1887

Chapter 12 : Bacterial Surface-Mediated Mineral Formation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Bacterial Surface-Mediated Mineral Formation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap12-2.gif

Abstract:

This chapter focuses on the role of bacterial cell surfaces in catalyzing biomineralization processes and in promoting microfossil formation. Ultrathin sections were prepared by conventional embedding without the addition of osmium tetroxide or uranyl acetate as heavy-metal fixatives and contrasting agents. The electron density in these ultrathin sectioned samples as well as in the whole mounts presented in this chapter was provided by the naturally immobilized metals. The domains and the represent the two major bacterial groups that have been identified based on 16S rRNA phylogenetic studies. The domain is divided into the gram-positive or gram-negative groups based on cell envelope structure and chemistry (although gram-variable organisms also exist). The formation of many secondary minerals in natural as well as laboratory systems is catalyzed by microorganisms. These precipitation reactions have been divided into two general categories: passive and active mineralization. Metal precipitates on bacterial surfaces are generally hydrous, amorphous aggregates and become crystalline minerals only by lithification. However, poorly crystallized phases may also reorder and become more crystalline with time. The bacteriological processes ( and ) that have produced the geologically recognized deposits are still occurring today.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12

Key Concept Ranking

Bacteria and Archaea
0.5427453
Outer Membrane Proteins
0.47430927
Sodium Dodecyl Sulfate
0.43461612
Transmission Electron Microscopy
0.4113184
Dissimilatory Metal Reduction
0.4113184
Transmission Electron Microscopy
0.4113184
0.5427453
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Unstained transmission electron micrograph of a water sample from the Golden Giant mine tailings pond (Hemlo gold region, Marathon, Ontario, Canada) prepared by drying an aliquot of water onto a Formvar-carbon coated 200 mesh Cu-TEM grid and examined using a Philips EM300 electron microscope (a whole mount). Not all of these bacteria have precipitated fine-grained iron-arsenic minerals on their surface. Elemental analysis was performed using a Philips EM400T electron microscope equipped with a LINK X-ray analyzer for energy-dispersive X-ray spectroscopy (data not shown). The immobilization of metal on bacterial cell surfaces occurs at distinct nucleation sites, resulting in the development of fine-grained minerals. Bar, 1 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Unstained, ultrathin section transmisison electron micrograph of a mineralized biofilm from the Copper Rand mine tailings pond (Chibougamou. Quebec. Canada), revealing an unmineralized bacterium, mineralized bacteria, and inorganic particulate material that has been trapped by the biofilm. The nonmineralized cell is presumably viable, containing a hydronium “cloud” produced by its proton motive force. The proton motive force creates an acidic environment at the bacterial cell surface and prevents or limits heavy-metal binding, while the other two cells probably exhibited little or no metabolic activity at the time of sampling and are mineralized. Bar, 0.5 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Unstained, ultrathin-section transmission electron micrograph of a mineralized biofilm from the Lemoine tailings pond (Chibougamau, Quebec, Canada), demonstrating how capsular material is capable of protecting a bacterial micro-colony from mineralization. Bar, 0.5 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Unstained ultrathin-section transmission electron micrograph of a sp. which has been cultured in the presence of 100 ppm of Fe, resulting in the precipitation of amorphous FeS (reference and data not shown). FeS precipitation at the cell surface is caused by the presence of HS. released as a by-product of SRB metabolism, presumably forming an HS rich microenvironment around the individual SRB. Even in active surface catalysis systems, the surface of the bacteria has an uneven distribution of minerals. Bar. 0.5 µm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Unstained ultrathin-section transmission electron micrograph of an SRB culture/diagenesis system that has been incubated at 21°C for 6 months. Bacterial diagenesis promoted the nucleation of iron disulfide as a bilayer on the inner and outer surfaces of the SRB, representing the earliest and dominant stage of bacterial mineral diagenesis. Bar. 100 nm.

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap12
1. Adams, L. F.,, and W. C. Ghiorse. 1986. Physiology and ultrastructure of Leptothrix discophera SS-1. Arch. Microbiol. 145:126135.
2. Adams, L. F.,, and W. C. Ghiorse. 1987. Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. J. Bacteriol. 169: 12791285.
