1887

Chapter 14 : Biosorption Processes for Heavy Metal Removal

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biosorption Processes for Heavy Metal Removal, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap14-2.gif

Abstract:

For the removal of heavy metals from the food cycle, natural processes can be used. The bio-molecules that bind metals in natural systems can make certain types of biomass suitable for metal sequestration in industrial biosorption processes which are described in this chapter. Biosorption can serve as a tool for the recovery of precious metals and the elimination of toxic metals. The term "biosorption" is used to describe the passive accumulation of metals or radioactive elements by biological materials. Usually, dead biomass serves as a basis for a family of biosorbents. In most cases, working with dead biomass offers more advantages and is therefore the object of the majority of more practically oriented biosorption studies. Some authors consider only an exchange of electrostatically bound ions to be ion exchange, and in the chapter the authors adopt a broader definition of this term. The occurrence of the groups (hydroxyl, carboxyl, sulfhydryl, sulfonate, and phosphonate) in different types of biomass is discussed. The influence of the most important parameters on the biosorption equilibrium is described in qualitative terms. The chapter deals with quantitative modeling of the key phenomena, and presents the biosorption equilibrium models. These models are the basis for modeling of dynamic processes, e.g., in columns, that are of greater industrial relevance and are described in detail. Important progress has been made in understanding the mechanism of biosorption and in quantitative modeling of this process under controlled laboratory conditions.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Flow scheme of a possible biosorption application using packed-bed columns for adsorption and desorption.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Cell wall structure in algae (example, brown algae) (a), gram-positive bacteria (modified from references and ) (b), gram-negative bacteria (modified from references and ) (c), and fungi (example, type V, e.g., Euascomycetes) (modified from reference ) (d).

