. C. Witten,, W. S. Fyfe,, and T. J. Beveridge. 1989. Metal interaction with microbial biofilms in acidic and neutral pH environments. Appl. Environ. Microbiol 55: 1249 1257.
58. Ferris, F. G.,, K. Tazaki,, and W. S. Fyfe. 1989. Iron oxides in acid mine drainage environments and their association with bacteria. Chem. Geol. 74: 321 330.
59. Ferris, F. G.,, J. B. Thompson,, and T. J. Beveridge. 1997. Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaios 12: 213 219.
60. Ferris, F. G.,, R. G. Wiese,, and W. S. Fyfe. 1994. Precipitation of carbonate minerals by microorganisms: Implications for silicate weathering and the global carbon dioxide budget. Geomicrobiol. J. 12: 1 13.
61. Firtel, M.,, G. Southam,, T. J. Beveridge,, M. H. Jericho,, B. L. Blackford,, P. J. Mulhern,, and W. Xu,. 1992. Investigation of lattice surface layers by scanning probe microscopy, p. 243 256. In T. J. Beveridge, and S. F. Koval (ed.), Advances in Bacterial Paracrystalline Surface Layers. Plenum Publishing Corp., New York, N.Y.
62. Flemming, C. A.,, F. G. Ferris,, T. J. Beveridge,, and G. W. Bailey. 1990. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microbiol 56: 3191 3203.
63. Fortin, D.,, and T. J. Beveridge. 1997. Microbial sulfate reduction within sulfidic mine tailings: formation of diagenetic Fe-sulfides. Geomicrobiol. J. 14: 1 21.
64. Fortin, D.,, and T. J. Beveridge. 1997. Role of the bacterium, Thiobacillus, in the formation of silicates in acidic mine tailings. Chem. Geol. 141: 235 250.
65. Fortin, D.,, B. Davis,, and T. J. Beveridge. 1996. Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol. Ecol 21: 11 24.
66. Fortin, D.,, B. Davis,, G. Southam,, and T. J. Beveridge. 1995. Biogeochemical phenomena induced by bacteria within sulfidic mine tailings. J. Ind. Microbiol. 14: 178 185.
67. Fortin, D.,, G. Southam,, and T. J. Beveridge. 1994. An examination of iron sulfide, iron-nickel sulfide and nickel sulfide precipitation by a Desulfotomaculum species: and its nickel resistance mechanisms. FEMS Microbiol. Ecol. 14: 121 132.
68. Fortin, D.,, A. Tessier,, and G. C. Leppard. 1993. Characteristics of lacustrine iron oxyhydroxides. Geochim. Cosmochim. Acta 57: 4391 4404.
69. Fukui, M.,, and S. Takii. 1990. Colony formation of free-living and particle-associated sulfatereducing bacteria. FEMS Microbiol. Ecol. 73: 85 90.
70. Geesey, G. G.,, P. J. Bremer,, J. J. Smith,, M. Muegge,, and L. K. Jang. 1992. Two-phase model for describing the interactions between copper ions and exopolymers from Alteromonas atlantica. Can. J. Microbiol. 38: 785 793.
71. Gorby, Y. A.,, and D. A. Lovley. 1992. Enzymatic uranium precipitation. Environ. Sci. Technol. 26: 205 207.
72. Graham, L. L.,, and T. J. Beveridge. 1990. Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J. Bacteriol. 172: 2141 2149.
73. Gyure, R. A.,, A. Konopka,, A. Brooks,, and W. Doemel. 1990. Microbial sulfate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiol. Ecol. 73: 193 202.
74. Hammack, R. W.,, and H. W. Edenborn. 1992. The removal of nickel from mine waters using bacterial sulphate reduction. Appl. Microbiol. Biotechnol. 37: 674 678.
75. Hammer, D. A., 1990. Constructed wetlands for acid water treatment—an overview of emerging technology, p. 381 394. In J. W. Gadsby,, J. A. Malik,, and S. J. Dau (ed.), Acid Mine Drainage Designing for Closure. BiTech Publications Ltd., Vancouver, Canada.
76. Henrot, J.,, and R. K. Wieder. 1990. Processes of iron and manganese retention in laboratory peat microcosms subjected to acid mine drainage. J. Environ. Qual. 19: 312 320.
77. Herlihy, A. T.,, and A. L. Mills. 1985. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl. Environ. Microbiol. 49: 179 186.
78. Higham, D. P.,, and P. J. Sadler. 1984. Cadmium-resistant Pseudomonas putida synthesizes novel cadmium proteins. Science 225: 1043 1046.
