1887

Chapter 14 : Biosorption Processes for Heavy Metal Removal

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biosorption Processes for Heavy Metal Removal, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap14-2.gif

Abstract:

For the removal of heavy metals from the food cycle, natural processes can be used. The bio-molecules that bind metals in natural systems can make certain types of biomass suitable for metal sequestration in industrial biosorption processes which are described in this chapter. Biosorption can serve as a tool for the recovery of precious metals and the elimination of toxic metals. The term "biosorption" is used to describe the passive accumulation of metals or radioactive elements by biological materials. Usually, dead biomass serves as a basis for a family of biosorbents. In most cases, working with dead biomass offers more advantages and is therefore the object of the majority of more practically oriented biosorption studies. Some authors consider only an exchange of electrostatically bound ions to be ion exchange, and in the chapter the authors adopt a broader definition of this term. The occurrence of the groups (hydroxyl, carboxyl, sulfhydryl, sulfonate, and phosphonate) in different types of biomass is discussed. The influence of the most important parameters on the biosorption equilibrium is described in qualitative terms. The chapter deals with quantitative modeling of the key phenomena, and presents the biosorption equilibrium models. These models are the basis for modeling of dynamic processes, e.g., in columns, that are of greater industrial relevance and are described in detail. Important progress has been made in understanding the mechanism of biosorption and in quantitative modeling of this process under controlled laboratory conditions.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Flow scheme of a possible biosorption application using packed-bed columns for adsorption and desorption.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Cell wall structure in algae (example, brown algae) (a), gram-positive bacteria (modified from references and ) (b), gram-negative bacteria (modified from references and ) (c), and fungi (example, type V, e.g., Euascomycetes) (modified from reference ) (d).

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of important biomolecules involved in metal binding, (a) Alginic acid of brown algae (modified from reference ( ); (b) κ carrageenan of red algae (modified from reference ); (c) peptidoglycan of bacteria (modified from references and ); (d) teichoic acid of bacteria (modified from reference ); (e) chitin of fungi; (f) chitosan of fungi.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Metal binding (experimental data and model predictions), (a) Langmuir isotherm: Cu binding at pH 4.5 and 2.5. (b) Influence of pH on binding of Cu and protons, reprinted from reference with permission of the publisher, (c) Three-dimensional plot of total binding of Cd and Zn as a function of both metal concentrations. Reprinted from reference with permission of the publisher.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Column operation, (a) Metal concentration profiles in the column, (b) Breakthrough curve of metal concentration exiting the column.

