Chapter 13 : Bioremediation of Radionuclide-Containing Wastewaters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bioremediation of Radionuclide-Containing Wastewaters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap13-2.gif


This chapter highlights the key steps in the nuclear fuel cycle where biological treatment strategies may replace or augment existing chemical processes. Radionuclide-containing wastes are produced at all steps in the nuclear fuel cycle. The mechanisms of microbial interactions with key radionuclides in the wastes are discussed alongside the possible antagonistic effects of other organic and inorganic species copresented in solution. Although emphasis is placed on the development of "end-of-pipe" treatments, the application of biological agents in the detoxification of already polluted ecosystems via in situ bioremediation is also highlighted. Microorganisms can interact with radionuclides via several mechanisms, some of which may be used as the basis of potential bioremediation strategies. The major types of interaction are summarized in this chapter. Technical challenges associated with large-scale clean-up of highly complex wastes must be overcome prior to the full commercial realization of the technologies currently under consideration. The chapter summarizes the major technical challenges. Since biosorption of uranium has been covered extensively in the literature and since biosorbents relate in general to structural, not metabolic, aspects of the biomass, this chapter notes only a few recent developments. To implement biotechnology to treat large areas contaminated with historic waste, the challenges are to gain a better understanding of microbial communities at site and devise effective methods of stimulating or augmenting microbial activities required in situ.

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13

Key Concept Ranking

Alkaline Earth Metals
Fourier Transform Infrared Spectroscopy
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The nuclear fuel cycle.

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanisms of radionuclide-microbe interactions.

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abdelouas, A.,, Y. L. Lu,, W. Lutze,, and H. E. Nuttall. 1998. Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water. J. Contam. Hydrol 35:217233.
2. Anderson, S.,, and V. D. Apanna. 1994. Microbial formation of crystalline strontium carbonate. FEMS Microbiol. Lett. 116:4248.
3. Andres, Y.,, H. J. MacCordick,, and J.-C. Hubert. 1993. Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Appl. Microbiol Biotechnol. 39: 413417.
4. Andres, Y.,, H. J. MacCordick,, and J. C. Hubert. 1994. Binding sites of sorbed uranyl ion in the cell wall of Mycobacterium smegmatis. FEMS Microbiol Lett. 115:2732.
5. Andres, Y.,, H. J. MacCordick,, and J. C. Hubert. 1995. Selective biosorption of thorium ions by an immobilized mycobacterial biomass. Appl. Microbiol. Biotechnol. 44:271276.
6. Appanna, V. D.,, L. G. Gazso,, J. Huang,, and M. St. Pierre. 1996. A microbial model for ceasium containment. Microbios 86:121126.
7. Ashley, N. V.,, and D. J. W. Roach. 1990. Review of biotechnology applications to nuclear waste treatment. J. Chem. Technol. Biotechnol. 4 9:381394.
8. Avery, S. A.,, and J. M. Tobin. 1992. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58:38833889.
9. Avery, S. V. 1995. Microbial interactions with caesium—implications for biotechnology. J. Chem. Technol. Biotechnol. 62:316.
10. Avery, S. V.,, G. A. Codd,, and G. M. Gadd. 1991. Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. J. Gen. Microbiol. 137: 405413.
11. Avery, S. V.,, G. A. Codd,, and G. M. Gadd. 1992. Caesium transport in the cyanobacterium Anabaena variabilis kinetics and evidence for uptake via ammonium transport system(s). FEMS Microbiol. Lett. 95:253258.
12. Avery, S. V.,, G. A. Codd,, and G. M. Gadd. 1993. Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalga Chlorella salina. J. Gen. Microbiol. 139:827834.
13. Bailar, J. C.,, H. J. Emelium,, R. Nyholm,, and A. F. Trotman-Dickenson. 1973. The Actinides, vol. 5. Pergamon Press, Oxford, United Kingdom.
14. Barnes, L. J.,, F. J. Janssen,, J. Sherren,, J. H. Versteegh,, R. O. Koch,, and P. J. H. Scheeren. 1991. A new process for the microbial removal of sulphate and heavy metal from contaminated waters extracted by a geohydrological control system. Chem. Eng. Res. Des. 69A:184186.
15. Barnhart, B. J.,, E. W. Campbell,, E. Martinez,, D. E. Caldwell,, and R. Hallett. 1980. Potential Microbial Impact on Transuranic Wastes under Conditions Expected in the Waste Isolation Pilot Plant (WIPP). Document LA-8297-PR. Los Alamos National Laboratory, Los Alamos, N.Mex.
16. Basnakova, G.,, and L. E. Macaskie. 1999. Accumulation of zirconium and nickel by Citrobacter sp. J. Chem. Technol. Biotechnol. 74:509514.
17. Basnakova, G.,, and L. E. Macaskie. 1998. Microbially-enhanced chemisorption of heavy metals: a method for the bioremediation of solutions containing long-lived isotopes of neptunium and plutonium. Environ. Sci. Technol. 32:184187.
18. Basnakova, G.,, and L. E. Macaskie. 1997. Microbially-enhanced chemisorption of nickel into biologically-synthesized hydrogen uranyl phosphatea novel system for the removal and recovery of metals from aqueous solution. Biotechnol. Bioeng. 54:319328.
19. Basnakova, G.,, A. J. Spencer,, E. Palsgard,, G. W. Grime,, and L. E. Macaskie. 1998. Identification of the nickel uranyl phosphate deposit on Citrobacter sp. cells by electron microscopy with electron probe X-ray microanalysis (EPXMA) and by proton induced X-ray emission analysis (PIXE). Environ. Sci. Technol 32:760765.
20. Basnakova, G.,, E. Stephens,, M. C. Thaller,, G. M. Rossolini,, and L. E. Macaskie. 1998. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl. Microbiol. Biotechnol. 50:266272.
21. Battista, J. R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51:203204.
22. Belly, R. T.,, J. J. Lauff,, and C. T. Goodhue. 1975. Degradation of ethylenediaminetetraacetic acid by microbial populations from an aerated lagoon. Appl. Microbiol. 29:787794.
23. Bengtsson, L.,, B. Johansson,, T. J. Hackett,, L. McHale,, and A. P. McHale. 1995. Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Appl. Microbiol. Biotechnol. 42:807811.
24. Beveridge, T. J.,, M. N. Hughes,, H. Lee,, K. T. Leung,, R. K. Poole,, I. Savvaidis,, S. Silver,, and J. T. Trevors. 1997. Metal-microbe interactions: contemporary approaches. Adv. Microb. Physiol. 38:177243.