3. Adams, L. F.,, and W. C. Ghiorse. 1988. Oxidation state of Mn in the Mn-oxide produced by Leptothrix discphora SS-1. Geochim. Cosmochim. Acta 52:20732076
4. Amy, P. S.,, D. L. Haldeman,, D. Ringelberg,, D. H. Hall,, and C. Russell. 1992. Comparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurface. Appl. Environ. Microbiol. 58:33673373.
5. Appanna, V. D.,, and C. M. Preston. 1987. Manganese elicits the synthesis of a novel exopolysaccharide in an arctic Rhizobium. FEBS Lett. 215:7982.
6. Barghoorn, E. S.,, and S. A. Tyler. 1965. Microorganisms from the Gunflint Chert. Science 147: 563577.
7. Barns, S. M.,, and S. A. Nierzwicki-Bauer. 1997. Microbial diversity in ocean, surface and subsurface environments. Rev. Mineral. 35:3579.
8. Baumeister, W.,, I. Wildhaber,, and B. M. Phipps. 1989. Principles of organization in eubacterial and archaebacterial surface proteins. Can. J. Microbiol. 35:215227.
9. Beveridge, T. J. 1981. Ultrastructure, chemistry, and function of the bacterial wall. Int. Rev. Cytol. 72:229317.
10. Beveridge, T. J. 1988. The bacterial surface: general considerations towards design and function. Can. J. Microbiol. 34:363372.
11. Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43:147171.
12. Beveridge, T. J.,, C. W. Forsberg,, and R. J. Doyle. 1982. Major sites of metal binding in Bacillus licheniformis walls. J. Bacteriol. 150:14381448.
13. Beveridge, T. J.,, and W. S. Fyfe. 1985. Metal fixation by bacterial cell walls. Can. J. Earth Sci. 22:18931898.
14. Beveridge, T. J.,, and S. F. Koval. 1981. Binding of metals to cell envelopes of Escherichia coli K-12. Appl. Environ. Microbiol. 42:325335
15. Beveridge, T. J.,, J. D. Meloche,, W.S. Fyfe,, and R. G. E. Murray. 1983. Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl. Environ. Microbiol. 45:10941108.
16. Beveridge, T. J.,, and R. G. E. Murray. 1976. Reassembly in vitro of the superficial wall components of Spirillum putridiconchylium. J. Ultrastruct. Res. 55:105118.
17. Beveridge, T. J.,, and R. G. E. Murray. 1976b. Uptake and retention of metals by cell walls of Bacillus subtilis. J. Bacteriol. 127:15021518.
18. Beveridge, T. J.,, and R. G. E. Murray. 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141:876887.
19. Bhatti, T. M.,, J. M. Bigham,, L. Carlson,, and O. H. Tuovinen. 1993. Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 59:19841990.
20. Bigham, J. M.,, U. Schuertmann,, L. Carlson,, and E. Murad. 1990. A poorly crystallized oxyhydroxy sulfate of iron formed by bacterial oxidation of Fe (II) in acid mine waters. Geochim. Cosmochim. Acta 54:27432758.
21. Birnbaum, S. J.,, and J. W. Wireman. 1985. Sulfate-reducing bacteria and silica solubility: a possible mechanism for evaporite diagenesis and silica precipitation in banded iron formations. Can. J. Earth Sci. 22:19041909.
22. Boogerd, F. C.,, and J. P. M. de Vrind. 1987. Manganese oxidation by Leptothrix discophora. J. Bacteriol. 169:489494.
23. Bubela, B.,, and J. A. McDonald. 1969. Formation of banded sulphides: metal ion separation and precipitation by inorganic and microbial sulphide sources. Nature 221:465466.
24. Burne, R. V.,, and L. S. Moore. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241254
25. Chauhan, D. S. 1979. Phosphate-bearing stromatolites of the Precambrian Aravalli phosphate deposits of the Udaipur region, their environmental significance and genesis of phosphorite. Precambr. Res. 8:95126.
26. Choi, S.-C.,, T. Chase, and R. Bartha. 1994. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 60:40724077.
27. Cloud, P. E. 1973. Paleoecological significance of the banded iron-formation. Econ. Geol. 68:11351143.
28. Cloud, P. E.Jr.,, and G. R. Licari. 1968. Microbiotas of the banded iron formations. Proc. Natl. Acad. Sci. USA 61:779786.
29. Coleman, M. L.,, D. B. Hedrick,, D. R. Lovley,, D. C. White,, and K. Pye. 1993. Reduction of Fe(III) in sediments by sulfate-reducing bacteria. Nature 361:436438.
