1887

Chapter 15 : Biodegradation of Synthetic Chelating Agents

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biodegradation of Synthetic Chelating Agents, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap15-2.gif

Abstract:

This chapter discusses the current state of knowledge of the biodegradation of the synthetic chelating agents nitrilotriacetate (NTA) and EDTA. The understanding of the biodegradation of chelating agents requires a mechanistic coupled understanding of geochemistry and microbiology, including the way chelated metal influences biodegradation, the way metal in the metal-chelate complex can exchange with other metals, the way adsorption of the chelating agent influences biodegradation, the biodegradation of chelating agents by whole cells, the cellular transport of chelating agents into the cell, its enzymatic biodegradation, and, finally, the genetics of biodegradation. The identity of the metal-NTA complex present in solution after desorption, that is, the "desorbed metal-NTA complex," is important for understanding and predicting NTA biodegradation when sorbents are present. The variation in NTA biodegradation by whole cells was proposed to be influenced by the lability of the metal-NTA complex or the frequency of making and breaking the metal-carboxyl oxygen and the metal-nitrogen bonds of the complex. The specificity of NTA monooxygenase indicated that an intact metal-NTA complex was necessary for biodegradation and that the lability of the metal-NTA complex did not influence its biodegradation by the enzyme. Future areas of research on the biochemistry and genetics of NTA biodegradation include the purification of IDA dehydrogenase and the cloning, sequencing, and characterization of the corresponding gene(s).

Citation: Bolton H, Girvin D, Xun L. 2000. Biodegradation of Synthetic Chelating Agents, p 363-383. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structures of NTA, EDTA, CoNTA, and CoEDTA.

Citation: Bolton H, Girvin D, Xun L. 2000. Biodegradation of Synthetic Chelating Agents, p 363-383. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Speciation of 1 µM NTA in equilibrium with gibbsite (A1[OH]; log K = 8.77) in a 0.01 M NaClO solution.

Citation: Bolton H, Girvin D, Xun L. 2000. Biodegradation of Synthetic Chelating Agents, p 363-383. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Biodegradation of 1 M EDTA to CO at pH 7 by BNC1 with different metals added. Error bars indicate ± 1 standard deviation of the mean.

Citation: Bolton H, Girvin D, Xun L. 2000. Biodegradation of Synthetic Chelating Agents, p 363-383. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(A) Structures of NTA, IDA, and glyoxylate. (B) Reactions catalyzed by NADH:FMNB oxidoreductase (cB) and NTA monooxygenase (cA).

Citation: Bolton H, Girvin D, Xun L. 2000. Biodegradation of Synthetic Chelating Agents, p 363-383. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Overview of the gene cluster encoding NTA monooxygenase of . The genes , . . and and their directions of transcription are indicated by arrows. Cloned DNA fragments are indicated by open bars.

Citation: Bolton H, Girvin D, Xun L. 2000. Biodegradation of Synthetic Chelating Agents, p 363-383. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap15
1. Allen, G. K. 1976. Estimated Inventories of Chemicals Added to Underground Waste Tanks, 1944 through 1975. Report ARH-CD-601B. Atlantic Richfield Hanford Co., Richland, Wash.
2. Allison, J. D.,, D. B. Brown,, and K. J. Novo-Gradac. 1991. MINTEQA2/PRODEFA2. A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual. Document EPA/600/3-91/021. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.
3. Ames, G. F. L.,, and A. K. Joshi. 1990. Energy coupling in bacterial periplasmic permeases. J. Bacteriol. 172: 4133 4137.
4. Anderegg, G. 1982. Critical survey of stability constants of NTA complexes. Pure Appl. Chem. 54: 2693 2758.
5. Ashton, D. M.,, G. D. Sweet,, J. M. Somers,, and W. W. Kay. 1980. Citrate transport in Salmonella typhimurium: studies with 2-fluoro-L-erythro-citrate as a substrate. Can. J. Biochem. 58: 797 803.