25. Binks, P. R. 1996. Radioresistant bacteria: have they got industrial uses? J. Chem. Technol. Biotechnol. 67:319322.
26. Blount, J. G. 1998. Physicochemical and biogeochemical stabilization of uranium in a low level radioactive waste disposal cell. Environ. Eng. Geosci. 4:491502.
27. Boegley, W. J. J.,, and H. J. Alexander. 1986. Radioactive wastes. J. Water Pollut. Control Fed. 58:594600.
28. Bolton, H. J.,, S. W. Li,, D. J. Workman,, and D. C. Girvin. 1993. Biodegradation of synthetic chelates in subsurface sediments from the southeastern coastal plain. J. Environ. Qual. 22:125132.
29. Bonthrone, K. M.,, G. Basnakova,, F. Lin,, and L. E. Macaskie. 1996. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Nat. Biotechnol. 14:635638.
30. Borst-Pauwels, G. W. F. H. 1981. Ion transport in yeast. Biochim. Biophys. Acta 650:88127.
31. Bosecker, K. 1997. Bioleaching: metal solubilisation by microorganisms. FEMS Microbiol. Rev. 20:591604.
32. Bossemeyer, D.,, A. Schlosser,, and E. Bakker. 1989. Specific cesium transport via the Escherichia coli Kup (TrkD) K+ uptake system. J. Bacteriol. 171:22192221.
33. Brady, D.,, A. Stoll,, and J. R. Buncan. 1994. Biosorption of heavy metal cations by non-viable yeast biomass. Environ. Technol. 15:429439.
34. Brierley, C. L.,, and J. Brierley. 1981. Biological Processes for Concentrating Trace Elements from Uranium Mine Wastes. Technical Completion Report 140. New Mexico Water Resources Research Institute, Las Cruces.
35. Brierley, I. A.,, G. M. Goyak,, and C. L. Brierley,. 1986. Considerations for commercial use of natural products for metal recovery, p. 105120. In H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by BioSorption. Ellis Horwood, Chichester, United Kingdom.
36. Bryers, J. D.,, and S. Sanin. 1994. Resuscitation of starved ultramicrobacteria to improve in-situ bioremediation. Ann. N.Y. Acad. Sci. 745:6176.
37. Brynhildsen, L.,, and B. Allard. 1994. Influence of metal complexation on the metabolism of citrate by Klebsiella oxytoca. Biometals 7:163169.
38. Brynhildsen, L.,, and T. Rosswall. 1989. Effects of copper, magnesium and zinc on the decomposition of citrate by a Klebsiella sp. Appl. Environ. Microbiol. 55:13751379.
39. Burnett, W. C.,, J. B. Cowart,, and P. A. Chin,. 1987. Polonium in the superficial aquifer of West Central Florida, p. 251269. In B. Graves (ed.), Radon Radium and Other Radioactivity in Groundwater. Hydrogeologic Impact and Application to Indoor Airborne Contamination. Lewis Publishers, Boca Raton, Fla.
40. Bustard, M.,, A. Donnellan,, A. Rollan,, L. McHale,, and A. P. McHale. 1996. The effect of pulsed field strength on electric field stimulated biosorption of uranium by Kluyveromyces marxianus IMB 3. Biotechnol. Lett. 18:479482.
41. Caccavo, F.,, J. D. Coates,, R. A. Rossello-Mora,, W. Ludwig,, K. H. Schleifer,, D. R. Lovley,, and M. J. Mclnerney. 1996. Geobacter ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol. 165:370376.
42. Caccavo, F.Jr.,, D. J. Lonergan,, D. R. Lovley,, M. Davis,, J. F. Stolz,, and M. J. Mclnerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60:37523759.
43. Cataldo, D. A.,, T. R. Garland,, R. E. Wildung,, and R. J. Fellows. 1989. Comparative metabolic behaviour and interrelationships of Tc and S in soybean plants. Health Phys. 57:281288.
44. Cherrier, J.,, W. C. Burnett,, and P. A. LaRock. 1995. Uptake of polonium and sulfur by bacteria. Geomicrobiol. J. 13:103115.
45. Clearfield, A. 1988. Role of ion exchange in solid-state chemistry. Chem. Rev. 88:125148.
46. Cleveland, J. M.,, and T. F. Rees. 1981. Characterisation of plutonium in Maxey Flats radioactive trench leachates. Science 212:15061509.
47. Crameri, A.,, G. Dawes,, E. Rodriguez,, S. Silver,, and W. P. C. Stemmer. 1997. Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotechnol. 15:436438.
48. Cripps, R. E.,, and A. S. Noble. 1973. The metabolism of nitrilotriacetate by a pseudomonad. Biochem. J. 136:10591068.
49. Davis, W. J., 1984. Radiolytic behavior, p. 221265. In W. W. Schulz,, J. D. Navratil,, and A. E. Talbot (ed.), Science and Technology of Tributyl Phosphate. CRC Press Inc, Boca Raton, Fla.
50. Dehut, J. P.,, K. Fosny,, C. Myttenaere,, D. Deprins,, and C. M. Vandecasteele. 1989. Bioavailability of Tc incorporated in plant material. Health Phys. 57:263267.
51. Delegard, C. H. 1987. Solubility of Pu02 in alkaline high-level waste solution. Radiochim. Acta 41:1121.
52. Derks, W. J. G.,, and G. W. F. H. Borst-Pauwels. 1979. Apparent three-site kinetics of Cs+-uptake by yeast. Physiol. Plant. 46:241246.
53. deRome, L.,, and G. M. Gadd. 1991. Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. J. Ind. Microbiol. 7:97104.
54. Dhami, P. S.,, V. Gopalakrishnan,, R. Kannan,, A. Ramanujam,, N. Salvi,, and S. I. Udupa. 1998. Biosorption of radionuclides by Rhizopus arrhizus. Biotechnol. Lett. 20:225228.
55. Diels, L.,, Q. Dong,, D. van der Lelie,, W. Baeyens,, and M. Mergeay. 1995. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14:142153.
56. Dodge, C. J.,, and A. J. Francis. 1994. Photodegradation of uranium citrate complex with uranium recovery. Environ. Sci. Technol. 28:13001306.
57. Dorhout, P. K.,, R. J. Kissane,, K. D. Abney,, L. R. Avens,, P. G. Eller,, and A. B. Ellis. 1989. Intercalation reactions of the neptunyl (VI) dication with hydrogen uranyl phosphate and hydrogen neptunyl host lattices. Inorg. Chem. 28:29262930.
58. Dwivedy, K. K.,, and A. K. Mathur. 1995. Bioleaching—our experience. Hydrometallurgv 38:99109.
59. Eccles, H., 1999. Nuclear waste managementa bioremediation approach, p. 187208. In G. R. Choppin, and M. K. Khankhasayev (ed.), Chemical Separation Technologies and Related Methods of Nuclear Waste Management. Kluwer Academic Publishers, Dordrecht, The Netherlands.