30. Conway de Macario, E. H. Konig, and A. J. L. Macario. 1986. Antigenic determinants distinctive of Methanospirillum hungatei and Methanogenium cariaci identified by monoclonal antibodies. Arch. Microbiol. 144:2024.
31. Conway de Macario, E.,, M. J. Wolin,, and A. J. L. Macario. 1981. Immunology of archaebacteria that produce methane gas. Science 214:7475.
32. Corpe, W. 1964. Factors influencing growth and polysaccharide formation by strains of Chromobacterium violaceum. J. Bacteriol. 88:14331437.
33. Corstjens, P. L. A. M.,, J. P. M. de Vrind,, P. Westbroek,, and E. W. de Vrind-de Jong. 1992. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. Appl. Environ. Microbiol. 58:450454.
34. Cowen, J. P.,, and K. W. Bruland. 1985. Metal deposits associated with bacteria: implications for Fe and Mn marine biogeochemistry. Deep-Sea Res. 32:253272.
35. Crerar, D. A.,, G. W. Knox,, and J. L. Means. 1979. Biogeochemistry of bog iron in the New Jersey pine barrens. Chem. Geol. 24:111135.
36. Dahanayake, K.,, and W. E. Krumbein. 1985. Ultrastructure of a microbial mat generated phosphorite. Miner. Depos. 20:260265.
37. Daughney, C. J.,, and J. B. Fein. 1998. The effect of ionic strength on the adsorption of H+ , Cd2+, Pb2+, and Cu2+ by Bacillus subtilis and Bacillus licheniformis: a surface complexation model. J. Colloid Interface Sci. 198:5377.
38. Daughney, C. J.,, J. B. Fein,, and N. Yee. 1998. A comparison of the thermodynamics of metal adsorption onto two common bacteria. Chem. Geol. 144:161176.
39. Degens, E. T.,, and V. Ittekkot. 1982. In situ metal-staining of biological membranes in sediments. Nature 298:262264.
40. Degens, E. T.,, S. W. Watson,, and C. C. Remsen. 1970. Fossil membranes and cell wall fragments from a 7000-year-old Black Sea Sediment. Science 168:12071208.
41. Diels, L.,, and M. Mergeay. 1990. DNA-probe mediated detection of new bacteria resistant to heavy metals. Appl. Environ. Microbiol. 56:14851491.
42. Donald, R.,, and G. Southam. 1999. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochim. Cosmochim. Acta 63:20192023.
43. Doyle, R. J.,, T. H. Matthews,, and U. N. Streips. 1980. Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J. Bacteriol 143:471480.
44. Ehrlich, H. L. 1975. The formation of ores in the sedimentary environment of the deep sea with microbial participation: the case for ferromanganese concretions. Science 119:3641.
45. Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chem. Geol 132:59.
46. Emerson, D.,, and W. C. Ghiorse. 1992. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl. Environ. Microbiol. 58:40014010.
47. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl. Environ. Microbiol. 60:40224031.
48. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl. Environ. Microbiol. 60:40324038.
49. Fein, J. B.,, C. J. Daughney,, N. Yee,, and T. Davis. 1997. A chemical equilibrium model of metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta 61:33193328.
50. Ferris, F. G.,, and T. J. Beveridge. 1984. Binding of a paramagnetic metal cation to Escherichia coli K-12 outer membrane vesicles. FEMS Microbiol Lett. 24:4346.
51. Ferris, F. G.,, and T. J. Beveridge. 1986. Physicochemical roles of soluble metal cations in the outer membrane of Escherichia coli K-12. Can. J. Microbiol 32:594601.
52. Ferris, F. G.,, T. J. Beveridge,, and W. S. Fyfe. 1986. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature 320:609611.
53. Ferris, F. G.,, C. M. Fratton,, J. P. Gerits,, S. Schultze-Lam,, and B. Sherwood-Lollar. 1995. Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiol. J. 13:5767.
54. Ferris, F. G.,, W. S. Fyfe,, and T. J. Beveridge. 1987. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem. Geol 63:225232.
55. Ferris, F. G.,, W. S. Fyfe,, and T. J. Beveridge. 1988. Metallic ion activity by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16:149152.
56. Ferris, F. G.,, W. S. Fyfe,, T. Whitten,, S. Schultze,, and T. J. Beveridge. 1989. Effect of mineral substrate hardness on the population density of epilithic microorganisms in two Ontario rivers. Can. J. Microbiol. 35:744747.