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap14
1. Ahrland, S.,, J. Chatt,, and N. R. Davis. 1958. The relative affinities of ligand atoms for acceptor molecules and ions. Q. Rev. Chem. 12: 265 276.
2. Aldor, L.,, E. Fourest,, and B. Volesky. 1995. Desorption of cadmium from algal biosorbent. Can. J. Chem. Eng. 73: 516 522.
3. Allen, S.,, P. Brown,, G. McKay,, and O. Flynn. 1992. An evaluation of single resistance transfer models in the sorption of metal ions by peat. J. Chem. Technol. Biotechnol. 54: 271 276.
4. Apel, M. L.,, and A. E. Torma. 1993. Determination of kinetics and diffusion coefficients of metal sorption on Ca-alginate beads. Can. J. Chem. Eng. 71: 652 656.
5. Bailey, J. E.,, and D. F. Ollis. 1986. Biochemical Engineering Fundamentals, 2nd ed., p. 58 59, 120. McGraw-Hill Book Co., New York, N.Y.
6. Bartnicki-Garcia, S., 1973. Fungal cell wall composition, p. 201. In A. I. Laskin, and H. A. Lechevalier (ed.), CRC Handbook of Microbiology, vol. 2. Microbial Composition. CRC Press, Inc., Boca Raton, Fla.
7. Bedell, G. W.,, and D. W. Darnall,. 1990. Immobilization of nonviable, biosorbent, algal biomass for the recovery of metal ions, p. 313 326. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
8. Beveridge, T. J., 1986. The immobilization of soluble metals by bacterial walls, p. 127 140. In H. L. Ehrlich, and D. S. Holmes (ed.), Biotechnology and Bioengineering Symposium no. 16. Biotechnology for the Mining, Metal-Refining, and Fossil Fuel Processing Industries. Wiley Interscience, New York, N.Y.
9. Beveridge, T. J., 1990. Interactions of metal ions with components of bacterial cell walls and their biomineralization, p. 65 83. In R. K. Poole, and G. M. Gadd (ed.), Metal-Microbe Interactions. IRL Press, Oxford, United Kingdom.
10. Black, W. A. P.,, and R. L. Mitchell. 1952. Trace elements in the common brown algae and in sea water. J. Mar. Biol. Assoc. 30: 575 584.
11. Bold, H. C.,, C. J. Alexopoulos,, and T. Delevoryas. 1987. Morphology of Plants and Fungi, p. 42 48. Harper & Row, New York, N.Y.
12. Bold, H. C.,, and M. J. Wynne. 1985. Introduction to the Algae, p. 20 22, 70 75, 288 289, 301, 478 479, and 516. Prentice-Hall, Englewood Cliffs, N.J.
13. Brierley, C. L., 1990. Metal immobilization using bacteria, p. 303 324. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
14. Brierley, J. A., 1990. Production and application of a Bacillus-based product for use in metals biosorption, p. 305 312. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
15. Brierley, J. A.,, C. L. Brierley,, and G. M. Goyak,. 1986. AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology, p. 291 304. In R. W. Lawrence,, R. M. R. Branion,, and H. G. Ebner (ed.), Fundamental and Applied Biohydrometallurgy. Elsevier Science Publishing, Amsterdam, The Netherlands.
16. Buffle, J. 1988. Complexation Reactions in Aquatic Systems: an Analytical Approach, p. 47 72, 195 303, 306 330. Ellis Horwood Ltd., Chichester, United Kingdom.
17. Cahn, R. S.,, and O. L. Dermer. 1979. Introduction to Chemical Nomenclature, p. 17 18. Butterworths, London, United Kingdom.
18. Chapman, V. J. 1980. Seaweeds and Their Uses. p. 122, 253 278. Chapman & Hall, London, United Kingdom.
19. Chen, D.,, Z. Lewandowski,, F. Roe,, and P. Surapaneni. 1993. Diffusivity of Cu 2+ in calcium alginate beads. Biotechnol. Bioeng. 41: 755 760.
20. Chen, X. H.,, T. Gosset,, and D. R. Thevenot. 1990. Batch copper ion binding and exchange properties of peat. Water Res. 24: 1463 1471.
21. Chong, K. H.,, and B. Volesky. 1995. Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol. Bioeng. 47: 451 460.
22. Collins, Y. E.,, and G. Stotzky. 1992. Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl. Environ. Microbiol. 58: 1592 1600.
23. Crist, R. H.,, J. R. Martin,, J. Chonko,, and D. R. Crist. 1996. Uptake of metals on peat moss: an ion-exchange process. Environ. Sci. Technol. 30: 2456 2461.