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of important biomolecules involved in metal binding, (a) Alginic acid of brown algae (modified from reference ( ); (b) κ carrageenan of red algae (modified from reference ); (c) peptidoglycan of bacteria (modified from references and ); (d) teichoic acid of bacteria (modified from reference ); (e) chitin of fungi; (f) chitosan of fungi.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Metal binding (experimental data and model predictions), (a) Langmuir isotherm: Cu binding at pH 4.5 and 2.5. (b) Influence of pH on binding of Cu and protons, reprinted from reference with permission of the publisher, (c) Three-dimensional plot of total binding of Cd and Zn as a function of both metal concentrations. Reprinted from reference with permission of the publisher.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Column operation, (a) Metal concentration profiles in the column, (b) Breakthrough curve of metal concentration exiting the column.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap14
1. Ahrland, S.,, J. Chatt,, and N. R. Davis. 1958. The relative affinities of ligand atoms for acceptor molecules and ions. Q. Rev. Chem. 12:265276.
2. Aldor, L.,, E. Fourest,, and B. Volesky. 1995. Desorption of cadmium from algal biosorbent. Can. J. Chem. Eng. 73:516522.
3. Allen, S.,, P. Brown,, G. McKay,, and O. Flynn. 1992. An evaluation of single resistance transfer models in the sorption of metal ions by peat. J. Chem. Technol. Biotechnol. 54:271276.
4. Apel, M. L.,, and A. E. Torma. 1993. Determination of kinetics and diffusion coefficients of metal sorption on Ca-alginate beads. Can. J. Chem. Eng. 71:652656.
5. Bailey, J. E.,, and D. F. Ollis. 1986. Biochemical Engineering Fundamentals, 2nd ed., p. 5859, 120. McGraw-Hill Book Co., New York, N.Y.
6. Bartnicki-Garcia, S., 1973. Fungal cell wall composition, p. 201. In A. I. Laskin, and H. A. Lechevalier (ed.), CRC Handbook of Microbiology, vol. 2. Microbial Composition. CRC Press, Inc., Boca Raton, Fla.
7. Bedell, G. W.,, and D. W. Darnall,. 1990. Immobilization of nonviable, biosorbent, algal biomass for the recovery of metal ions, p. 313326. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
8. Beveridge, T. J., 1986. The immobilization of soluble metals by bacterial walls, p. 127140. In H. L. Ehrlich, and D. S. Holmes (ed.), Biotechnology and Bioengineering Symposium no. 16. Biotechnology for the Mining, Metal-Refining, and Fossil Fuel Processing Industries. Wiley Interscience, New York, N.Y.
9. Beveridge, T. J., 1990. Interactions of metal ions with components of bacterial cell walls and their biomineralization, p. 6583. In R. K. Poole, and G. M. Gadd (ed.), Metal-Microbe Interactions. IRL Press, Oxford, United Kingdom.
10. Black, W. A. P.,, and R. L. Mitchell. 1952. Trace elements in the common brown algae and in sea water. J. Mar. Biol. Assoc. 30:575584.
11. Bold, H. C.,, C. J. Alexopoulos,, and T. Delevoryas. 1987. Morphology of Plants and Fungi, p. 4248. Harper & Row, New York, N.Y.
12. Bold, H. C.,, and M. J. Wynne. 1985. Introduction to the Algae, p. 2022, 7075, 288289, 301, 478479, and 516. Prentice-Hall, Englewood Cliffs, N.J.
13. Brierley, C. L., 1990. Metal immobilization using bacteria, p. 303324. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
14. Brierley, J. A., 1990. Production and application of a Bacillus-based product for use in metals biosorption, p. 305312. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
15. Brierley, J. A.,, C. L. Brierley,, and G. M. Goyak,. 1986. AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology, p. 291304. In R. W. Lawrence,, R. M. R. Branion,, and H. G. Ebner (ed.), Fundamental and Applied Biohydrometallurgy. Elsevier Science Publishing, Amsterdam, The Netherlands.
16. Buffle, J. 1988. Complexation Reactions in Aquatic Systems: an Analytical Approach, p. 4772, 195303, 306330. Ellis Horwood Ltd., Chichester, United Kingdom.
17. Cahn, R. S.,, and O. L. Dermer. 1979. Introduction to Chemical Nomenclature, p. 1718. Butterworths, London, United Kingdom.