79. Hinman, N. W.,, and R. F. Lindstrom. 1996. Seasonal changes in silica deposition in hot spring systems. Chem. Geol. 132: 237 246.
80. Hobot, J. A.,, E. Carlemam,, W. Villiger,, and E. Kellenberger. 1984. The periplasmic gel: a new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J. Bacteriol. 160: 143 152.
81. Holm, N. G. 1987. Biogenic influences on the geochemistry of certain ferruginous sediments of hydrothermal origin. Chem. Geol. 63: 45 57.
82. Hovmoller, S.,, A. Sjogren,, and D. N. Wang. 1988. The structure of crystalline bacterial surface layers. Prog. Biophys. Mol. Biol. 51: 131 163.
83. Howarth, R. W. 1979. Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203: 49 51.
84. Hoyle, B.,, and T. J. Beveridge. 1983. Binding of metallic ions to the outer membrane of Escherichia coli. Appl. Environ. Microbiol. 46: 749 752.
85. Hoyle, B.,, and T. J. Beveridge. 1984. Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can. J. Microbiol. 30: 204 211.
86. Hutchins, S. R.,, M. S. Davidson,, J. A. Brierly,, and C. L. Brierly. 1986. Microorganisms in reclamation of metals. Annu. Rev. Microbiol. 40: 311 336.
87. Ishibashi, Y.,, C. Cervantes,, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268 2270.
88. Ivarson, K. C.,, and M. Sojak. 1978. Microorganisms and ochre deposits in field drains of Ontario. Can. J. Soil Sci. 58: 1 17.
89. Jones, B.,, and R. W. Renaut. 1996. Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90°C: evidence from Kenya and New Zealand. Can. J. Earth Sci. 33: 72 83.
90. Kandler, O. 1982. Cell wall structures and their phylogenetic implications. Zentbl. Bakteriol. Mikrobiol. Hyg. I Abt. Orig. C 3: 149 160.
91. Kandler, O.,, and H. Konig. 1978. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118: 141 152.
92. Kandler, O.,, and H. Konig,. 1985. Cell envelopes of archaebacteria, p. 413 457. In C. R. Woese, and R. S. Wolfe (ed.), The Bacteria, vol. 8. Academic Press, Inc., New York, N.Y.
93. Kidambi, S. P.,, G. W. Sundin,, D. A. Palmer,, A. M. Chakrabarty,, and C. L. Bender. 1995. Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 61: 2172 2179.
94. Kim, B.-K.,, T. D. Pihl,, J. N. Reeve,, and L. Daniels. 1995. Purification of the copper response extracellular proteins secreted by the copper-resistant methanogen Methanobacterium bryantii BKYH and cloning, sequencing, and transcription of the gene encoding these proteins. J. Bacteriol. 177: 7178 7185.
95. Kobluk, D. R.,, and D. R. Crawford. 1990. A modern hypersaline organic mud- and gypsum-dominated basin and associated microbialites. Palaios 5: 134 148.
96. Koch, A. L. 1996. What size should a bacterium be? A question of scale. Annu. Rev. Microbiol. 50: 317 348.
97. Konhauser, K. 1998. Diversity of bacterial iron mineralization. Earth Sci. Rev. 43: 91 121.
98. Konhauser, K.,, and F. G. Ferris. 1996. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24: 323 326.
99. Konhauser, K. O.,, W. S. Fyfe,, F. G. Ferris,, and T. J. Beveridge. 1993. Metal sorption and mineral precipitation by bacteria in two Amazonian river systems: Rio Solimoes and Rio Negro, Brazil. Geology 21: 1103 1106.
100. Konhauser, K. O.,, S. Schultze-Lam,, F. G. Ferris,, W. S. Fyfe,, F. J. Longstaffe,, and T. J. Beveridge. 1994. Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Appl. Environ. Microbiol. 60: 549 553
101. Konig, H. 1988. Archaebacterial cell envelopes. Can. J. Microbiol. 34: 395 406.
102. Konig, H.,, and K. O. Stetter. 1986. Studies on archaebacterial S-layers. Syst. Appl. Microbiol. 7: 300 309.
103. Koval, S. F. 1988. Paracrystalline surface arrays on bacteria. Can. J. Microbiol. 34: 407 414.
104. Koval, S. F.,, and R. G. E. Murray. 1986. The superficial protein arrays on bacteria. Microbiol. Sci. 3: 357 361.
105. Lam, J. S.,, L. L. Graham,, J. Lightfoot,, T. Dasgupta,, and T. J. Beveridge. 1992. Ultrastructural examination of lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic mutants by freeze-substitution. J. Bacteriol. 174: 7159 7167.