60. Eccles, H. 1995. Removal of heavy metals from effluent streams—why select a biological process? Intl. Biodeterior. Biodegrad. 35:516.
61. Ehrlich, H. L. 1996. Geomicrobiology, 3rd ed. Marcel Dekker, Inc, New York, N.Y.
62. Ellwood, D. C.,, M. J. Hill,, and J. H. P. Watson,. 1992. Pollution control using microorganisms and metal separation, p. 89–;112. In J.-C. Fry,, G. M. Gadd,, R. A. Herbert,, C. W. Jones,, and I. A. Watson-Craik (ed.), 46th Symposium of the Society for General Microbiology. Microbial Control of Pollution. Cambridge University Press, Cambridge, United Kingdom.
63. Entry, J. A.,, P. T. Rygiewicz,, and W. H. Emmingham. 1994. Sr-90 uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environ. Pollut. 86:201206.
64. Ferris, F. G.,, C. M. Fratton,, J. P. Gertis,, S. Schultzelam,, and B. S. Lollar. 1995. Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiol. J. 13:5767.
65. Fisher, N. S.,, P. Bjerregaard,, L. Huynh-Ngoc,, and G. R. Harvey. 1983. Interactions of marine plankton with transuranic elements. Influence of dissolved organic compounds on americium and plutonium accumulation in diatoms. Mar. Chem. 13:4556.
66. Fortin, D.,, D. Davis,, and T. J. Beveridge. 1996. The role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol. Ecol. 21:1124.
67. Francis, A. J. 1994. Microbial transformations of radioactive wastes and environmental restoration through bioremediation. J. Alloys Compounds 213/214:226231.
68. Francis, A. J.,, and C. J. Dodge. 1998. Remediation of soils and wastes contaminated with uranium and toxic metals. Environ. Sci. Technol. 32:39933998.
69. Francis, A. J.,, and C. J. Dodge. March 1994. U.S. patent 5,292,456.
70. Francis, A. J.,, C. J. Dodge,, J. B. Gillow,, and J. E. Cline. 1991. Microbial transformations of uranium in wastes. Radiochim. Acta 52/53:311316.
71. Francis, A. J.,, C. J. Dodge,, F. Lu,, G. P. Halada,, and C. R. Clayton. 1994. XPS and XANES studies of uranium reduction by Clostridium sp. Environ. Sci. Technol. 28:636639.
72. FraustodaSilva, J. J. R.,, and R. J. P. Williams. 1993. The Biological Chemistry of the Elements. Clarendon Press, Oxford, United Kingdom.
73. Friedman, B. A.,, and P. R. Dugan. 1968. Concentration and accumulation of metallic ions by the bacterium Zoogloea. Dev. Ind. Microbiol. 9:381395.
74. Friis, N.,, and P. Myers-Keith. 1986. Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng. 28:2128.
75. Gadd, G. M. 1996. Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20:150156.
76. Gadd, G. M. 1997. Roles of microorganisms in the environmental fate of radionuclides. CIBA Found. Symp. 203:94104.
77. Gadd, G. M.,, and C. White,. 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, p. 1938. In R. K. Poole, and G. M. Gadd (ed.), Metal-Microbe Interactions. IRL Press, Oxford, United Kingdom.
78. Gadd, G. M.,, and C. White. 1989. Removal of thorium from simulated acid process streams by fungal biomass. Biotechnol. Bioeng. 33:592597.
79. Gale, G. R.,, and H. H. McLain. 1963. Effect of ethambutol on cytology of Mycobacterium smegmatis. J. Bacteriol. 86:749756.
80. Garnham, G. W.,, G. A. Codd,, and G. M. Gadd. 1993. Accumulation of zirconium by microalgae and cyanobacteria. Appl. Microbiol. Biotechnol. 39:666672.
81. Garnham, G. W.,, G. A. Codd,, and G. M. Gadd. 1992. Uptake of technetium by fresh water green microalgae. Appl. Microbiol. Biotechnol. 37:679684.
82. Ghosh, S.,, A. Sharma,, and G. Talukder. 1992. Zirconium, an abnormal trace element in biology. Biol. Trace Element Res. 35:247271.
83. Gibson, J. F.,, R. K. Poole,, M. N. Hughes,, and J. R. Rees. 1986. Ruthenium nitrosyl complexes— toxicity to Escherichia coli and yeasts, and uptake by marine bacteria. Arch. Environ. Contam. Toxicol. 15:519523.
84. Giesy, J. P. J.,, and D. Paine. 1977. Uptake of americium-241 by algae and bacteria. Prog. Water Technol. 9:845857.
85. Gorby, Y. A.,, F. Caccavo,, and H. Bolton. 1998. Microbial reduction of cobaltIII, EDTA in the presence and absence of manganese(IV) oxide. Environ. Sci. Technol. 32:244250.
86. Gorby, Y. A.,, and D. R. Lovley. 1992. Enzymatic uranium precipitation. Environ. Sci. Technol. 26:205207.
87. Gray, K. R.,, and A. J. Biddlestone. 1995. Engineered reed-bed systems for waste-water treatment. Trends Biotechnol. 13:248252.
88. Gray, N. F. 1992. Biology of Wastewater Treatment. Oxford University Press, Oxford, United Kingdom.
89. Greene, B.,, M. T. Henzl,, J. M. Hosea,, and D. W. Darnall. 1986. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris. Biotechnol. Bioeng. 28:764772.
90. Guibal, E.,, C. Roulph,, and P. Le Cloirec. 1995. Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ. Sci. Technol. 29:24962503.
91. Guibal, E.,, C. Roulph,, and P. Le Cloirec. 1992. Uranium biosorption by a filamentous fungus Mucor miehei: pH effect on mechanisms and performances of uptake. Water Res. 26:11391145.
92. Hafez, N.,, A. S. Abdel-Razek,, and H. M. B. 1997. Accumulation of some heavy metals on Aspergillus flavus. J. Chem. Technol. Biotechnol. 68:1922.
93. Hard, B. C.,, S. Friedrich,, and W. Babel. 1997. Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol. Res. 152:6573.
94. Harvey, R. S.,, and R. Patrick. 1967. Concentration of 137Cs, 65Zn and 85Sr by freshwater algae. Biotechnol. Bioeng. 9:449456.
95. Henrot, J. 1989. Bioaccumulation and chemical modification of Tc by soil bacteria. Health Phys. 57:239245.
96. Higham, D. P.,, P. J. Sadler,, and M. D. Scawen. 1984. Cadmium-resistant Pseudomonas putida synthesizes novel cadmium binding proteins. Science 225:10431046.