18. Chapman, V. J. 1980. Seaweeds and Their Uses. p. 122, 253278. Chapman & Hall, London, United Kingdom.
19. Chen, D.,, Z. Lewandowski,, F. Roe,, and P. Surapaneni. 1993. Diffusivity of Cu2+ in calcium alginate beads. Biotechnol. Bioeng. 41:755760.
20. Chen, X. H.,, T. Gosset,, and D. R. Thevenot. 1990. Batch copper ion binding and exchange properties of peat. Water Res. 24:14631471.
21. Chong, K. H.,, and B. Volesky. 1995. Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol. Bioeng. 47:451460.
22. Collins, Y. E.,, and G. Stotzky. 1992. Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl. Environ. Microbiol. 58:15921600.
23. Crist, R. H.,, J. R. Martin,, J. Chonko,, and D. R. Crist. 1996. Uptake of metals on peat moss: an ion-exchange process. Environ. Sci. Technol. 30:24562461.
24. Crist, R. H.,, J. R. Martin,, P. W. Guptiil,, J. M. Eslinger,, and D. R. Crist. 1990. Interactions of metals and protons with algae. 2. Ion exchange in adsorption and metal displacement by protons. Environ. Sci. Technol 24:337342.
25. Crist, R. H.,, K. Oberholser,, J. McGarrity,, D. R. Crist,, J. K. Johnson,, and J. M. Brittsan. 1992. Interaction of metals and protons with algae. 3. Marine algae, with emphasis on lead and aluminum. Environ. Sci. Technol. 26:496502.
26. Crist, R. H.,, K. Oberholser,, N. Shank,, and M. Nguyen. 1981. Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 15:12121217.
27. Deacon, J. W. 1984. Introduction to Modern Mycology, p. 47. Blackwell Scientific Publications Ltd., Oxford, United Kingdom.
28. Dean, J. A. 1985. Lange's Handbook of Chemistry, p. 3.113.12. McGraw-Hill Book Co., New York, N.Y.
29.Donnan, EG. 1911. Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Z. Elektrochem. 17:572581.
30. Ferguson, J.,, and B. Bubela. 1974. The concentration of Cu (II), Pb (II), and Zn (II) from aqueous solutions by particulate algal matter. Chem. Geol. 13:163186.
31. Fourest, E.,, and J. C. Roux. 1994. Improvement of heavy metal biosorption by mycelial dead biomass (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol. Rev. 14:325332.
32. Gadd, G. M., 1990. Fungi and yeasts for metal accumulation, p. 249276. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
33. Gadd, G. M.,, and C. White. 1992. Removal of thorium from simulated acid process stream by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J. Chem. Technol. Biotechnol. 55:39.
34. Garnham, G. W.,, G. A. Codd,, and G. M. Gadd. 1992. Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl. Microbiol. Biotechnol. 37:270276.
35. Greene, B.,, and D. W. Darnall. 1988. Temperature dependence of metal ion sorption by Spirulina. Biorecovery 1:2741.
36. Greene, B.,, M. T. Henzl,, J. M. Hosea,, and D. W. Darnall. 1986. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris. Biotechnol. Bioeng. 28:764.
37. Greene, B.,, M. Hosea,, R. McPherson,, M. Henzl,, M. D. Alexander,, and D. W. Darnall. 1986. Interaction of gold(I) and gold(III) complexes with algal biomass. Environ. Sci. Technol. 20:627632.
38. Greene, B.,, R. McPherson,, and D. Darnall,. 1987. Algal sorbents for selective metal ion recovery, p. 315338. In J. W. Patterson, and R. Pasino (ed.), Metals Speciation, Separation and Recovery. Lewis, Chelsea, Mich.
39. Hatch, R. T.,, and A. Menawat. 1978. Biological removal and recovery of trace heavy metals. Biotechnol. Bioeng. Symp. 8:191203.
40. Haug, A.,, and O. Smidsrod. 1970. Selectivity of some anionic polymers for divalent metal ions. Acta Chem. Scand. 24:843854.
41. Helfferich, F. 1962. Ion Exchange, p. 7294. McGraw-Hill Book Co., New York, N.Y.
42. Hering, J. G.,, and F. M. M. Morel,. 1990. The kinetics of trace metal complexation: implications for metal reactivity in natural waters, p. 145171. In W. Stumm (ed.), Aquatic Chemical Kinetics. Wiley Interscience, New York, N.Y.
43. Ho, Y. S.,, D. A. J. Wase,, and C. F. Forster. 1995. Batch nickel removal from aqueous solution by sphagnum moss peat. Water. Res. 29:13271332.