106. Lovley, D. R.,, and F. H. Chapelle. 1995. Deep subsurface microbial processes. Rev. Geophys. 33: 365 381.
107. Lovley, D. R.,, and M. J. Klug. 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45: 187 192.
108. Lovley, D. R.,, and E. J. P. Phillips. 1986. Organic matter mineralization with the reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683 689.
109. Lovley, D. R.,, and E. J. P. Philips. 1987. Competitive mechanisms for inhibitions of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53: 2636 2641.
110. Lovley, D. R.,, and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472 1480.
111. Lovley, D. R.,, and E. J. P. Phillips. 1994. Reduction of chromate by Desulfovibrio vulgaris and its c 3cytochrome. Appl. Environ. Microbiol. 60: 726 728.
112. Loviey, D. R.,, E. J. P. Phillips,, Y. A. Gorby,, and E. R. Landa. 1991. Microbial reduction of uranium. Nature 350: 413 416.
113. Lowenstam, H. A. 1981. Minerals formed by organisms. Nature 211: 1126 1131.
114. Macaskie, L. E.,, A. C. R. Dean,, A. K. Cheetham,, R. J. B. Jakeman,, and A. J. Skarnulis. 1987. Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. Gen. Microbiol 133: 539 544.
115. Mann, S. 1988. Molecular recognition in biomineralization. Nature 332: 119 124.
116. Marquis, R. E.,, K. Mayzel,, and E. L. Carstensen. 1976. Cation exchange in cell walls of gram-positive bacteria. Can. J. Microbiol 22: 975 982.
117. Maree, J. P.,, and W. F. Strydom. 1987. Biological sulphide removal from industrial effluent in an upflow packed bed reactor. Water Resour. Res. 19: 141 146.
118. Mayers, I. T.,, and T. J. Beveridge. 1989. The sorption of metals to Bacillus subtilis walls from dilute solutions and simulated Hamilton Harbour (Lake Ontario) water. Can. J. Microbiol. 35: 764 770.
119. McLean, R. J. C.,, D. Beauchemin,, L. Clapham,, and T. J. Beveridge. 1990. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus lichenifonnis ATCC 9945. Appl. Environ. Microbiol. 56: 3671 3677.
120. Mittelman, M. W.,, and G. G. Geesey. 1985. Copper-binding characteristics of exopolymers from a freshwater sediment bacterium. Appl Environ. Microbiol. 49: 846 851.
121. Mohagheghi, A.,, D. M. Updegraff,, and M. B. Goldhaber. 1985. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiol. J. 4: 153 173.
122. Mullen, M. D.,, D. C. Wolf,, F. G. Ferris,, T. J. Beveridge,, C. A. Flemming,, and G. W. Bailey. 1989. Bacterial sorption of heavy metals. Appl. Environ. Microbiol 55: 3143 3149.
123. Myers, C. P.,, and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240: 1319 1321.
124. Nealson, K. H.,, and C. R. Myers. 1992. Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl. Environ. Microbiol 58: 439 443.
125. Nealson, K. H.,, and D. A. Stahl. 1997. Microorganisms and biogeochemical cycles: what can we learn from layered microbial communities? Rev. Miner. 35: 5 34.
126. Nies, D. H. 1992. Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27: 17 28.
127. Nies, D. H.,, and S. Silver. 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophicus. J. Bacteriol. 171: 896 900.
128. O'Brien, G. W.,, J. R. Harris,, A. R. Milnes,, and H. H. Veeh. 1981. Bacterial origin of East Australian continental margin phosphorites. Nature 294: 442 444.
129. Oremland, R. S.,, J. T. Hollibaugh,, A. S. Maest,, T. S. Presser,, L. S. Miller,, and C. W. Culbertson. 1989. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulfate-independent respiration. Appl. Environ. Microbiol 55: 2333 2343.
130. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734 740.
131. Pedersen, K.,, and S. Ekendahl. 1990. Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb. Ecol 20: 37 52.
132. Pentecost, A.,, and J. Bauld. 1988. Nucleation of calcite on the sheaths of cyanobacteia using a simple diffusion cell. Geomicrobiol. J. 6: 129 135.
133. Pflug, H. D.,, and H. Jaeschke-Boyer. 1979. Combined structural and chemical analysis of 3,800- Myr-old microfossils. Nature 280: 483 486.