57. Ferris, F. G.,, S. Schultze,, T. C. Witten,, W. S. Fyfe,, and T. J. Beveridge. 1989. Metal interaction with microbial biofilms in acidic and neutral pH environments. Appl. Environ. Microbiol 55:12491257.
58. Ferris, F. G.,, K. Tazaki,, and W. S. Fyfe. 1989. Iron oxides in acid mine drainage environments and their association with bacteria. Chem. Geol. 74:321330.
59. Ferris, F. G.,, J. B. Thompson,, and T. J. Beveridge. 1997. Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaios 12:213219.
60. Ferris, F. G.,, R. G. Wiese,, and W. S. Fyfe. 1994. Precipitation of carbonate minerals by microorganisms: Implications for silicate weathering and the global carbon dioxide budget. Geomicrobiol. J. 12:113.
61. Firtel, M.,, G. Southam,, T. J. Beveridge,, M. H. Jericho,, B. L. Blackford,, P. J. Mulhern,, and W. Xu,. 1992. Investigation of lattice surface layers by scanning probe microscopy, p. 243256. In T. J. Beveridge, and S. F. Koval (ed.), Advances in Bacterial Paracrystalline Surface Layers. Plenum Publishing Corp., New York, N.Y.
62. Flemming, C. A.,, F. G. Ferris,, T. J. Beveridge,, and G. W. Bailey. 1990. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microbiol 56:31913203.
63. Fortin, D.,, and T. J. Beveridge. 1997. Microbial sulfate reduction within sulfidic mine tailings: formation of diagenetic Fe-sulfides. Geomicrobiol. J. 14:121.
64. Fortin, D.,, and T. J. Beveridge. 1997. Role of the bacterium, Thiobacillus, in the formation of silicates in acidic mine tailings. Chem. Geol. 141:235250.
65. Fortin, D.,, B. Davis,, and T. J. Beveridge. 1996. Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol. Ecol 21:1124.
66. Fortin, D.,, B. Davis,, G. Southam,, and T. J. Beveridge. 1995. Biogeochemical phenomena induced by bacteria within sulfidic mine tailings. J. Ind. Microbiol. 14:178185.
67. Fortin, D.,, G. Southam,, and T. J. Beveridge. 1994. An examination of iron sulfide, iron-nickel sulfide and nickel sulfide precipitation by a Desulfotomaculum species: and its nickel resistance mechanisms. FEMS Microbiol. Ecol. 14:121132.
68. Fortin, D.,, A. Tessier,, and G. C. Leppard. 1993. Characteristics of lacustrine iron oxyhydroxides. Geochim. Cosmochim. Acta 57:43914404.
69. Fukui, M.,, and S. Takii. 1990. Colony formation of free-living and particle-associated sulfatereducing bacteria. FEMS Microbiol. Ecol. 73:8590.
70. Geesey, G. G.,, P. J. Bremer,, J. J. Smith,, M. Muegge,, and L. K. Jang. 1992. Two-phase model for describing the interactions between copper ions and exopolymers from Alteromonas atlantica. Can. J. Microbiol. 38:785793.
71. Gorby, Y. A.,, and D. A. Lovley. 1992. Enzymatic uranium precipitation. Environ. Sci. Technol. 26:205207.
72. Graham, L. L.,, and T. J. Beveridge. 1990. Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J. Bacteriol. 172: 21412149.
73. Gyure, R. A.,, A. Konopka,, A. Brooks,, and W. Doemel. 1990. Microbial sulfate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiol. Ecol. 73:193202.
74. Hammack, R. W.,, and H. W. Edenborn. 1992. The removal of nickel from mine waters using bacterial sulphate reduction. Appl. Microbiol. Biotechnol. 37:674678.
75. Hammer, D. A., 1990. Constructed wetlands for acid water treatment—an overview of emerging technology, p. 381394. In J. W. Gadsby,, J. A. Malik,, and S. J. Dau (ed.), Acid Mine Drainage Designing for Closure. BiTech Publications Ltd., Vancouver, Canada.
76. Henrot, J.,, and R. K. Wieder. 1990. Processes of iron and manganese retention in laboratory peat microcosms subjected to acid mine drainage. J. Environ. Qual. 19:312320.
77. Herlihy, A. T.,, and A. L. Mills. 1985. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl. Environ. Microbiol. 49:179186.