24. Crist, R. H.,, J. R. Martin,, P. W. Guptiil,, J. M. Eslinger,, and D. R. Crist. 1990. Interactions of metals and protons with algae. 2. Ion exchange in adsorption and metal displacement by protons. Environ. Sci. Technol 24: 337 342.
25. Crist, R. H.,, K. Oberholser,, J. McGarrity,, D. R. Crist,, J. K. Johnson,, and J. M. Brittsan. 1992. Interaction of metals and protons with algae. 3. Marine algae, with emphasis on lead and aluminum. Environ. Sci. Technol. 26: 496 502.
26. Crist, R. H.,, K. Oberholser,, N. Shank,, and M. Nguyen. 1981. Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 15: 1212 1217.
27. Deacon, J. W. 1984. Introduction to Modern Mycology, p. 4 7. Blackwell Scientific Publications Ltd., Oxford, United Kingdom.
28. Dean, J. A. 1985. Lange's Handbook of Chemistry, p. 3.11 3.12. McGraw-Hill Book Co., New York, N.Y.
29.Donnan, EG. 1911. Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Z. Elektrochem. 17: 572581.
30. Ferguson, J.,, and B. Bubela. 1974. The concentration of Cu (II), Pb (II), and Zn (II) from aqueous solutions by particulate algal matter. Chem. Geol. 13: 163 186.
31. Fourest, E.,, and J. C. Roux. 1994. Improvement of heavy metal biosorption by mycelial dead biomass ( Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol. Rev. 14: 325 332.
32. Gadd, G. M., 1990. Fungi and yeasts for metal accumulation, p. 249 276. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
33. Gadd, G. M.,, and C. White. 1992. Removal of thorium from simulated acid process stream by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J. Chem. Technol. Biotechnol. 55: 39.
34. Garnham, G. W.,, G. A. Codd,, and G. M. Gadd. 1992. Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl. Microbiol. Biotechnol. 37: 270 276.
35. Greene, B.,, and D. W. Darnall. 1988. Temperature dependence of metal ion sorption by Spirulina. Biorecovery 1: 27 41.
36. Greene, B.,, M. T. Henzl,, J. M. Hosea,, and D. W. Darnall. 1986. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris. Biotechnol. Bioeng. 28: 764.
37. Greene, B.,, M. Hosea,, R. McPherson,, M. Henzl,, M. D. Alexander,, and D. W. Darnall. 1986. Interaction of gold(I) and gold(III) complexes with algal biomass. Environ. Sci. Technol. 20: 627 632.
38. Greene, B.,, R. McPherson,, and D. Darnall,. 1987. Algal sorbents for selective metal ion recovery, p. 315 338. In J. W. Patterson, and R. Pasino (ed.), Metals Speciation, Separation and Recovery. Lewis, Chelsea, Mich.
39. Hatch, R. T.,, and A. Menawat. 1978. Biological removal and recovery of trace heavy metals. Biotechnol. Bioeng. Symp. 8: 191 203.
40. Haug, A.,, and O. Smidsrod. 1970. Selectivity of some anionic polymers for divalent metal ions. Acta Chem. Scand. 24: 843 854.
41. Helfferich, F. 1962. Ion Exchange, p. 72 94. McGraw-Hill Book Co., New York, N.Y.
42. Hering, J. G.,, and F. M. M. Morel,. 1990. The kinetics of trace metal complexation: implications for metal reactivity in natural waters, p. 145 171. In W. Stumm (ed.), Aquatic Chemical Kinetics. Wiley Interscience, New York, N.Y.
43. Ho, Y. S.,, D. A. J. Wase,, and C. F. Forster. 1995. Batch nickel removal from aqueous solution by sphagnum moss peat. Water. Res. 29: 1327 1332.
44. Holan, Z. R.,, and B. Volesky. 1994. Biosorption of lead and nickel by biomass of marine algae. Biotechnol. Bioeng. 43: 1001 1009.
45. Holan, Z. R.,, and B. Volesky. 1995. Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Appl. Biochem. Biotechnol. 53: 133 142.
46. Holbein, B. E., 1990. Immobilization of metal-binding compounds, p. 327 340. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
47. Holl, W.,, and H. Sontheimer. 1977. Ion exchange kinetics of the protonation of weak acid ion exchange resins. Chem. Eng. Sci. 32: 755 762.
48. Huang, C.,, C. P. Huang,, and A. L. Morehart. 1991. Proton competition in Cu (II) adsorption by fungal mycelia. Water Res. 25: 1365 1375.