44. Holan, Z. R.,, and B. Volesky. 1994. Biosorption of lead and nickel by biomass of marine algae. Biotechnol. Bioeng. 43:10011009.
45. Holan, Z. R.,, and B. Volesky. 1995. Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Appl. Biochem. Biotechnol. 53:133142.
46. Holbein, B. E., 1990. Immobilization of metal-binding compounds, p. 327340. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
47. Holl, W.,, and H. Sontheimer. 1977. Ion exchange kinetics of the protonation of weak acid ion exchange resins. Chem. Eng. Sci. 32:755762.
48. Huang, C.,, C. P. Huang,, and A. L. Morehart. 1991. Proton competition in Cu (II) adsorption by fungal mycelia. Water Res. 25:13651375.
49. Huang, J.-P.,, C. P. Huang,, and A. L. Morehart,. 1991. Removal of heavy metals by fungal (Aspergillus oryzae) adsorption, p. 329349. In J. P. Vernet (ed.), Heavy Metals in the Environment. Elsevier Science Publishers, Amsterdam, The Netherlands.
50. Hunt, S., 1986. Diversity of biopolymer structure and its potential for ion-binding applications, p. 1545. In H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by Bio-Sorption. Ellis Horwood, Chichester, United Kingdom.
51. Jang, L. K.,, W. Brand,, M. Resong,, W. Mainieri,, and G. G. Geesey. 1990. Feasibility of using alginate to absorb dissolved copper from aqueous media. Environ. Prog. 9:269274.
52. Jang, L. K.,, N. Harpt,, D. Grasmick,, L. N. Vuong,, and G. Geesey. 1990. A two-phase model for determining the stability constants for interactions between copper and alginic acid. J. Phys. Chem. 94:482488.
53. Jang, L. K.,, D. Nguyen,, and G. G. Geesey. 1995. Effect of pH on the absorption of Cu (II) by alginate gel. Water Res. 29:315321.
54. Jang, L. K.,, D. Nguyen,, and G. G. Geesey. 1995. Selectivity of alginate gel for Cu vs. Co. Water Res. 29:307313.
55. Jansson-Charrier, M.,, E. Guibal,, J. Roussy,, R. Surjous,, and P. LeCloirec. 1996. Dynamic removal of uranium by chitosan: influence of operating parameters. Water Sci. Technol. 34:169177.
56. Jeffers, T. H.,, C. R. Ferguson,, and P. G. Bennett. 1991. Biosorption of Metal Contaminants Using Immobilized Biomass—a Laboratory Study. Report of investigations. U.S. Bureau of Mines, Salt Lake City, Utah.
57. Katchalsky, A.,, R. E. Cooper,, J. Upadhyay,, and A. Wassermann. 1961. Counter-ion fixation inalginates. J. Am. Chem. Soc. 83:51985204.
58. Khummongkol, D.,, G. S. Canterford,, and C. Fryer. 1982. Accumulation of heavy metals in unicellular alga. Biotechnol. Bioeng. 24:26432660.
59. Klein, G.,, D. Tondeur,, and T. Vermeulen. 1967. Multicomponent ion-exchange in fixed beds. Ind. Eng. Chem. Fundam. 6:339350.
60. Kohn, R. 1975. Ion binding on polyuronates—alginate and pectin. Pure Appl. Chem. 42:371397.
61. Kratochvil, D.,, E. Fourest,, and B. Volesky. 1995. Biosorption of copper by Sargassum fluitans biomass in fixed-bed column. Biotechnol. Lett. 17:777782.
62. Kratochvil, D.,, and B. Volesky. Multicomponent biosorption in fixed beds. Water Res., in press.
63. Kratochvil, D.,, B. Volesky,, and G. Demopoulos. 1997. Optimizing Cu removal/recovery in a biosorption column. Water Res. 31:23272339.
64. Kuyucak, N., 1990. Feasibility of biosorbents application, p. 371378. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
65. Kuyucak, N.,, and B. Volesky. 1989. Accumulation of cobalt by marine alga. Biotechnol. Bioeng. 33:809814.
66. Kuyucak, N.,, and B. Volesky. 1989. Accumulation of gold by algal biosorbent. Biorecovery 1:189204.
67. Kuyucak, N.,, and B. Volesky. 1989. Desorption of cobalt-laden algal biosorbent. Biotechnol. Bioeng. 33:815822.
68. Kuyucak, N.,, and B. Volesky. 1989. The mechanism of cobalt biosorption. Biotechnol. Bioeng. 33: 823831.
69. Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40:13611403.
70. Lee, R. E. 1989. Phycology, p. 1013, 3437, 534539, 584599. Cambridge University Press, Cambridge, United Kingdom.
71. Leusch, A.,, and B. Volesky. 1995. The influence of film diffusion on cadmium biosorption by marine biomass. J. Biotechnol. 43:110.