78. Higham, D. P.,, and P. J. Sadler. 1984. Cadmium-resistant Pseudomonas putida synthesizes novel cadmium proteins. Science 225:10431046.
79. Hinman, N. W.,, and R. F. Lindstrom. 1996. Seasonal changes in silica deposition in hot spring systems. Chem. Geol. 132:237246.
80. Hobot, J. A.,, E. Carlemam,, W. Villiger,, and E. Kellenberger. 1984. The periplasmic gel: a new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J. Bacteriol. 160:143152.
81. Holm, N. G. 1987. Biogenic influences on the geochemistry of certain ferruginous sediments of hydrothermal origin. Chem. Geol. 63:4557.
82. Hovmoller, S.,, A. Sjogren,, and D. N. Wang. 1988. The structure of crystalline bacterial surface layers. Prog. Biophys. Mol. Biol. 51:131163.
83. Howarth, R. W. 1979. Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203:4951.
84. Hoyle, B.,, and T. J. Beveridge. 1983. Binding of metallic ions to the outer membrane of Escherichia coli. Appl. Environ. Microbiol. 46:749752.
85. Hoyle, B.,, and T. J. Beveridge. 1984. Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can. J. Microbiol. 30:204211.
86. Hutchins, S. R.,, M. S. Davidson,, J. A. Brierly,, and C. L. Brierly. 1986. Microorganisms in reclamation of metals. Annu. Rev. Microbiol. 40:311336.
87. Ishibashi, Y.,, C. Cervantes,, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56:22682270.
88. Ivarson, K. C.,, and M. Sojak. 1978. Microorganisms and ochre deposits in field drains of Ontario. Can. J. Soil Sci. 58:117.
89. Jones, B.,, and R. W. Renaut. 1996. Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90°C: evidence from Kenya and New Zealand. Can. J. Earth Sci. 33:7283.
90. Kandler, O. 1982. Cell wall structures and their phylogenetic implications. Zentbl. Bakteriol. Mikrobiol. Hyg. I Abt. Orig. C 3:149160.
91. Kandler, O.,, and H. Konig. 1978. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118:141152.
92. Kandler, O.,, and H. Konig,. 1985. Cell envelopes of archaebacteria, p. 413457. In C. R. Woese, and R. S. Wolfe (ed.), The Bacteria, vol. 8. Academic Press, Inc., New York, N.Y.
93. Kidambi, S. P.,, G. W. Sundin,, D. A. Palmer,, A. M. Chakrabarty,, and C. L. Bender. 1995. Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 61:21722179.
94. Kim, B.-K.,, T. D. Pihl,, J. N. Reeve,, and L. Daniels. 1995. Purification of the copper response extracellular proteins secreted by the copper-resistant methanogen Methanobacterium bryantii BKYH and cloning, sequencing, and transcription of the gene encoding these proteins. J. Bacteriol. 177:71787185.
95. Kobluk, D. R.,, and D. R. Crawford. 1990. A modern hypersaline organic mud- and gypsum-dominated basin and associated microbialites. Palaios 5:134148.
96. Koch, A. L. 1996. What size should a bacterium be? A question of scale. Annu. Rev. Microbiol. 50:317348.
97. Konhauser, K. 1998. Diversity of bacterial iron mineralization. Earth Sci. Rev. 43:91121.
98. Konhauser, K.,, and F. G. Ferris. 1996. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24: 323326.
99. Konhauser, K. O.,, W. S. Fyfe,, F. G. Ferris,, and T. J. Beveridge. 1993. Metal sorption and mineral precipitation by bacteria in two Amazonian river systems: Rio Solimoes and Rio Negro, Brazil. Geology 21:11031106.
100. Konhauser, K. O.,, S. Schultze-Lam,, F. G. Ferris,, W. S. Fyfe,, F. J. Longstaffe,, and T. J. Beveridge. 1994. Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Appl. Environ. Microbiol. 60:549553
101. Konig, H. 1988. Archaebacterial cell envelopes. Can. J. Microbiol. 34:395406.
102. Konig, H.,, and K. O. Stetter. 1986. Studies on archaebacterial S-layers. Syst. Appl. Microbiol. 7:300309.
103. Koval, S. F. 1988. Paracrystalline surface arrays on bacteria. Can. J. Microbiol. 34:407414.
104. Koval, S. F.,, and R. G. E. Murray. 1986. The superficial protein arrays on bacteria. Microbiol. Sci. 3:357361.
105. Lam, J. S.,, L. L. Graham,, J. Lightfoot,, T. Dasgupta,, and T. J. Beveridge. 1992. Ultrastructural examination of lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic mutants by freeze-substitution. J. Bacteriol. 174:71597167.