97. Hu, M. Z. -C.,, and M. Reeves. 1997. Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix. Biotechnol. Prog. 13:6070.
98. Hughes, M. N.,, and R. K. Poole. 1989. Metals and Micro-Organisms. Chapman & Hall, London, United Kingdom.
99. Hunsberger, L. R.,, and A. B. Ellis. 1990. Excited-state properties of lamellar solids derived from metal complexes and hydrogen uranyl phosphate. Coord. Chem. Rev. 97:209224.
100. Jeffers, T. H.,, P. G. Bennett,, and R. R. Corwin. 1994. Biosorption of Metal Contaminents Using Immobilized Biomass-Field Studies. Document Rl 9461. U.S. Bureau of Mines, Salt Lake City, Utah.
101. Jeong, B. C.,, C. Hawes,, K. M. Bonthrone,, and L. E. Macaskie. 1997. Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal acumulation in vitro by liposomes containing entrapped enzyme. Microbiology 143:24972507.
102. Jeong, B. C.,, P. S. Poole,, A. J. Willis,, and L. E. Macaskie. 1998. Purification and characterization of acid-type phosphatases from a heavy metal-accumulating Citrobacter sp. Arch. Microbiol. 169: 166173.
103. Johnson, D. B. 1995. Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int. Biodeterior. Biodegrad. 35:4158.
104. Johnson, E. E.,, A. G. O'Donnell,, and P. Ineson. 1991. An autoradiographic technique for selecting Cs-137-sorbing microorganisms from soil. J. Microbiol. Methods 13:293298.
105. Joshitope, G.,, and A. J. Francis. 1995. Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescens. J. Bacteriol. 177:19891993.
106. Kapoor, A.,, and T. Viraraghavan. 1995. Fungal biosorption—an alternative treatment option for heavy metal bearing wastewatera review. Bioresource Technol. 53:185206.
107. Karavaiko, G. I.,, A. S. Kareva,, Z. A. Avakian,, V. I. Zakharova,, and A. A. Korenevsky. 1996. Biosorption of scandium and yttrium from solutions. Biotechnol. Lett. 18:12911296.
108. Katz, J. J.,, G. T. Seaborg,, and L. R. Morss. 1986. Chemistry of the Actinide Elements. Chapman & Hall, London, United Kingdom.
109. Khalid, A. M.,, S. R. Ashfaq,, T. M. Bhatti,, and M. A. Anwar,. 1993. The uptake of microbially leached uranium by microbial biomass, p. 299300. In A. E. Torma,, M. L. Apel,, and C. L. Brierley (ed.), Biohydrometallurgical Technologies, vol. 2. The Minerals, Metals and Materials Society, Warrendale, Pa.
110. Kirby, H. W. 1986. The Chemistry of the Actinide Elements. Chapman & Hall, London, United Kingdom.
111. Kotegov, K. V.,, O. N. Pavlov,, and V. P. Shvendov,. 1968. Technetium, p. 190. In H. J. Emelius, and A. G. Sharpe (ed.), Advances in Inorganic Chemistry and Radiochemistry. Academic Press, Inc., New York, N.Y.
112. Kuyucak, N.,, and B. Volesky. 1989. Accumulation of cobalt by marine algae. Biotechnol. Bioeng. 33:809814.
113. Landa, E. R.,, E. J. P. Phillips,, and D. R. Lovley. 1991. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction. Appl. Geochem. 6:647652.
114. Lange, C. C.,, L. P. Wackett,, K. W. Minton,, and M. J. Daly. 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16:929933.
115. LaRock, P.,, J.-H. Hyun,, S. Boutelle,, W. C. Burnett,, and C. D. Hull. 1996. Bacterial mobilization of polonium. Geochim. Cosmochim. Acta 60:4321328.
116. Lauff, J. J.,, D. B. Steel,, L. A. Coogan,, and J. M. Breitfeller. 1990. Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Appl. Environ. Microbiol. 56:33463353.
117. Lear, D. W.,, and C. H. Oppenheimer. 19. Biological removal of radioisotopes 90Sr and 90Y from seawater by marine microrganisms. Limnol. Oceeanogr. 7(Suppl.):4462.
118. Lieser, K. H.,, and A. Muhlenweg. 1988. Np in the hydrosphere and in the geosphere. Radiochim. Acta 43:2735.
119. Lloyd, J. R.,, J. A. Cole,, and L. E. Macaskie. 1997. Reduction and removal of heptavalent technetium from solution by Escherichia coli. J. Bacteriol. 179:20142021.
120. Lloyd, J. R.,, C. L. Harding,, and L. E. Macaskie. 1997. Tc(VII) reduction and precipitation by immobilized cells of Escherichia coli. Biotechnol. Bioeng. 55:505510.
121. Lloyd, J. R.,, and L. E. Macaskie. 1997. Microbially-mediated reduction and removal of technetium from solution. Res. Microbiol. 148:530532.
122. Lloyd, J. R.,, and L. E. Macaskie. 1996. A novel phosphorlmager based technique for monitoring the microbial reduction of technetium. Appl. Environ. Microbiol. 62:578582.
123. Lloyd, J. R.,, H.-F. Nolting,, V. A. Sole,, K. Bosecker,, and L. E. Macaskie. 1998. Technetium reduction and precipitation by sulphate-reducing bacteria. Geomicrobiol. J. 15:4356.
124. Lloyd, J. R.,, J. Ridley,, T. Khizniak,, N. N. Lyalikova,, and L. E. Macaskie. 1999. Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterisation and use in a flowthrough bioreactor. Appl. Environ. Microbiol. 65:26912696.
125. Lloyd, J. R.,, G. H. Thomas,, J. A. Finlay,, J. A. Cole,, and L. E. Macaskie. 1999. Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high activity strains and effect of process parameters. Biotechnol. Bioeng. 66:122130.
125a. Lloyd, J. R.,, P. Yong,, and L. E. Macaskie. Biological reduction and removal of Np(V) by two microorganisms. Environ. Sci. Technol., in press.
126. Loewenschuss, H. 1982. Metal-ferrocyanide complexes for the decontamination of cesium from aqueous radioactive waste. Radioact. Waste Manage. 2:327324.
127. Lonergan, D. J.,, H. Jenter,, J. D. Coates,, E. J. P. Phillips,, T. Schmidt,, and D. R. Lovley. 1996 Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178:24022408.
128. Lovley, D.,, and E. J. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58:850856.
129. Lovley, D. R. 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol. 14:8593.
130. Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47:263290.
131. Lovley, D. R.,, and J. D. Coates. 1997. Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8:285289.
132. Lovley, D. R.,, S. J. Giovannoni,, D. C. White,, J. E. Champine,, E. J. P. Phillips,, Y. A. Gorby,, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159:336344.