72. Lin, F. G.,, and J. A. Marinsky. 1993. A Gibbs-Donnan-based interpretation of the effect of medium counterion concentration levels on the acid dissociation properties of alginic acid and chondroitin sulfate. React. Polymers 19:2745.
73. Lobban, C. S.,, and P. J. Harrison. 1994. Seaweed Ecology and Physiology, p. 283298. Cambridge University Press, Cambridge, United Kingdom.
74. Macaskie, L. E. 1990. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol. 49:357379.
75. Macaskie, L. E.,, and A. C. R. Dean,. 1989. Microbial metabolism, desolubilization and deposition of heavy metals: metal uptake by immobilized cells and application to the detoxification of liquid wastes, p. 159. In A. Mizrahi (ed.), Advances in Biotechnological Processes. Alan R. Liss, Inc., New York, N.Y
76. Macaskie, L. E.,, A. C. R. Dean,, A. K. Cheetham,, R. J. B. Jakeman,, and A. J. Skarnulis. 1987. Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. Gen. Microbiol. 133:539544.
77. Macaskie, L. E.,, R. M. Empson,, A. K. Cheetham,, C. R Grey,, and A. J. Skarnulis. 1992. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4 Science 257:782784.
78. Maranon, E.,, and E. Sastre. 1991. Heavy metal removal in packed beds using apple wastes. Bioresource Technol. 38:3943.
79. Marinsky, J. A., 1987. A two-phase model for the interpretation of proton and metal ion interaction with charged polyelectrolyte gels and their linear analogs, p. 4981. In W. Stumm (ed.), Aquatic Surface Chemistry. Wiley Interscience, New York, N.Y.
80. Martell, A. E.,, and M. Calvin. 1952. Chemistry of Metal Chelate Compounds, p. 168169. Prentice-Hall, Inc., Englewood Cliffs, N.J.
81. May, H. 1984. Biosorption by Industrial Microbial Biomass. M.Eng. thesis. McGill University, Montreal, Canada.
82. Mayers, I. T.,, and T. J. Beveridge. 1989. The sorption of metals to Bacillus subtilis walls from dilute solutions and simulated Hamilton Harbour (Lake Ontario) water. Can. J. Microbiol. 35:764770.
83. McLean, R. J. C.,, and T. J. Beveridge,. 1990. Metal-binding capacity of bacterial surfaces and their ability to form mineralized aggregates, p. 185222. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
84. Moore-Landecker, E. 1996. Fundamentals of the Fungi, p. 1518. Prentice-Hall, Inc., Upper Saddle River, N.J.
85. Mueller, E.,, and W. Loeffler. 1976. Mycology, p. 5964. Thieme, Stuttgart, Germany.
86. Muraleedharan, T. R.,, L. Lyengar,, and C. Venkobachar. 1994. Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidum. Environ. Technol. 15:10151027.
87. Nieboer, E.,, and D. H. S. Richardson. 1980. The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions. Environ. Pollut. 1B:1113.
88. Pagenkopf, G. K. 1978. Introduction to Natural Water Chemistry, p. 161167, 214216, 220230. Marcel Dekker, Inc., New York, N.Y.
89. Pauling, L. 1967. Nature of the Chemical Bond, p. 5573. Cornell University Press, Ithaca, NY.
90. Pearson, R. G. 1967. Hard and soft acids and bases. Chem. Bri. 3:103107.
91. Percival, E.,, and R. H. McDowell. 1967. Chemistry and Enzymology of Marine Algal Polysaccharides, p. 99126, 127156. Academic Press, Ltd., London, United Kingdom.
92. Ramelow, G. J.,, D. Fralick,, and Y. Zhao. 1992. Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72:8193.
93. Remade, J., 1990. The cell wall and metal binding, p. 8392. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
94. Schiewer, S.,, and B. Volesky. 1995. Modeling of the proton-metal ion exchange in biosorption. Environ. Sci. Technol. 29:30493058.
95. Schiewer, S.,, and B. Volesky. 1996. Modeling of multi-metal ion exchange in biosorption. Environ. Sci. Technol. 30:29212927.
96. Schiewer, S.,, and B. Volesky. 1997. Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ. Sci. Technol. 31:24782485.
97. Seki, H.,, A. Suzuki,, and I. Kashiki. 1990. Adsorption of lead ions on immobilized humic acid. J. Colloid Interface Sci. 134:5965.
98. Siegel, B. Z.,, and S. M. Siegel. 1973. The chemical composition of algal cell walls. Crit. Rev. Microbiol. 3:126.