49. Huang, J.-P.,, C. P. Huang,, and A. L. Morehart,. 1991. Removal of heavy metals by fungal ( Aspergillus oryzae) adsorption, p. 329 349. In J. P. Vernet (ed.), Heavy Metals in the Environment. Elsevier Science Publishers, Amsterdam, The Netherlands.
50. Hunt, S., 1986. Diversity of biopolymer structure and its potential for ion-binding applications, p. 15 45. In H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by Bio-Sorption. Ellis Horwood, Chichester, United Kingdom.
51. Jang, L. K.,, W. Brand,, M. Resong,, W. Mainieri,, and G. G. Geesey. 1990. Feasibility of using alginate to absorb dissolved copper from aqueous media. Environ. Prog. 9: 269 274.
52. Jang, L. K.,, N. Harpt,, D. Grasmick,, L. N. Vuong,, and G. Geesey. 1990. A two-phase model for determining the stability constants for interactions between copper and alginic acid. J. Phys. Chem. 94: 482 488.
53. Jang, L. K.,, D. Nguyen,, and G. G. Geesey. 1995. Effect of pH on the absorption of Cu (II) by alginate gel. Water Res. 29: 315 321.
54. Jang, L. K.,, D. Nguyen,, and G. G. Geesey. 1995. Selectivity of alginate gel for Cu vs. Co. Water Res. 29: 307 313.
55. Jansson-Charrier, M.,, E. Guibal,, J. Roussy,, R. Surjous,, and P. LeCloirec. 1996. Dynamic removal of uranium by chitosan: influence of operating parameters. Water Sci. Technol. 34: 169 177.
56. Jeffers, T. H.,, C. R. Ferguson,, and P. G. Bennett. 1991. Biosorption of Metal Contaminants Using Immobilized Biomass—a Laboratory Study. Report of investigations. U.S. Bureau of Mines, Salt Lake City, Utah.
57. Katchalsky, A.,, R. E. Cooper,, J. Upadhyay,, and A. Wassermann. 1961. Counter-ion fixation inalginates. J. Am. Chem. Soc. 83: 5198 5204.
58. Khummongkol, D.,, G. S. Canterford,, and C. Fryer. 1982. Accumulation of heavy metals in unicellular alga. Biotechnol. Bioeng. 24: 2643 2660.
59. Klein, G.,, D. Tondeur,, and T. Vermeulen. 1967. Multicomponent ion-exchange in fixed beds. Ind. Eng. Chem. Fundam. 6: 339 350.
60. Kohn, R. 1975. Ion binding on polyuronates—alginate and pectin. Pure Appl. Chem. 42: 371 397.
61. Kratochvil, D.,, E. Fourest,, and B. Volesky. 1995. Biosorption of copper by Sargassum fluitans biomass in fixed-bed column. Biotechnol. Lett. 17: 777 782.
62. Kratochvil, D.,, and B. Volesky. Multicomponent biosorption in fixed beds. Water Res., in press.
63. Kratochvil, D.,, B. Volesky,, and G. Demopoulos. 1997. Optimizing Cu removal/recovery in a biosorption column. Water Res. 31: 2327 2339.
64. Kuyucak, N., 1990. Feasibility of biosorbents application, p. 371 378. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
65. Kuyucak, N.,, and B. Volesky. 1989. Accumulation of cobalt by marine alga. Biotechnol. Bioeng. 33: 809 814.
66. Kuyucak, N.,, and B. Volesky. 1989. Accumulation of gold by algal biosorbent. Biorecovery 1: 189 204.
67. Kuyucak, N.,, and B. Volesky. 1989. Desorption of cobalt-laden algal biosorbent. Biotechnol. Bioeng. 33: 815 822.
68. Kuyucak, N.,, and B. Volesky. 1989. The mechanism of cobalt biosorption. Biotechnol. Bioeng. 33: 823 831.
69. Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361 1403.
70. Lee, R. E. 1989. Phycology, p. 10 13, 34 37, 534 539, 584 599. Cambridge University Press, Cambridge, United Kingdom.
71. Leusch, A.,, and B. Volesky. 1995. The influence of film diffusion on cadmium biosorption by marine biomass. J. Biotechnol. 43: 1 10.
72. Lin, F. G.,, and J. A. Marinsky. 1993. A Gibbs-Donnan-based interpretation of the effect of medium counterion concentration levels on the acid dissociation properties of alginic acid and chondroitin sulfate. React. Polymers 19: 27 45.
73. Lobban, C. S.,, and P. J. Harrison. 1994. Seaweed Ecology and Physiology, p. 283 298. Cambridge University Press, Cambridge, United Kingdom.
74. Macaskie, L. E. 1990. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol. 49: 357 379.