133. Lovley, D. R.,, and E. J. P. Phillips. 1992. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 26:22282234.
134. Lovley, D. R.,, E. J. P. Phillips,, Y. A. Gorby,, and E. Landa. 1991. Microbial reduction of uranium. Nature 350:413416.
135. Lovley, D. R.,, E. E. Roden,, E. J. P. Phillips,, and J. C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate reducing bacteria. Mar. Geol. 113:4153.
136. Lovley, D. R.,, P. K. Widman,, J. C. Woodward,, and E. J. P. Phillips. 1993. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl. Environ. Microbiol. 59:35723576.
137. Lyalikova, N. N.,, and T. V. Khizhnyak. 1996. Reduction of heptavalent technetium by acidophilic bacteria of the genus Thiobacillus. Microbiol. 65:468473.
138. Macaskie, L. E. 1991. The application of biotechnology to the treatment of wastes produced from nuclear fuel cycle biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit. Rev. Biotechnol. 11:41112.
139. Macaskie, L. E. 1997. Bioaccumulation of heavy metals and application to the remediation of acid mine drainage water containing uranium. Res. Microbiol. 148:528530.
140. Macaskie, L. E. 1990. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol. 49:357379.
141. Macaskie, L. E.,, and K. M. Bonthrone. 1996. Modelling of Genetic, Biochemical, Cellular and Microenvironmental Parameters Determining Bacterial Sorption and Mineralization Processes for Recuperation of Heavy or Precious Metals. Final report on EU contract BE 5350.
142. Macaskie, L. E.,, K. M. Bonthrone,, P. Yong,, and D. Goddard. Enzymatically-mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for extracellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology, in press.
143. Macaskie, L. E.,, and A. C. R. Dean. 1985. Strontium accumulation by immobilized cells of a Citrobacter sp. Biotechnol. Lett. 7:627630.
144. Macaskie, L. E.,, R. M. Empson,, A. K. Cheetham,, C. P. Grey,, and A. J. Skarnulis. 1992. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically-mediated growth of polycrystalline HUO2 PO4 . Science 257:782784.
145. Macaskie, L. E.,, R. M. Empson,, F. Lin,, and M. R. ToIIey. 1995. Enzymatically-mediated uranium accumulation and uranum recovery using a Citrobacter sp. immobilised as a biofilm within a plugflow reactor. J. Chem. Technol. Biotechnol. 63:116.
146. Macaskie, L. E.,, B. C. Jeong,, and M. R. Tolley. 1994. Enzymically-accelerated biomineralization of heavy metalsapplication to the removal of americium and plutonium from aqueous flows. FEMS Microbiol. Rev. 14:351368.
147. Macaskie, L. E.,, J. R. Lloyd,, R. A. P. Thomas,, and M. R. Tolley. 1996. The use of microoorganisms for the remediation of solutions contaminated with actinide elements, other radionuclides and organic contaminants generated by nuclear fuel cycle activities. Nuclear Energy 35:257271.
148. Macaskie, L. E.,, P. Yong,, T. C. Doyle,, M. G. Roig,, M. Diaz,, and T. Manzano. 1997. Bioremediation of uranium-bearing wastewaterbiochemical and chemical factors influencing bioprocess application. Biotechnol. Bioeng. 53:100109.
149. MacKenzie, A. B.,, and R. D. Scott. 1993. Sellafield waste radionuclides in Irish Sea intertidal and salt marsh sediments. Environ. Geochem. Health 15:173178.
150. Marques, A. M.,, R. Bonet,, M. D. Simon-Oujol,, M. C. Fuste,, and F. Congregado. 1990. Removal of uranium by an exopolysaccharide from Pseudomonas sp. Appl. Microbiol. Biotechnol. 34:429431.
151. Marques, A. M.,, X. Roca,, M. D. Simon-Pujol,, M. C. Fuste,, and C. Francisco. 1991. Uranium acumulation by Pseudomonas sp. EPS-5028. Appl. Microbiol. Biotechnol. 35:406410.
152. McCready, R. G. L.,, and H. R. Krouse. 1980. Sulfur isotope fractionation by Desulfovibrio vulgaris during metabolism of BaS04 . Geomicrobiol. J. 2:5562.
153. McCready, R. G. L.,, and V. I. Lakshmanan,. 1986. Review of bioadsorption research to recover uranium from leach solutions in Canada, p. 219226. In H. Eccles, and S. Hunt (ed.), Immobilization of Ions by Bio-Sorption. Ellis Horwood, Chichester, United Kingdom.
154. McCullough, J.,, T. C. Hazen,, S. M. Benson,, F. B. Metting,, and A. C. Palmisano. 1999. Bioremediation of Metals and Radionuclides ... What Is It and How It Works. Lawrence Berkeley National Laboratory, Berkeley, Calif.
155. McDonald, P.,, G. T. Cook,, M. S. Baxter,, and J. C. Thomson. 1990. Radionuclide transfer from Sellafield to South West Scotland. J. Environ. Radioact. 12:285298.
156. McHale, A. P.,, and S. McHale. 1994. Microbial biosorption of metals: potential in the treatment of metal pollution. Biotechnol. Adv. 12:647652.
157. Means, J. L.,, D. A. Crerar,, and J. O. Duguid. 1978. Migration of radioactive wastes: radionuclide mobilisation by complexing agents. Science 200:14771481.
158. Mellor, R. B.,, J. Ronnenberg,, W. H. Campbell,, and S. Diekmann. 1992. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 355:717719.
159. Mohegheghi, A.,, D. M. Updegraff,, and M. B. Goldhaber. 1994. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiol. J. 4:153173.
160. Mudder, T. I.,, and J. L. Whitlock. 1984. Biological treatment of cyanidation wastewaters. Miner. Metall. Process. SME-AIME Trans. 276:161165.
161. Myers, C. R.,, and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174:34293438.
162. Nakajima, A.,, T. Horikoshi,, and T. Sakaguchi. 1982. Recovery of uranium by immobilized microorganisms. Eur. J Appl. Microbiol. Biotechnol. 16:8891.
163. Nealson, K. H.,, and C. R. Myers. 1992. Microbial reduction of manganese and iron new approaches to carbon cycling. Appl. Environ. Microbiol. 58:439443.
164. Nelson, D. M.,, and M. B. Lovett. 1978. Oxidation state of plutonium in the Irish Sea. Nature 276:599601.
165. Nemec, P.,, H. Prochazka,, K. Stamberg,, J. Katzer,, J. Stamberg,, R. Jilek,, and P. Hulak. May 1977. U.S. patent 4,021,368.