6. Ayers, J. A. 1970. Decontamination of Nuclear Reactors and Equipment. The Ronald Press Co., New York, N.Y.
7. Bergsma, J.,, and W. N. Konings. 1983. The properties of citrate transport in membrane vesicles from Bacillus subtilis. Eur. J. Biochem. 134: 151 156.
8. Beveridge, T. J. 1989. Metal Ions and Bacteria. John Wiley & Sons, Inc., New York, N.Y.
9. Bolton, H. Jr.,, and D. C. Girvin. 1996. Effect of adsorption on the biodegradation of nitrilotriacetate by Chelatobacter heintzii. Environ. Sci. Technol. 30: 2057 2065.
10. Bolton, H. Jr.,, D. C. Girvin,, A. E. Plymale,, S. D. Harvey,, and D. J. Workman. 1996. Degradation of metal-nitrilotriacetate (NTA) complexes by Chelatobacter heintzii. Environ. Sci. Technol. 30: 931 938.
11. Bolton, H. Jr.,, and Y. A. Gorby,. 1995. An overview of the bioremediation of inorganic contaminants, p. 1 16. In R. E. Hinchee, and J. L. Means (ed.), Bioremediation of Inorganics. Battelle Press, Columbus, Ohio.
12. Bolton, H. Jr.,, S. W. Li,, D. J. Workman,, and D. C. Girvin. 1993. Biodegradation of synthetic chelates in subsurface sediments from the southeast coastal plain. J. Environ. Qual. 22: 125 132.
13. Brooks, S. C.,, D. L. Taylor,, and P. M. Jardine. 1996. Reactive transport of EDTA-complexed cobalt in the presence of ferrihydrite. Geochim. Cosmochim. Acta 60: 1899 1908.
14. Campbell, J. A.,, S. A. Clauss,, K. E. Grant,, V. Hoopes,, G. M. Mong,, J. Rau,, R. Steele,, and K. L. Wahl. 1996. Flammable Gas Safety Program. Actual Waste Organic Analysis FY 1996 Progress Report PNNL-11307/UC-601. Pacific Northwest National Laboratory, Richland, Wash.
15. Caucheiter, P.,, and C. Guichard. 1973. Electrochemical and spectrophotometric study of the complexes of plutonium ions with EDTA. I. Plutonium(III) and (IV). Radiochim. Acta 19: 137 146.
16. Champ, D. R.,, and D. E. Robertson,. 1986. Chemical speciation of radionuclides in contaminant plumes at the Chalk River Nuclear Laboratories, p. 114 120. In R. A. Bulman, and J. R. Cooper (ed.), Speciation of Fission and Activation Products in the Environment. Elsevier Science Publishing Co., New York, N.Y.
17. Choppin, G. R., 1983. Aspects of plutonium solution chemistry, p. 484. In W. T. Carnall, and G. R. Choppin (ed.), Plutonium Chemistry, vol. 216. American Chemical Society, Washington, D.C.
18. Cleveland, J. M.,, and T. F. Rees. 1981. Characterization of plutonium in Maxey Flats radioactive trench leachates. Science 212: 1506 1509.
19. Cook, J.,, and F. A. Long. 1958. Kinetics of the exchange of nickel ethylenediaminetetraacetate ion with nickelous ion. J. Am. Chem. Soc. 80: 33 37.
20. Cripps, R. E.,, and A. S. Noble. 1973. The metabolism of nitrilotriacetate by a pseudomonad. Biochem. J. 136: 1059 1068.
21. Dimroth, P.,, and A. Thomer. 1986. Citrate transport in Klebsiella pneumoniae. J. Biol. Chem. 367: 813 823.
22. Egli, T.,, and H. U. Weilenmann. 1989. Isolation, characterization, and physiology of bacteria able to degrade nitrilotriacetate. Toxic. Assess. 4: 23 34.