106. Lovley, D. R.,, and F. H. Chapelle. 1995. Deep subsurface microbial processes. Rev. Geophys. 33:365381.
107. Lovley, D. R.,, and M. J. Klug. 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45:187192.
108. Lovley, D. R.,, and E. J. P. Phillips. 1986. Organic matter mineralization with the reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51:683689.
109. Lovley, D. R.,, and E. J. P. Philips. 1987. Competitive mechanisms for inhibitions of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53:26362641.
110. Lovley, D. R.,, and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:14721480.
111. Lovley, D. R.,, and E. J. P. Phillips. 1994. Reduction of chromate by Desulfovibrio vulgaris and its c3cytochrome. Appl. Environ. Microbiol. 60:726728.
112. Loviey, D. R.,, E. J. P. Phillips,, Y. A. Gorby,, and E. R. Landa. 1991. Microbial reduction of uranium. Nature 350:413416.
113. Lowenstam, H. A. 1981. Minerals formed by organisms. Nature 211:11261131.
114. Macaskie, L. E.,, A. C. R. Dean,, A. K. Cheetham,, R. J. B. Jakeman,, and A. J. Skarnulis. 1987. Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. Gen. Microbiol 133:539544.
115. Mann, S. 1988. Molecular recognition in biomineralization. Nature 332:119124.
116. Marquis, R. E.,, K. Mayzel,, and E. L. Carstensen. 1976. Cation exchange in cell walls of gram-positive bacteria. Can. J. Microbiol 22:975982.
117. Maree, J. P.,, and W. F. Strydom. 1987. Biological sulphide removal from industrial effluent in an upflow packed bed reactor. Water Resour. Res. 19:141146.
118. Mayers, I. T.,, and T. J. Beveridge. 1989. The sorption of metals to Bacillus subtilis walls from dilute solutions and simulated Hamilton Harbour (Lake Ontario) water. Can. J. Microbiol. 35:764770.
119. McLean, R. J. C.,, D. Beauchemin,, L. Clapham,, and T. J. Beveridge. 1990. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus lichenifonnis ATCC 9945. Appl. Environ. Microbiol. 56:36713677.
120. Mittelman, M. W.,, and G. G. Geesey. 1985. Copper-binding characteristics of exopolymers from a freshwater sediment bacterium. Appl Environ. Microbiol. 49:846851.
121. Mohagheghi, A.,, D. M. Updegraff,, and M. B. Goldhaber. 1985. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiol. J. 4:153173.
122. Mullen, M. D.,, D. C. Wolf,, F. G. Ferris,, T. J. Beveridge,, C. A. Flemming,, and G. W. Bailey. 1989. Bacterial sorption of heavy metals. Appl. Environ. Microbiol 55:31433149.
123. Myers, C. P.,, and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:13191321.
124. Nealson, K. H.,, and C. R. Myers. 1992. Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl. Environ. Microbiol 58:439443.
125. Nealson, K. H.,, and D. A. Stahl. 1997. Microorganisms and biogeochemical cycles: what can we learn from layered microbial communities? Rev. Miner. 35:534.
126. Nies, D. H. 1992. Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27:1728.
127. Nies, D. H.,, and S. Silver. 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophicus. J. Bacteriol. 171:896900.
128. O'Brien, G. W.,, J. R. Harris,, A. R. Milnes,, and H. H. Veeh. 1981. Bacterial origin of East Australian continental margin phosphorites. Nature 294:442444.
129. Oremland, R. S.,, J. T. Hollibaugh,, A. S. Maest,, T. S. Presser,, L. S. Miller,, and C. W. Culbertson. 1989. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulfate-independent respiration. Appl. Environ. Microbiol 55:23332343.
130. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734740.
131. Pedersen, K.,, and S. Ekendahl. 1990. Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb. Ecol 20:3752.
132. Pentecost, A.,, and J. Bauld. 1988. Nucleation of calcite on the sheaths of cyanobacteia using a simple diffusion cell. Geomicrobiol. J. 6:129135.
133. Pflug, H. D.,, and H. Jaeschke-Boyer. 1979. Combined structural and chemical analysis of 3,800- Myr-old microfossils. Nature 280:483486.