166. Nero, A. V. 1979. A Guidebook to Nuclear Reactors. University of California Press, Berkeley.
167. Niki, T.,, T. Yagi,, I. Inokuchi,, and K. Kimura. 1977. Electrode reaction of cytochrome c3 of Desulfovibrio vulgaris Miyazaki. J. Electrochem. Soc. 124:18891892.
168. Norberg, A. B.,, and H. Persson. 1984. Accumulation of heavy metal ions by Zoogloea ramigera. Biotechnol. Bioeng. 26:239246.
169. Nortemann, B. 1992. Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl. Environ. Microbiol. 58:671676.
170. O'Boyle, N. C.,, G. P. Nicholson,, T. J. Piper,, D. M. Taylor,, D. R. Williams,, and G. Williams. 1997. A review of plutonium (IV) selective ligands. Appl. Radiat. Isot. 48:183200.
171. Okorov, L. A.,, L. P. Lichko,, V. M. Kodomtseva,, V. P. Kholodenko,, V. T. Titovsky,, and I. S. Kulaev. 1977. Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions. Eur. J. Biochem. 75:373377.
172. Omar, N. B.,, M. L. Merroun,, M. T. Gonzalez-Munoz,, and J. M. Arias. 1996. Brewery yeast as a biosorbent for uranium. J. Appl Bacteriol 81:283287.
173. Organbide, G.,, S. Philip-Holingsworth,, E. Tola,, R. A. Cedergren,, A. Squartini,, F. B. Dazzo,, and R. P. Hollingsworth. 1996. Glycoconjugate and lipid components of Rhizobium hedysara IS 123. Can. J. Microbiol 42:340345.
174. Paccard, E.,, and B. Besnanou. 1995. French patent 9509563.
175. Palumbo, A. V.,, S. Y. Lee,, and P. Boerman. 1994. Effect of media composition of EDTA degradation by Agrobacterium sp. Appl Biochem. Biotechnol 45:811822.
176. Peretrukhin, V. F.,, N. N. Khizhniak,, N. N. Lyalikova,, and K. E. German. 1996. Biosorption of technetium-99 and some actinides by bottom sediments of Lake Belsso Kosino of the Moscow region. Radiochem. 38:440443.
177. Perkins, J.,, and G. M. Gadd. 1993. Caesium toxicity, accumulation and intracellular location in yeasts. Mycol Res. 97:712724.
178. Pham-Thi, M.,, and P. Columban. 1985. Cationic conductivity, water species motions and phase transitions in H3OU02P04-3H,0 (HUP) and MUP related compounds (M+ = Na+ , K + , Ag+ , Li + NH4+). Solid State Ion 17:295306.
179. Phillips, E. J. P.,, E. R. Landa,, and D. R. Lovley. 1995. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J. Ind. Microbiol. 14:203207.
180. Pignolet, L.,, K. Fonsny,, F. Capot,, and Z. Moureau. 1989. Role of various microorganisms on Tc behaviour in sediments. Health Phys. 57:791800.
181. Pinar, G.,, E. Duque,, A. Haidour,, J. M. Oliva,, L. Sanchez-Barcero,, V. Calvo,, and J. L. Ramos. 1997. Removal of high concentrations of nitrate from industrial wastewater by bacteria. Appl. Environ. Microbiol. 63:20712073.
182. Pitt, W. W.,, C. W. Hancher,, and B. D. Patton. 1981. Biological reduction of nitrates in wastewater from nuclear fuel reprocessing using a fluidised bed reactor. Nuclear Chem. Waste Manage. 2:5770.
183. Plato, P.,, and J. T. Denovan. 1974. The influence of potassium on the removal of l37Cs by live Chlorella from low level radioactive wastes. Radiat. Bot. 14:3741.
184. Pons, M. P.,, and M. C. Fuste. 1993. Uranium uptake by immbilized cells of Pseudomonas strain EPS 5028. Appl. Microbiol. Biotechnol. 39:661665.
185. Postgate, J. R. 1979. The Sulphate Reducing Bacteria. Cambridge University Press, Cambridge, United Kingdom.
186. Pozas-Tormo, R.,, L. Moreno-Real, Martinez-Lara, and S. Bruque-Gamez. 1987. Intercalation of lanthanides into H3OUO2PO4•3H2O and C4H9NH3UO2P04•3H2O. Inorg. Chem. 26:14421445.
187. Pozas-Tormo, R.,, L. Moreno-Real,, M. Martinez-Lara,, and S. Bruque-Gamez. 1986. Layered metal uranyl phosphates. Retention of divalent ions by amine intercalates of uranyl phosphates. Can. J. Chem. 64:3034.
188. Premuzic, E. T.,, A. J. Francis,, M. Lin,, and J. Schubert. 1985. Induced formation of chelating agents by Pseudomonas aeruginosa grown in the presence of thorium and uranium. Arch. Environ. Contam. Toxicol. 14:759768.
189. Premuzic, E. T.,, M. S. Lin,, J.-Z. Jin,, and K. Hamilton. 1997. Geothermal waste treatment biotechnology. Energy Sources 19:917.
190. Pumpel, T. 1997. Metal biosorption: a structured data space? Res. Microbiol 148:514515.
191. Reid, G. W.,, P. Lassovszky,, and S. Hathaway. 1985. Treatment, waste management and cost for removal of radioactivity from drinking water. Health Phys. 48:671694.
192. Riordan, C.,, M. Bustard,, R. Putt,, and A. P. McHale. 1997. Removal of uranium from solution using residual brewery yeast: combined biosorption and bioprecipitation. Biotechnol. Lett. 19:385387.
193. Roig, M. G.,, J. F. Kennedy,, and L. E. Macaskie. 1995. Biological Rehabilitation of Metal Bearing Wastewaters. Final report. EC contract EV5V-CT93-0251. European Commission, Brussels, Belgium.
194. Rosenberg, A.,, and M. Alexander. 1979. Microbial cleavage of various organophosphorous insecticides. Appl. Environ. Microbiol. 37:886891.
195. Ross, I. S.,, and C. C. Townsley,. 1986. The uptake of heavy metals by filamentous fungi, p. 4958. In H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by Bio-Sorption. Ellis Horwood, Chichester, United Kingdom.
196. Rusin, P. A.,, Q. L.,, J. R. Brainard,, B. A. Strietelmeier,, C. D. Tait,, S. A. Ekberg,, P. D. Palmer,, T. W. Newton,, and D. L. Clark. 1994. Solubilization of plutonium hydrous oxide by iron reducing bacteria. Environ. Sci. Technol. 28:16861690.
197. Salt, D. E.,, M. Blaylock,, N. P. B. A. Kumar,, V. Dushenkov,, B. D. Ensley,, I. Chet,, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. BiolTechnol. 13:468474.