23. Egli, T.,, H. U. Weilenmann,, T. El-Banna,, and G. Auling. 1988. Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst. Appl. Microbiol. 10: 297 305.
24. Enfors, S. O.,, and N. Molin. 1973. Biodegradation of nitrilotriacetic acid (NTA) by bacteria. I. Isolation of bacteria able to grow anaerobically with NTA as a sole carbon source. Water Res. 7: 881 888.
25. Firestone, M. K.,, and J. M. Tiedje. 1975. Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction. Appl. Microbiol. 29: 758 764.
26. Firestone, M. K.,, and J. M. Tiedje. 1978. Pathway of degradation of nitrilotriacetate by a Pseudomonas species. Appl. Environ. Microbiol. 35: 955 961.
27. Flashner, M. S.,, and V. Massey,. 1974. Flavoprotein oxygenases, p. 245 283. In O. Hayaishi (ed.), Molecular Mechanisms of Oxygen Activation. Academic Press, Inc., New York, N.Y.
28. Focht, D. D.,, and H. A. Joseph. 1971. Bacterial degradation of nitrilotriacetic acid (NTA). Can J. Microbiol. 17: 1553 1556.
29. Forsberg, C.,, and G. Lindqvist. 1967. Experimental studies on bacterial degradation of nitrilotriacetate, NTA. Vatten 23: 265 277.
30. Gephart, R. E.,, and R. E. Lundgren. 1996. Hanford Tank Clean Up: A Guide to Understanding the Technical Issues. Report PNNL-10773. Pacific Northwest National Laboratory, Richland, Wash.
31. Girvin, D. C.,, P. L. Gassman,, and H. Bolton, Jr. 1993. Adsorption of aqueous cobalt ethylene-diaminetetraacetate by γ-Al 2O3. Soil Sci. Soc. Am. J. 57: 47 57.
32. Girvin, D. C.,, P. L. Gassman,, and H. Bolton, Jr. 1996. Adsorption of cobalt, nitrilotriacetate (NTA), and Co-NTA by gibbsite. Clay Clay Miner. 44: 757 768.
33. Gray, K. A.,, O. S. Pogrebinsky,, G. T. Mrachko,, L. Xi,, D. J. Monticello,, and C. H. Squires. 1996. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14: 1705 1709.
34. Higgins, C. F. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8: 67 113.
35. Hughes, M. N.,, and R. K. Poole. 1989. Metals and Microorganisms. Chapman & Hall, New York, N.Y.
36. Jardine, P. M.,, G. K. Jacobs,, and J. D. O’Dell. 1993. Unsaturated transport processes in undisturbed heterogeneous porous media. II. Co-contaminants. Soil Sci. Soc. Am. J. 57: 954 962.
37. Jardine, P. M.,, and D. L. Taylor. 1995. Kinetics and mechanisms of Co(II)EDTA oxidation by pyrolusite. Geochim. Cosmochim. Acta 59: 4193 4203.
38. Johnson, C. L.,, Y. A. Cha,, and J. R. Stern. 1975. Citrate uptake in membrane vesicles of Klebsiella aerogenes. J. Bacteriol. 121: 682 687.
39. Kakii, K.,, H. Yamaguchi,, Y. Iguchi,, M. Teshima,, T. Shirakashi,, and M. Kuriyama. 1986. Isolation and growth characteristics of nitrilotri acetate-degrading bacteria. J. Ferment. Technol. 64: 103 108.
40. Kay, W. W.,, and M. Cameron. 1978. Citrate transport in Salmonella typhimurium. Arch. Biochem. Biophys. 190: 270 280.
41. Kemal, C.,, T. W. Chan,, and T. C. Bruice. 1977. Reaction of 3O2 with dihydroflavins. I. N3,5-Dimethyl-l,5-dihydrolumiflavin and 1,5-dihydroisoalloxazines. J. Am. Chem. Soc. 99: 7272 7286.