75. Macaskie, L. E.,, and A. C. R. Dean,. 1989. Microbial metabolism, desolubilization and deposition of heavy metals: metal uptake by immobilized cells and application to the detoxification of liquid wastes, p. 159. In A. Mizrahi (ed.), Advances in Biotechnological Processes. Alan R. Liss, Inc., New York, N.Y
76. Macaskie, L. E.,, A. C. R. Dean,, A. K. Cheetham,, R. J. B. Jakeman,, and A. J. Skarnulis. 1987. Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. Gen. Microbiol. 133: 539 544.
77. Macaskie, L. E.,, R. M. Empson,, A. K. Cheetham,, C. R Grey,, and A. J. Skarnulis. 1992. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO 2PO4 Science 257: 782 784.
78. Maranon, E.,, and E. Sastre. 1991. Heavy metal removal in packed beds using apple wastes. Bioresource Technol. 38: 39 43.
79. Marinsky, J. A., 1987. A two-phase model for the interpretation of proton and metal ion interaction with charged polyelectrolyte gels and their linear analogs, p. 49 81. In W. Stumm (ed.), Aquatic Surface Chemistry. Wiley Interscience, New York, N.Y.
80. Martell, A. E.,, and M. Calvin. 1952. Chemistry of Metal Chelate Compounds, p. 168 169. Prentice-Hall, Inc., Englewood Cliffs, N.J.
81. May, H. 1984. Biosorption by Industrial Microbial Biomass. M.Eng. thesis. McGill University, Montreal, Canada.
82. Mayers, I. T.,, and T. J. Beveridge. 1989. The sorption of metals to Bacillus subtilis walls from dilute solutions and simulated Hamilton Harbour (Lake Ontario) water. Can. J. Microbiol. 35: 764 770.
83. McLean, R. J. C.,, and T. J. Beveridge,. 1990. Metal-binding capacity of bacterial surfaces and their ability to form mineralized aggregates, p. 185 222. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
84. Moore-Landecker, E. 1996. Fundamentals of the Fungi, p. 15 18. Prentice-Hall, Inc., Upper Saddle River, N.J.
85. Mueller, E.,, and W. Loeffler. 1976. Mycology, p. 59 64. Thieme, Stuttgart, Germany.
86. Muraleedharan, T. R.,, L. Lyengar,, and C. Venkobachar. 1994. Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidum. Environ. Technol. 15: 1015 1027.
87. Nieboer, E.,, and D. H. S. Richardson. 1980. The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions. Environ. Pollut. 1B: 11 13.
88. Pagenkopf, G. K. 1978. Introduction to Natural Water Chemistry, p. 161 167, 214 216, 220 230. Marcel Dekker, Inc., New York, N.Y.
89. Pauling, L. 1967. Nature of the Chemical Bond, p. 55 73. Cornell University Press, Ithaca, NY.
90. Pearson, R. G. 1967. Hard and soft acids and bases. Chem. Bri. 3: 103 107.
91. Percival, E.,, and R. H. McDowell. 1967. Chemistry and Enzymology of Marine Algal Polysaccharides, p. 99 126, 127 156. Academic Press, Ltd., London, United Kingdom.
92. Ramelow, G. J.,, D. Fralick,, and Y. Zhao. 1992. Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72: 81 93.
93. Remade, J., 1990. The cell wall and metal binding, p. 83 92. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
94. Schiewer, S.,, and B. Volesky. 1995. Modeling of the proton-metal ion exchange in biosorption. Environ. Sci. Technol. 29: 3049 3058.
95. Schiewer, S.,, and B. Volesky. 1996. Modeling of multi-metal ion exchange in biosorption. Environ. Sci. Technol. 30: 2921 2927.
96. Schiewer, S.,, and B. Volesky. 1997. Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ. Sci. Technol. 31: 2478 2485.
97. Seki, H.,, A. Suzuki,, and I. Kashiki. 1990. Adsorption of lead ions on immobilized humic acid. J. Colloid Interface Sci. 134: 59 65.
98. Siegel, B. Z.,, and S. M. Siegel. 1973. The chemical composition of algal cell walls. Crit. Rev. Microbiol. 3: 1 26.
99. Smith, J. M. 1981. Chemical Engineering Kinetics, p. 310 322. McGraw-Hill Book Co., New York, N.Y.
100. South, G. R.,, and A. Whittick. 1987. Introduction to Phycology, p. 27 28, 46 63, 104 115, 176 177, 268 271. Blackwell Scientific Publications Ltd., Oxford, United Kingdom.
101. Stumm, W. 1992. Chemistry of the Solid-Water Interface, p. 87 97. John Wiley & Sons, Inc., New York, N.Y.