134. Pirie, N. W. 1973. On being the right size. Annu. Rev. Microbiol. 27:119131.
135. Purcell, E. 1977. Life at low Reynold's number. Am. J. Phys. 45:311.
136. Ramsay, B.,, J. Ramsay,, M. deTremblay,, and C. Chavarie. 1988. A method for the quantification of bacterial protein in the presence of jarosite. Geomicrobiol J. 6:171177.
137. Remacle, J.,, and C. Vercheval. 1991. A zinc-binding protein in a metal-resistant strain, Alcaligenes eutrophus CH34. Can. J. Microbiol 37:875877.
138. Revsbech, N. P.,, and B. B. Jorgensen. 1986. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9:293353.
139. Rickard, D. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the rate equation. Geochim. Cosmochim. Acta 61:115134.
140. Rickard, D.,, and G. W. Luther III. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the mechanism. Geochim. Cosmochim. Acta 61:135147.
141. Roden, E. E.,, and D. R. Lovley. 1993. Dissimilatory Fe(III)-reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol 59:734742.
142. Rodgers, S. R.,, and J. J. Anderson. 1976. Measurement of growth and iron deposition in Sphaerotilus discophorus. J. Bacteriol 126:257263.
143. Rodgers, S. R.,, and J. J. Anderson. 1976. Role of iron deposition in Sphaerotilus discophorus. J. Bacteriol 126:264271.
144. Sakamoto, K.,, M. Yagasaki,, K. Kirimura,, and S. Usami. 1989. Resistance acquisition of Thiobacillus thiooxidans upon cadmium and zinc ion addition and formation of ion-binding and zinc ion-binding proteins exhibiting metallothionein-like properties. J. Ferment. Bioeng. 67:266273.
145. Schidlowski, M.,, J. M. Hayes,, and I. R. Kaplan,. 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen, p. 149186. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton University Press, Princeton, N.J.
146. Schmidt, T.,, and H. G. Schlegel. 1989. Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol. Ecol 62:315328.
147. Schmidt, T.,, R.-D. Stoppel,, and H. G. Schlegel. 1991. High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophicus KT02. Appl. Environ. Microbiol 57:33013309.
148. Schopf, J. W.,, and M. R. Walter,. 1983. Archaean microfossils: new evidence of ancient microbes, p. 214239. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton University Press, Princeton. N.J.
149. Schultze-Lam, S.,, and T. J. Beveridge. 1994. Nucleation of celestite and strontianite on a cyanobacterial S-layer. Appl. Environ. Microbiol. 60:447453.
150. Schultze-Lam, S.,, F. G. Ferris,, K. O. Konhauser,, and R. G. Wiese. 1995. In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can. J. Earth Sci. 32:20212026.
151. Schultze-Lam, S.,, G. Harauz,, and T. J. Beveridge. 1992. Participation of a cyanobacterial Slayer in fine-grain mineral formation. J. Bacteriol. 174:79717981.
152. Sensfuss, C.,, and H. G. Schlegel. 1988. Plamid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol Lett. 55:295298.
153. Silver, S.,, and M. Walderhaus. 1992. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56:195228.
154. Sleytr, U. B.,, and P. Messner. 1983. Crystalline surface layers on bacteria. Annu. Rev. Microbiol 37:311339.
155. Sleytr, U. B.,, and P. Messner. 1988. Crystalline surface layers in procaryotes. J. Bacteriol 170:28912897.
156. Soudry, D.,, and Y. Champtier. 1983. Microbial processes in Negev phosphorites (southern Israel). Sedimentology 30:411423.
157. Southam, G.,, and T. J. Beveridge. 1992. Enumeration of thiobacilli with pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl. Environ. Microbiol. 58:19041912.
158. Southam, G.,, and T. J. Beveridge. 1993. Examination of lipopolysaccharide (O-antigen) populations of Thiobacillus ferrooxidans from two mine tailings. Appl. Environ. Microbiol. 59:12831288.
159. Southam, G.,, F. G. Ferris,, and T. J. Beveridge,. 1995. Mineralized bacterial biofilms in sulfide tailings and in acid mine drainage systems, p. 148170. In H. M. Lappin-Scott, and J. W. Costerton (ed.), Microbial Biofilms. Cambridge University Press, Cambridge, United Kingdom.