42. Killey, R. W. D.,, J. O. McHugh,, D. R. Champ,, E. L. Cooper,, and J. L. Young. 1984. Subsurface cobalt-60 migration from a low level waste disposal site. Environ. Sci. Technol. 18: 148 157.
43. Klem, M. J. 1988. Inventory of Chemicals Used at Hanford Production Plants and Support Operations (1944-1980). Westinghouse Hanford Co., Richland, Wash.
44. Klüner, T.,, D. C. Hempel,, and B. Nortemann. 1998. Metabolism of EDTA and its metal chelates by whole cells and cell-free extracts of strain BNC1. Appl. Microbiol. Biotechnol. 49: 194 201.
45. Knobel, H. R.,, T. Egli,, and J. R. van der Meer. 1997. Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600. J. Bacteriol. 178: 6123 6132.
46. Krishnan, S. S.,, and R. E. Jervis. 1967. Kinetic isotope exchange studies of metal ion substitution in EDTA chelates. I. Co(II), cobalt(II)-EDTA exchange. J. Inorg. Chem. 29L: 87 95.
47. Lauff, J. J.,, D. B. Steele,, L. A. Coogan,, and J. M. Breitfeller. 1990. Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Appl. Environ. Microbiol. 56: 3346 3353.
48. Lei, B.,, and S.-C. Tu. 1996. Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J. Bacteriol. 178: 5699 5705.
49. Madsen, E. L.,, and M. Alexander. 1985. Effects of chemical speciation on the mineralization of organic compounds by microorganisms. Appl. Environ. Microbiol. 50: 342 349.
50. Margerum, D. W. 1959. Coordination kinetics of ethylenediaminetetraacetate complexes. J. Phys. Chem. 63: 336 339.
51. Margerum, D. W. 1963. Exchange reactions of multidentate ligand complexes. Rec. Chem. Prog. 24: 237 251.
52. Margerum, D. W.,, G. R. Cayley,, D. C. Weatherburn,, and G. K. Pagenkopf,. 1978. Kinetics and mechanisms of complex formation and ligand exchange. In A. E. Martell (ed.), Coordination Chemistry, vol. 2. American Chemical Society, Washington, D.C.
53. Martell, A. E.,, and R. M. Smith. 1974. Critical Stability Constants, vol. 1. Amino Acids. Plenum Press, New York, N.Y.
54. Massey, V. 1994. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269: 22549 22562.
55. McFadden, K. M. 1980. Organic Components of Nuclear Wastes and Their Potential for Altering Radionuclide Distribution when Released to Soil. Report PNL-2563. National Technical Information Service, Springfield, Va.
56. Means, J. L.,, and C. A. Alexander. 1981. The environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive wastes. Nucl. Chem. Waste Manage. 2: 183 196.
57. Means, J. L.,, D. A. Crerar,, and J. O. Duguid. 1978. Migration of radioactive wastes: radionuclide mobilization by complexing agents. Science 200: 1477 1486.
58. Means, J. L.,, T. Kucak,, and D. A. Crerar. 1980. Relative degradation rates of NTA, EDTA, and DTPA and environmental implications. Environ. Pollut Ser. B 1: 45 60.
59. Nörtemann, B. 1999. Biodegradation of EDTA. Appl. Microbiol. Biotechnol. 51: 751 759.
60. Nörtemann, B. 1992. Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl. Environ. Microbiol. 58: 671 676.
61. O’Brien, R. W.,, and J. R. Stern. 1969. Requirement for sodium in the anaerobic growth of Aerobacter aerogenes on citrate. J. Bacteriol. 98: 388 393.
62. Palumbo, A. V.,, S. Y. Lee,, and P. Boerman. 1994. The effect of media composition on EDTA degradation by Agrobacterium sp. Appl. Biochem. Biotechnol. 45/ 46: 811 822.