99. Smith, J. M. 1981. Chemical Engineering Kinetics, p. 310322. McGraw-Hill Book Co., New York, N.Y.
100. South, G. R.,, and A. Whittick. 1987. Introduction to Phycology, p. 2728, 4663, 104115, 176177, 268271. Blackwell Scientific Publications Ltd., Oxford, United Kingdom.
101. Stumm, W. 1992. Chemistry of the Solid-Water Interface, p. 8797. John Wiley & Sons, Inc., New York, N.Y.
102. Stumm, W.,, and J. J. Morgan. 1970. Aquatic Chemistry, p. 445513. John Wiley & Sons, Inc., New York, N.Y.
103. Stumm, W.,, L. Sigg,, and B. Sulzberger,. 1994. The role of coordination at the surface of aquatic particles, p. 4589. In J. Buffle, and R. R. De Vitre (ed.), Chemical and Biological Regulation of Aquatic Systems. Lewis Publishers, Boca Raton, Fla.
104. Tan, H. K. S.,, and I. H. Spinner. 1994. Multicomponent ion exchange column dynamics. Can. J. Chem. Eng. 72:330341.
105. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1988. The effects of cation competition on metal adsorption by Rhizopus arrhizus biomass. Biotechnol. Bioeng. 31:282286.
106. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1987. Influence of anions on metal adsorption by Rhizopus arrhizus biomass. Biotechnol. Bioeng. 30:882886.
107. Treen-Sears, M. E.,, B. Volesky,, and R. J. Neufeld. 1984. Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent. Biotechnol. Bioeng. 26:13231329.
108. Trujillo, E. M.,, T. H. Jeffers,, C. Ferguson,, and H. Q. Stevenson. 1991. Mathematically modeling the removal of heavy metals from wastewater using immobilized biomass. Environ. Sci. Technol. 25:15591565.
109. Tsezos, M. 1984. Recovery of Uranium from biological adsorbents—desorption equilibrium. Biotechnol. Bioeng. 26:973981.
110. Tsezos, M., 1986. Adsorption by microbial biomass as a process for removal of ions from process or waste solutions, p. 200209. In H. H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by Biosorption. Ellis Horwood, Chichester, United Kingdom.
111. Tsezos, M., 1990. Engineering aspects of metal binding by biomass, p. 325340. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y
112. Tsezos, M.,, and A. A. Deutschmann. 1990. An investigation of engineering parameters for the use of immobilised biomass particles in biosorption. J. Chem. Technol. Biotechnol. 48:2939.
113. Tsezos, M.,, S. H. Noh,, and M. H. I. Baird. 1988. A batch reactor mass transfer kinetic model. Biotechnol. Bioeng. 32:545553.
114. Vogel, G.,, and H. Angermann. 1984. Atlas zur Biologie, p. 60. DTV, Munich, Germany.
115. Volesky, B., 1990. Biosorption by fungal biomass, p. 139172. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
116. Volesky, B., 1990. Removal and recovery of heavy metals by biosorption, p. 743. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
117. Volesky, B.,, and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11:235250.
118. Volesky, B.,, and I. Prasetyo. 1994. Cadmium removal in a biosorption column. Biotechnol. Bioeng. 43:10101015.
119. Weppen, P.,, and A. Hornburg. 1995. Calorimetric studies on interactions of divalent cations and microorganisms or microbial envelopes. Thermochim. Acta 269/270:393404.
120. Xue, H. B.,, and L. Sigg. 1990. Binding Cu(II) to algae in a metal buffer. Water Res. 24:11291136.
121. Xue, H.-B.,, W. Stumm,, and L. Sigg. 1988. The binding of heavy metals to algal surfaces. Water Res. 22:917926.
122. Yang, J.,, and B. Volesky. 1996. Intraparticle diffusivity of Cd ions in a new biosorbent material. J. Chem. Technol. Biotechnol. 66:355364.
123. Yu, J.-W.,, and I. Neretnieks. 1990. Single-component and multicomponent adsorption equilibria on activated carbon of methylcyclohexane, toluene and isobutyl methyl ketone. Ind. Eng. Chem. Res. 29:220231.

Tables

Generic image for table
Table 1

Binding groups

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Generic image for table
Table 2

Biomolecules in different types of biomass

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Generic image for table
Table 3

Composition of biopolymers

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error