134. Pirie, N. W. 1973. On being the right size. Annu. Rev. Microbiol. 27: 119 131.
135. Purcell, E. 1977. Life at low Reynold's number. Am. J. Phys. 45: 3 11.
136. Ramsay, B.,, J. Ramsay,, M. deTremblay,, and C. Chavarie. 1988. A method for the quantification of bacterial protein in the presence of jarosite. Geomicrobiol J. 6: 171 177.
137. Remacle, J.,, and C. Vercheval. 1991. A zinc-binding protein in a metal-resistant strain, Alcaligenes eutrophus CH34. Can. J. Microbiol 37: 875 877.
138. Revsbech, N. P.,, and B. B. Jorgensen. 1986. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9: 293 353.
139. Rickard, D. 1997. Kinetics of pyrite formation by the H 2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the rate equation. Geochim. Cosmochim. Acta 61: 115 134.
140. Rickard, D.,, and G. W. Luther III. 1997. Kinetics of pyrite formation by the H 2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the mechanism. Geochim. Cosmochim. Acta 61: 135 147.
141. Roden, E. E.,, and D. R. Lovley. 1993. Dissimilatory Fe(III)-reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol 59: 734 742.
142. Rodgers, S. R.,, and J. J. Anderson. 1976. Measurement of growth and iron deposition in Sphaerotilus discophorus. J. Bacteriol 126: 257 263.
143. Rodgers, S. R.,, and J. J. Anderson. 1976. Role of iron deposition in Sphaerotilus discophorus. J. Bacteriol 126: 264 271.
144. Sakamoto, K.,, M. Yagasaki,, K. Kirimura,, and S. Usami. 1989. Resistance acquisition of Thiobacillus thiooxidans upon cadmium and zinc ion addition and formation of ion-binding and zinc ion-binding proteins exhibiting metallothionein-like properties. J. Ferment. Bioeng. 67: 266 273.
145. Schidlowski, M.,, J. M. Hayes,, and I. R. Kaplan,. 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen, p. 149 186. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton University Press, Princeton, N.J.
146. Schmidt, T.,, and H. G. Schlegel. 1989. Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol. Ecol 62: 315 328.
147. Schmidt, T.,, R.-D. Stoppel,, and H. G. Schlegel. 1991. High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophicus KT02. Appl. Environ. Microbiol 57: 3301 3309.
148. Schopf, J. W.,, and M. R. Walter,. 1983. Archaean microfossils: new evidence of ancient microbes, p. 214 239. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton University Press, Princeton. N.J.
149. Schultze-Lam, S.,, and T. J. Beveridge. 1994. Nucleation of celestite and strontianite on a cyanobacterial S-layer. Appl. Environ. Microbiol. 60: 447 453.
150. Schultze-Lam, S.,, F. G. Ferris,, K. O. Konhauser,, and R. G. Wiese. 1995. In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can. J. Earth Sci. 32: 2021 2026.
151. Schultze-Lam, S.,, G. Harauz,, and T. J. Beveridge. 1992. Participation of a cyanobacterial Slayer in fine-grain mineral formation. J. Bacteriol. 174: 7971 7981.
152. Sensfuss, C.,, and H. G. Schlegel. 1988. Plamid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol Lett. 55: 295 298.
153. Silver, S.,, and M. Walderhaus. 1992. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195 228.
154. Sleytr, U. B.,, and P. Messner. 1983. Crystalline surface layers on bacteria. Annu. Rev. Microbiol 37: 311 339.
155. Sleytr, U. B.,, and P. Messner. 1988. Crystalline surface layers in procaryotes. J. Bacteriol 170: 2891 2897.
156. Soudry, D.,, and Y. Champtier. 1983. Microbial processes in Negev phosphorites (southern Israel). Sedimentology 30: 411 423.
157. Southam, G.,, and T. J. Beveridge. 1992. Enumeration of thiobacilli with pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl. Environ. Microbiol. 58: 1904 1912.
158. Southam, G.,, and T. J. Beveridge. 1993. Examination of lipopolysaccharide (O-antigen) populations of Thiobacillus ferrooxidans from two mine tailings. Appl. Environ. Microbiol. 59: 1283 1288.
159. Southam, G.,, F. G. Ferris,, and T. J. Beveridge,. 1995. Mineralized bacterial biofilms in sulfide tailings and in acid mine drainage systems, p. 148 170. In H. M. Lappin-Scott, and J. W. Costerton (ed.), Microbial Biofilms. Cambridge University Press, Cambridge, United Kingdom.