102. Stumm, W.,, and J. J. Morgan. 1970. Aquatic Chemistry, p. 445 513. John Wiley & Sons, Inc., New York, N.Y.
103. Stumm, W.,, L. Sigg,, and B. Sulzberger,. 1994. The role of coordination at the surface of aquatic particles, p. 45 89. In J. Buffle, and R. R. De Vitre (ed.), Chemical and Biological Regulation of Aquatic Systems. Lewis Publishers, Boca Raton, Fla.
104. Tan, H. K. S.,, and I. H. Spinner. 1994. Multicomponent ion exchange column dynamics. Can. J. Chem. Eng. 72: 330 341.
105. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1988. The effects of cation competition on metal adsorption by Rhizopus arrhizus biomass. Biotechnol. Bioeng. 31: 282 286.
106. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1987. Influence of anions on metal adsorption by Rhizopus arrhizus biomass. Biotechnol. Bioeng. 30: 882 886.
107. Treen-Sears, M. E.,, B. Volesky,, and R. J. Neufeld. 1984. Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent. Biotechnol. Bioeng. 26: 1323 1329.
108. Trujillo, E. M.,, T. H. Jeffers,, C. Ferguson,, and H. Q. Stevenson. 1991. Mathematically modeling the removal of heavy metals from wastewater using immobilized biomass. Environ. Sci. Technol. 25: 1559 1565.
109. Tsezos, M. 1984. Recovery of Uranium from biological adsorbents—desorption equilibrium. Biotechnol. Bioeng. 26: 973 981.
110. Tsezos, M., 1986. Adsorption by microbial biomass as a process for removal of ions from process or waste solutions, p. 200 209. In H. H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by Biosorption. Ellis Horwood, Chichester, United Kingdom.
111. Tsezos, M., 1990. Engineering aspects of metal binding by biomass, p. 325 340. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y
112. Tsezos, M.,, and A. A. Deutschmann. 1990. An investigation of engineering parameters for the use of immobilised biomass particles in biosorption. J. Chem. Technol. Biotechnol. 48: 29 39.
113. Tsezos, M.,, S. H. Noh,, and M. H. I. Baird. 1988. A batch reactor mass transfer kinetic model. Biotechnol. Bioeng. 32: 545 553.
114. Vogel, G.,, and H. Angermann. 1984. Atlas zur Biologie, p. 60. DTV, Munich, Germany.
115. Volesky, B., 1990. Biosorption by fungal biomass, p. 139 172. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
116. Volesky, B., 1990. Removal and recovery of heavy metals by biosorption, p. 7 43. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Inc., Boca Raton, Fla.
117. Volesky, B.,, and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235 250.
118. Volesky, B.,, and I. Prasetyo. 1994. Cadmium removal in a biosorption column. Biotechnol. Bioeng. 43: 1010 1015.
119. Weppen, P.,, and A. Hornburg. 1995. Calorimetric studies on interactions of divalent cations and microorganisms or microbial envelopes. Thermochim. Acta 269/ 270: 393 404.
120. Xue, H. B.,, and L. Sigg. 1990. Binding Cu(II) to algae in a metal buffer. Water Res. 24: 1129 1136.
121. Xue, H.-B.,, W. Stumm,, and L. Sigg. 1988. The binding of heavy metals to algal surfaces. Water Res. 22: 917 926.
122. Yang, J.,, and B. Volesky. 1996. Intraparticle diffusivity of Cd ions in a new biosorbent material. J. Chem. Technol. Biotechnol. 66: 355 364.
123. Yu, J.-W.,, and I. Neretnieks. 1990. Single-component and multicomponent adsorption equilibria on activated carbon of methylcyclohexane, toluene and isobutyl methyl ketone. Ind. Eng. Chem. Res. 29: 220 231.

Tables

Generic image for table
Table 1

Binding groups

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Generic image for table
Table 2

Biomolecules in different types of biomass

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14
Generic image for table
Table 3

Composition of biopolymers

Citation: Schiewer S, Volesky B. 2000. Biosorption Processes for Heavy Metal Removal, p 329-362. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error