63. Payne, J. W.,, H. Bolton Jr.,, J. A. Campbell,, and L. Xun. 1998. Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J. Bacteriol. 180: 3823 3827.
64. Piciulo, P. L.,, J. W. Adams,, M. S. Davis,, L. W. Milian,, and C. I. Anderson. 1986. Release of Organic Chelating Agents from Solidified Decontamination Wastes. Report NUREG/CR-4709, BNL-NUREG-52014. National Technical Information Service, Springfield, Va.
65. Pickaver, A. H. 1976. The production of N-nitrosoiminodiacetate from nitrilotriacetate and nitrate by microorganisms growing in mixed culture. Soil Biol. Biochem. 8: 13 17.
66. Poole, R. K.,, and G. M. Gadd (ed.). 1989. Metal-Microbe Interactions. OIRL Press at Oxford University Press, Oxford, United Kingdom.
67. Rai, D. 1984. Solubility product of Pu(IV) hydrous oxide and equilibrium constants of Pu(IV)/Pu(V), Pu(IV)/Pu(VI) and Pu(V)/Pu(IV) couples. Radiochim. Acta 35: 97 106.
68. Reynolds, C. H.,, and S. Silver. 1983. Citrate utilization by Escherichia coli: plasmid- and chromosome-encoded systems. J. Bacteriol 156: 1019 1024.
69. Riley, R. G.,, and J. M. Zachara. 1992. Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research. Report DOE/ER-0547T. National Technical Information Service, Springfield, Va.
70. Sillanpaa, M. 1997. Environmental fate of EDTA and DTPA. Rev. Environ. Contam. Toxicol. 152: 85 111.
71. Smith, R. M.,, and A. E. Martell. 1987. Critical stability constants, enthalpies and entropies for the formation of metal complexes of aminocarboxylic acids and carboxylic acids. Sci. Total Environ. 64: 125 147.
72. Somers, J. M.,, G. D. Sweet,, and W. W. Kay. 1981. Fluorocitrate resistant tricarboxylate transport mutants of Salmonella typhimurium. Mol. Gen. Genet. 181: 338 345.
73. Staudenmaier, H.,, B. V. Hove,, Z. Yaraghi,, and V. Braun. 1989. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for Fe(III)dicitrate in Escherichia coli. J. Bacteriol. 171: 2626 2633.
74. Sweet, G. D.,, C. M. Kay,, and W. W. Kay. 1984. Tricarboxylate-binding proteins of Salmonella typhimurium. J. Biol. Chem. 259: 1586 1592.
75. Swisher, R. D.,, M. M. Crutchfield,, and D. W. Caldwell. 1967. Biodegradation of nitrilotriacetate in activated sludge. Environ. Sci. Technol. 1: 820 827.
76. Swisher, R. D.,, T. A. Taulli,, and E. J. Malec,. 1974. Biodegradation of NTA metal chelates in river water, p. 237 263. In P. C. Singer (ed.), Trace Metals and Metal-Organic Interactions in Natural Waters. Ann Arbor Science Publishers, Ann Arbor, Mich.
77. Tarn, R.,, and M. H. Saier, Jr. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev. 57: 320 346.
78. Taylor, D. L.,, and P. M. Jardine. 1995. Analysis of cobalt(II)EDTA and cobalt(III)EDTA in pore water by ion chromatography. J. Environ. Qual. 24: 789 792.
79.Testa, B, 1995. The nature and functioning of cytochromes P450 and flavin-containing-monooxygenases, p. 70121. In B. Testa, and J. Caldwell (ed.), The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. Academic Press, Inc., San Diego, Calif.
80. Thibaut, D.,, H. Ratet,, D. Bisch,, D. Faucher,, L. Debussche,, and F. Blanche. 1995. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin II A biosynthesis. J. Bacteriol. 177: 5199 5205.