198. Scott, C. D. 1992. Removal of dissolved metals by plant tissue. Biotechnol. Bioeng. 39:1064-–1068.
199. Shumate, S. E.III,, and G. W. Strandberg,. 1985. Accumulation of metals by microbial cells, p. 235249. In M. Moo-Young (ed.), Comprehensive Biotechnology, vol. 4. Pergamon Press, New York, N.Y.
200. Simmons, P.,, J. M. Tobin,, and I. Singleton. 1995. Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J. Ind. Microbiol. 14:240246.
201. Singh, S.,, S. Negi,, S. Barati,, and H. N. Singh. 1994. Common nitrogen control of caesium (Cs+) uptake, caesium (Cs+) toxicity and ammonium (methylammonium) uptake in the cyanobacterium Nostoc muscorum. FEMS Microbiol. Lett. 117:243247.
202. Spear, J. R.,, L. A. Fugueroa,, and B. D. Honeyman. 1999. Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environ. Sci. Technol. 33:26672675.
203. Spooner, G. M. 1949. Observation of the absorption of radioactive strontium and yttrium by marine algae. J. Mar Biol. Assoc. 28:587625.
204. Stoner, D. L.,, and A. J. Tien. September 1995. U.S. patent 5,453,375.
205. Strandberg, G.,, and W. D. Arnold. 1988. Microbial accumulation of neptunium. J. Ind. Microbiol. 3:329331.
206. Strandberg, G. W.,, S. E. Shumate II,, and J. R. Parrott. 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41:237245.
207. Sun, H.,, X. R. Wang,, L. S. Wang,, L. M. Dai,, Z. Li,, and Y. J. Cheng. 1997. Bioconcentration of rare earth elements lanthanum, gadolinium and yttrium in algae (Chlorella vulgaris Beijerinck): influence of chemical species. Chemosphere 34:17531760.
208. Swanson, J. L., 1990. Purex process flowsheets, p. 5579. In W. W. Schulz, and J. D. Navratil (ed.), Science and Technology of Tributyl Phosphate, vol. 3. CRC Press Inc., Boca Raton, Fla.
209. Taghavi, S.,, M. Mergeay,, D. Nies,, and D. Van der Lelie. 1997. Alcaligenes eutrophus as a model system for bacterial interaction with heavy metals in the environment. Res. Microbiol. 148:536551.
210. Tebo, B. M.,, and A. Y. Obraztsova. 1998. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162:193198.
211. Tengerdy, R. P.,, J. E. Johnson,, J. Hollo,, and J. Toth. 1981. Denitrification and removal of heavy metals from waste water by immobilized microorganisms. Appl. Biochem. Biotechnol. 6:313.
212. Thomas, R. A. P.,, A. J. Beswick,, G. Basnakova,, R. Moller,, and L. E. Macaskie. Growth of naturally-occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. J. Chem. Technol. Biotechnol., in press.
213. Thomas, R. A. P.,, K. Lawlor,, M. Bailey,, and L. E. Macaskie. 1998. The biodegradation of metal- EDTA complexes by an enriched microbial population. Appl. Environ. Microbiol. 64:13191322.
214. Thomas, R. A. P.,, and L. E. Macaskie. 1996. Biodegradation of tributyl phosphate by naturally occuring microbial isolates and coupling to the removal of uranium from aqueous solution. Environ. Sci. Technol. 30:23712375.
215. Thomas, R. A. P.,, and L. E. Macaskie. 1998. The effect of growth conditions on the biodegradation of tributyl phosphate and potential for the remediation of acid mine drainage waters by a naturally-occurring mixed microbial culture. Appl. Microbiol. Biotechnol. 49:202209.
216. Thomas, R. A. P.,, A. P. Morby,, and L. E. Macaskie. 1997. The biodegradation of tributyl phosphate by naturally-occurring microbial isolates. FEMS Microbiol. Lett. 155:155159.
217. Tiedje, J. M. 1975. Microbial biodegradation of ethylenediaminetetraacetic acid in soils and sediments. Appl. Microbiol. 30:327329.
218. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1984. Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47:821824.
219. Tobin, J. M.,, C. White,, and G. M. Gadd. 1994. Metal accumulation by fungi: applications in environmental biotechnology. J. Ind. Microbiol. 13:126130.
220. Tolley, M. R.,, and L. E. Macaskie,. 1993. Bioaccumulation of heavy metals: aplication to the decontamination of solutions containing americium, plutonium and neptunium, p. 8996. In A. E. Torma,, M. L. Apel,, and C. L. Brierley (ed.), Biohydrometallurgical Technologies. The Minerals, Metals and Materials Society, Nepean, Ontario, Canada.
221. Tolley, M. R.,, and L. E. Macaskie. 1994. United Kingdom patent GB94/00626.
222. Tolley, M. R.,, L. F. Strachan,, and L. E. Macaskie. 1995. Lanthanum accumulation from acidic solutions using Citrobacter sp. immobilized in a flow-through bioreactor. J. Ind. Microbiol. 14:271280.
223. Tomioka, N.,, H. Uchiyama,, and O. Yagi. 1992. Isolation and characterization of cesiumaccumulating bacteria. Appl. Environ. Microbiol. 58:10191023.
224. Trabalka, J. R.,, and C. T. GartenJr.. 1983. Behaviour of the long-lived synthetic elements and their natural analogues in food chains. Adv. Radiat. Biol. 10:6873.
225. Treen-Sears, M. E.,, B. Volesky,, and R. J. Neufeld. 1984. Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent. Biotechnol. Bioeng. 26:13231329.
226. Trollope, D. R.,, and B. Evans. 1976. Concentrations of copper, iron, lead, nickel and zinc in fresh water algal blooms. Environ. Pollut. 11:109116.
227. Truex, M. J.,, B. M. Peyton,, N. B. Valentine,, and Y. A. Gorby. 1997. Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. Biotechnol. Bioeng. 55:490496.
228. Tsezos, M. 1983. The role of chitin in uranium adsorption by Rhizopus arrhizus. Biotechnol. Bioeng. 25:20252040.
229. Tsezos, M.,, M. H. I. Baird,, and L. W. Shemilt. 1987. The elution of radium adsorbed by microbial biomass. Chem. Eng. J. 34:B57B64.
230. Tsezos, M.,, M. H. I. Baird,, and L. W. Shemilt. 1986. The kinetics of radium biosorption. Chem. Eng. J. 33:B35B41.
231. Tsezos, M.,, M. H. I. Baird,, and L. W. Shemilt. 1987. The use of immobilised biomass to remove and recover radium from Elliot Lake Uranium Tailing Streams. Hydrometallurgy 17:357368.