160. Southam, G.,, G. D. Sprott,, and T. J. Beveridge,. 1992. Paracrystalline layers of Methanospirillum hungatei. p. 129142. In T. J. Beveridge, and S. F. Koval (ed.), Advances in Bacterial Paracrystalline Surface Layers. Plenum Publishing Corp., New York, N.Y.
161. Stetter, K. O.,, G. Fiala,, G. Huber,, R. Huber,, and A. Segerer. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75:117124.
162. Stevens, T. O.,, J. P McKinley,, and J. K. Fredrickson. 1993. Bacteria associated with deep, alkaline, anaerobic groundwaters in southeast Washington. Microb. Ecol. 25:3550.
163. Stoppel, R.-D.,, and H. G. Schlegel. 1995. Nickel-resistant bacteria from anthropogenically nickelpolluted and naturally nickel-percolated ecosystems. Appl. Environ. Microbiol. 61:22762285.
164. Tazaki, K.,, F. G. Ferris,, R. G. Wiese,, and W. S. Fyfe. 1992. Iron and graphite associated with fossil bacteria in chert. Chem. Geol. 95:313325.
165. Thompson, J. B.,, and F. G. Ferris. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995998.
166. Thompson, J. B.,, F. G. Ferris,, and D. A. Smith. 1990. Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. Palaios 5:5275.
167. Thompson, J. B.,, S. Schultze-Lam,, T. J. Beveridge,, and D. J. Des Marais. 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol. Oceanogr. 42:133141.
168. Thompson-Eagle, E. T.,, W. T. FrankenburgerJr.,, and U. Karlson. 1989. Volatilization of selenium by Alternaria alternata. Appl. Environ. Microbiol. 55:14061413.
169. Timperley, M. H.,, and R. J. Allan. 1974. The formation and detection of metal dispersion halos in organic lake sediments. J. Geochem. Explor. 3:167190.
170. Trafford, B. D.,, C. Bloomfield,, W. I. Kelso,, and G. Pruden. 1973. Ochre formation in field drains in pyritic soils. J. Soil Sci. 24:453460.
171. Trudinger, P. A.,, L. A. Chambers,, and J. W. Smith. 1985. Low-temperature sulphate reduction: biological versus abiological. Can. J. Earth Sci. 22:19101918.Inc.
172. Turtle, J. H.,, P. R. Dugan,, C. B. MacMillan,, and C. I. Randies. 1968. Microbial dissimilatory sulfur cycle in acid mine water. J. Bacteriol. 100:594602.
173. Turtle, J. H.,, C. B. Dugan,, and C. I. Randies. 1969. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl. Microbiol. 17:297302.
174. Urrutia, M.,, and T. J. Beveridge. 1993. Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. J. Bacteriol. 175:19361945.
175. Urrutia, M. M.,, and T. J. Beveridge. 1993. Remobilization of heavy metals retained as oxyhydroxides or silicates by Bacillus subtilis cells. Appl. Environ. Microbiol. 59:43234329.
176. Urrutia, M. M.,, and T. J. Beveridge. 1994. Formation of fine-grained silicate minerals and metal precipitates by a bacterial surface (Bacillus subtilis) and the implications in the global cycling of silicon. Chem. Geol. 116:261280.
177. Urrutia, M.,, M. Kemper,, R. Doyle,, and T. J. Beveridge. 1992. The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Appl. Environ. Microbiol. 58:38373844.
178. Vasconcelos, C.,, J. A. McKenzie,, S. Bernasconi,, D. Grujic,, and A. J. Tien. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220222.
179. Walker, S. G.,, C. A. Flemming,, F. G. Ferris,, T. J. Beveridge,, and G. W. Bailey. 1989. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl. Environ. Microbiol. 55:29762984.
180. Walter, M. R., 1983. Archean stromatolites: evidence of Earth's earliest benthos, p. 187213. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton University Press, Princeton, N.J.
181. Wilkin, R. T.,, and H. L. Barnes. 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta 60:41674179
182. Wilkin, R. T.,, and H. L. Barnes. 1997. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 61:323339.
183. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
184. Woese, C. R.,, and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:50885090.
185. Youssef, M. I. 1965. Genesis of bedded phosphates. Econ. Geol. 60:590600.

Tables

Generic image for table
Table 1

Secondary minerals known to form on microbial cell surfaces via passive interaction or as a consequence of microbial metabolism

Citation: Southam G. 2000. Bacterial Surface-Mediated Mineral Formation, p 257-276. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error