81. Thomas, R. A. P.,, K. Lawlor,, M. Bailey,, and L. E. Macaskie. 1998. Biodegradation of metal-EDTA complexes by an enriched microbial population. Appl. Environ. Microbiol. 64: 1319 1322.
82. Tiedje, J. M. 1977. Influence of environmental parameters on EDTA biodegradation in soils and sediments. J. Environ. Qual. 6: 21 26.
83. Tiedje, J. M. 1975. Microbial degradation of ethylenediaminetetraacetic acid in soils and sediments. Appl. Environ. Microbiol. 30: 327 329.
84. Tiedje, J. M.,, and B. B. Mason. 1974. Biodegradation of nitrilotriacetic acid (NTA) in soils. Soil Sci. Soc. Am. Proc. 38: 278 283.
85. Tiedje, J. M.,, B. B. Mason,, C. B. Warren,, and E. J. Malec. 1973. Metabolism of nitrilotriacetate by cells of Pseudomonas species. Appl. Microbiol. 25: 811 818.
86. Toste, A. P.,, L. J. Kirby,, D. E. Robertson,, K. H. Abel,, and R. W. Perkins. 1983. Characterization of radionuclide behavior in low level waste sites. IEEE Trans. Nucl. Sci. NS- 30: 580 585.
87. Tu, S.-C.,, and H. I. X. Mager. 1995. Biochemistry of bacterial bioluminescence. Photochem. Photobiol. 62: 615 624.
88. Uetz, T.,, R., and T. Egli. 1993. Characterization of an inducible, membrane-bound iminodiacetate dehydrogenase from Chelatobacter heintzii ATCC 29600. Biodegradation 3: 423 434.
89. Uetz, T.,, R. Schneider,, M. Snozzi,, and T. Egli. 1992. Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from “ Chelatobacter” strain ATCC 29600. J. Bacteriol. 174: 1179 1188.
90. Van der Rest, H. E.,, E. Schwarz,, D. Oesterhelt,, and W. N. Konings. 1990. DNA sequence of a citrate carrier of Klebsiella pneumoniae. Eur. J. Biochem. 189: 401 407.
91. Willecke, K.,, E. M. Gries,, and P. Oehr. 1973. Coupled transport of citrate and magnesium in Bacillus subtilis. J. Biol Chem. 248: 807 814.
92. Witschel, M.,, S. Nagel,, and T. Egli. 1997. Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J. Bacteriol. 179: 6937 6943.
93. Wong, P. T. S.,, D. Liu,, and B. J. Dutka. 1972. Rapid biodegradation of NTA by a novel bacterial mutant. Water Res. 6: 1577 1584.
94. Xu, Y.,, M. W. Mortimer,, T. S. Fisher,, M. L. Kahn,, F. J. Brockman,, and L. Xun. 1997. Cloning, sequencing and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase. J. Bacteriol. 179: 1112 1116.
95. Xue, Y.,, and S. J. Traina. 1996. Oxidation kinetics of Co(II)-EDTA in aqueous and semi-aqueous goethite suspensions. Environ. Sci. Technol. 30: 1975 1981.
96. Xun, L.,, R. B. Reeder,, A. E. Plymale,, D. C. Girvin,, and J. H. Bolton. 1996. Degradation of metal-nitrilotriacetate complexes by nitrilotriacetate monooxygenase. Environ. Sci. Technol 30: 1752 1755.
97. Zachara, J. M.,, P. L. Gassman,, S. C. Smith,, and D. Taylor. 1995. Oxidation and adsorption of Co(II)EDTA 2- complexes in subsurface materials with iron and manganese oxide grain coatings. Geochim. Cosmochim. Acta 59: 4449 4463.
98. Zachara, J. M.,, S. C. Smith,, and L. S. Kuzel. 1995. Adsorption and dissociation of Co-EDTA complexes in iron oxide-containing subsurface sands. Geochim. Cosmochim. Acta 59: 4825 4844.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error