232. Tsezos, M.,, and D. M. Keller. 1983. Adsorption of radium-226 by biological origin absorbents. Biotechnol. Bioeng. 25:201215.
233. Tsezos, M.,, R. G. L. McCready,, and J. P. Bell. 1989. The continuous recovery of uranium from biologically leached solutions using immobilized biomass. Biotechnol. Bioeng. 34:1017.
234. Tsezos, M.,, E. Remoudaki,, and V. Angelatou. 1996. A study of the effects of competing ions on the biosorption of metals. Int. Biodeterior. Biodegrad. 38:1929.
235. Tsezos, M.,, E. Remoudaki,, and V. Angelatou. 1996. A systematic study on the equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. Int. Biodeterior. Biodegrad. 35:129154.
236. Tsezos, M.,, and B. Volesky. 1981. Biosorption of uranium and thorium by Rhizopus arrhizus. Biotechnol. Bioeng. 23:583604.
237. Tsezos, M.,, and B. Volesky. 1982. The mechanism of thorium biosorption. Biotechnol. Bioeng. 24:955969.
238. Tsezos, M.,, and B. Volesky. 1982. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24:385401.
239. Tuicker, M. D.,, L. L. Barton,, and B. M. Thompson. 1998. Removal of U and Mo from water by immobilized Desulfovibrio desulfuricans in column reactors. Biotechnol. Bioeng. 60(l):9096.
240. Thicker, M. D.,, L. L. Barton,, and B. M. Thomson. 1996. Kinetic coefficients for simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans. Appl. Microbiol. Biotechnol. 46: 7477.
241. TXirner, J. S.,, and N. J. Robinson. 1995. Cyanobacterial metallothioneins: Biochemistry and molecular genetics. J. Ind. Microbiol. 14:119125.
242. Van Roy, S.,, K. Peys,, T. Dresselaers,, and L. Diels. 1997. The use of an Alcaligenes eutrophus biofilm in a membrane bioreactor for heavy metal recovery. Res. Microbiol. 148:526528.
243. Vesely, V.,, and V. Pekarek. 1972. Synthetic inorganic ion exchangers. 1. Hydrous oxides and acidic salts of multivalent metals. Talanta 19:219262.
244. Volesky, B. 1994. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14:291302.
245. Volesky, B. 1990. Biosorption of Heavy Metals. CRC Press Inc., Boca Raton, Fla.
246. Volesky, B.,, and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11:235250.
247. Volesky, B.,, and H. A. May-Phillips. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42:797806.
248. Volesky, B.,, and M. Tsezos. March 1981. U.S. patent 4,320,093.
249. Watson, J. H. P.,, and D. C. Ellwood. 1994. Biomagnetic separation and extraction process for heavy metals from solution. Miner. Eng. 7:10171028.
250. Watson, J. S.,, C. D. Scott,, and B. D. Faison. 1989. Adsorption of Sr by immobilized microorganisms. Appl. Biochem. Biotechnol. 20/21:699.
251. Watson, J. S.,, C. D. Scott,, and B. D. Faison. 1989. Adsorption of Sr by soil microorganisms. Appl. Biochem. Biotechnol. 21:201209.
252. Weidemann, D. P.,, R. D. Tanner,, G. W. Strandberg,, and S. E. Shumate II. 1981. Modelling the rate of transfer of uranyl ions onto microbial cells. Enzyme Microb. Technol. 3:3340.
253. Wersin, P.,, M. F. HochellaJr.,, P. Persson,, G. Redden,, J. O. Leckie,, and D. W. Harris. 1994. Interaction between aqueous uranium (VI) and sulfide minerals: spectoscopic evidence for sorption and reduction. Geochim. Cosmochim. Acta 58:28292843.
254. White, C.,, and G. M. Gadd. 1990. Biosorption of radionuclides by fungal biomass. J Chem. Technol. Biotechnol. 49:331343.
255. White, C.,, and G. M. Gadd. 1987. Inhibition of H+ efflux and K+ uptake and induction of K+ efflux in yeast by heavy metals. Tox. Assess. 2:437447.
256. White, C.,, and G. M. Gadd. 1996. Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology 142:21972205.
257. White, C.,, A. K. Sharman,, and G. M. Gadd. 1998. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat. Biotechnol. 16:572575.
258. Wildung, R. E.,, K. M. McFadden,, and T. R. Garland. 1979. Technetium sources and behaviour in the environment. J. Environ. Qual. 8:156161.
259. Woolfolk, C. A.,, and H. R. Whiteley. 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647658.
260. Wurtz, E. A.,, T. H. Sibley,, and W. R. Schell. 1986. Interactions of Escherichia coli and marine bacteria with 2 4 1 Am in laboratory cultures. Health Phys. 50:7988.
261. Yakubu, N. A.,, and A. W. L. Dudeney,. 1986. Biosorption of uranium with Aspergillus niger, p. 183200. In H. Eccles, and S. Hunt (ed.), Immobilization of Ions by Biosorption. Ellis Horwood, Chichester, United Kingdom.
262.Yong, R 1996. PhD. thesis. University of Birmingham, Birmingham, United Kingdom.
263. Yong, P.,, and L. E. Macaskie. 1998. Bioaccumulation of lanthanum, uranium and thorium, and use of a model system to develop a method for the biologically-mediated removal of plutonium from solution. J. Chem. Technol. Biotechnol. 71:1526.
264. Yong, P.,, and L. E. Macaskie. 1997. Effect of substrate concentration and nitrate inhibition on product release and heavy metal removal by a Citrobacter sp. Biotechnol. Bioeng. 55:821830.
265. Yong, P.,, and L. E. Macaskie. 1995. Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymatically-mediated growth of polycrystalline NH4 UO2 PO4. J. Chem. Technol. Biotechnol. 63:101108.
266. Yong, P.,, and L. E. Macaskie. 1997. Removal of lanthanum, uranium and thorium from the citrate complexes by immobilized cells of Citrobacter sp. in a flow-through reactor: implications for the decontamination of solutions containing plutonium. Biotechnol. Lett. 19:251255.
267. Yong, P.,, and L. E. Macaskie. 1995. Removal of the tetravalent actinide thorium from solution by a biocatalytic system. J. Chem. Technol. Biotechnol. 64:8795.
268. Yurkova, N. A.,, and N. N. Lyalikova. 1991. New vanadate-reducing facultative chemolithotrophic bacteria. Microbiology 59:672677.
269. Zajic, J. E.,, and Y. S. Chiu. 1972. Recovery of heavy metals by microbes. Dev. Ind. Microbiol. 13:91100.


Generic image for table
Table 1

Biosorbents for U(VI)

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13
Generic image for table
Table 2

Microbial systems reported to reduce U(VI) to U(IV)

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error