160. Southam, G.,, G. D. Sprott,, and T. J. Beveridge,. 1992. Paracrystalline layers of Methanospirillum hungatei. p. 129 142. In T. J. Beveridge, and S. F. Koval (ed.), Advances in Bacterial Paracrystalline Surface Layers. Plenum Publishing Corp., New York, N.Y.
161. Stetter, K. O.,, G. Fiala,, G. Huber,, R. Huber,, and A. Segerer. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75: 117 124.
162. Stevens, T. O.,, J. P McKinley,, and J. K. Fredrickson. 1993. Bacteria associated with deep, alkaline, anaerobic groundwaters in southeast Washington. Microb. Ecol. 25: 35 50.
163. Stoppel, R.-D.,, and H. G. Schlegel. 1995. Nickel-resistant bacteria from anthropogenically nickelpolluted and naturally nickel-percolated ecosystems. Appl. Environ. Microbiol. 61: 2276 2285.
164. Tazaki, K.,, F. G. Ferris,, R. G. Wiese,, and W. S. Fyfe. 1992. Iron and graphite associated with fossil bacteria in chert. Chem. Geol. 95: 313 325.
165. Thompson, J. B.,, and F. G. Ferris. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18: 995 998.
166. Thompson, J. B.,, F. G. Ferris,, and D. A. Smith. 1990. Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. Palaios 5: 52 75.
167. Thompson, J. B.,, S. Schultze-Lam,, T. J. Beveridge,, and D. J. Des Marais. 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol. Oceanogr. 42: 133 141.
168. Thompson-Eagle, E. T.,, W. T. Frankenburger Jr.,, and U. Karlson. 1989. Volatilization of selenium by Alternaria alternata. Appl. Environ. Microbiol. 55: 1406 1413.
169. Timperley, M. H.,, and R. J. Allan. 1974. The formation and detection of metal dispersion halos in organic lake sediments. J. Geochem. Explor. 3: 167 190.
170. Trafford, B. D.,, C. Bloomfield,, W. I. Kelso,, and G. Pruden. 1973. Ochre formation in field drains in pyritic soils. J. Soil Sci. 24: 453 460.
171. Trudinger, P. A.,, L. A. Chambers,, and J. W. Smith. 1985. Low-temperature sulphate reduction: biological versus abiological. Can. J. Earth Sci. 22: 1910 1918.Inc.
172. Turtle, J. H.,, P. R. Dugan,, C. B. MacMillan,, and C. I. Randies. 1968. Microbial dissimilatory sulfur cycle in acid mine water. J. Bacteriol. 100: 594 602.
173. Turtle, J. H.,, C. B. Dugan,, and C. I. Randies. 1969. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl. Microbiol. 17: 297 302.
174. Urrutia, M.,, and T. J. Beveridge. 1993. Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. J. Bacteriol. 175: 1936 1945.
175. Urrutia, M. M.,, and T. J. Beveridge. 1993. Remobilization of heavy metals retained as oxyhydroxides or silicates by Bacillus subtilis cells. Appl. Environ. Microbiol. 59: 4323 4329.
176. Urrutia, M. M.,, and T. J. Beveridge. 1994. Formation of fine-grained silicate minerals and metal precipitates by a bacterial surface (Bacillus subtilis) and the implications in the global cycling of silicon. Chem. Geol. 116: 261 280.
177. Urrutia, M.,, M. Kemper,, R. Doyle,, and T. J. Beveridge. 1992. The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Appl. Environ. Microbiol. 58: 3837 3844.
178. Vasconcelos, C.,, J. A. McKenzie,, S. Bernasconi,, D. Grujic,, and A. J. Tien. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377: 220 222.
179. Walker, S. G.,, C. A. Flemming,, F. G. Ferris,, T. J. Beveridge,, and G. W. Bailey. 1989. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl. Environ. Microbiol. 55: 2976 2984.
180. Walter, M. R., 1983. Archean stromatolites: evidence of Earth's earliest benthos, p. 187 213. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton University Press, Princeton, N.J.
181. Wilkin, R. T.,, and H. L. Barnes. 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta 60: 4167 4179
182. Wilkin, R. T.,, and H. L. Barnes. 1997. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 61: 323 339.
183. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221 271.
184. Woese, C. R.,, and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088 5090.
185. Youssef, M. I. 1965. Genesis of bedded phosphates. Econ. Geol. 60: 590 600.

Tables

Generic image for table
Table 1

Secondary minerals known to form on microbial cell surfaces via passive interaction or as a consequence of microbial metabolism

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error