1887

Chapter 2 : Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap02-2.gif

Abstract:

Over the past decade it has become clear that iron and manganese can be important electron acceptors for anaerobic respiration carried out by a diverse array of prokaryotes. This chapter is biased toward iron, in part because a number of recent findings concerning the role of microbes in iron (Fe) oxidation make this area of particular interest at the organismal level and in part because an excellent review on manganese (Mn) oxidation was recently published. It is also biased toward organisms rather than molecules, since virtually nothing is know about the molecules, involved in Fe oxidation at neutral pH, although there is an emerging story in this regard concerning Mn. In terms of biological reactivity, the two most relevant oxidation states of iron are Fe(II), the reduced ferrous form, and Fe(III), the oxidized ferric form. To illustrate the commonalities and differences that are manifested by the sites, four quite different examples are discussed. The examples are Marselisborg, Loihi, Plant Rhizosphere, and Anaerobic Environments. Representatives of some of the Fe oxidizers that are known to occur in the habitats are discussed in detail in this chapter. The oxidation of the manganous ion, Mn(II), to the manganic form, Mn(IV), is a two-electron transfer, which can proceed via one-electron steps through an unstable intermediate, Mn(III). Examples of three quite different Mn-oxidizing organisms are discussed in detail. The three Mn-oxidizing organisms are , sp. strain SG-1, and .

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Phase contrast light micrographs of iron oxides from environmental samples. (A) Sample from a circumneutral iron spring in Northern Virginia. The arrows denote L. ochracea-like sheaths. Note also the presence of finer filaments of Fe oxides that are of unknown origin, as well as the larger amorphous particles of Fe oxides. Bar, 10 μm. (B) Sample collected from an iron-rich hydrothermal vent site on the North Gorda Ridge in the Pacific Ocean. The arrows again denote the remains of L. ochracea-like sheath structures. Bar, 20 μm.

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Transmission electron micrographs of Fe-oxidizing bacteria from the Marselisborg iron seep. (A) L. ochracea ensheathed cell and empty sheath in cross-section. Note the thick Fe oxide crust on the sheath. Bar, 0.5 μm. (A) G. ferruginea. The arrow points to a portion of the stalk that is attached to the cell. Bar, 0.5 μm.

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Anaerobic growth of on iron and nitrate under chemolithoau-totrophic conditions. Symbols: ■, ferric iron in growing culture, ○, autoxidation in uninoculated culture medium at 85°C, ●, nitrate in growing culture, ▲, number of cells per milliliter. Reprinted from reference with permission of the publisher.

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap2
1. Adams, L. F.,, and W. C. Ghiorse. 1987. Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS1. J. Bacteriol. 169: 1279 1285.
2. Adams, L. F.,, and W. C. Ghiorse. 1986. Physiology and ultrastructure of Leptothrix discophora SS-1. Arch. Microbiol. 145: 126 135.
3. Barghoorn, E. S.,, and S. A. Tyler. 1965. Microorganisms from Gunflint chert. Science 147: 563 577.
4. Beijerinck, M. 1913. Oxydation des Mangancarbonates durch Bakterien. Folia Microbiol. Delft 2: 123 134.
5. Boogerd, F. C.,, and J. P. M. De Vrind. 1987. Manganese oxidation by Leptothrix discophora. J. Bacteriol. 169: 489 494.
6. Buchholz-Cleven, B. E. E.,, B. Rattunde,, and K. L. Straub. 1997. Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst. Appl. Microbiol. 20: 301 309.
7. Caldwell, D. E.,, and S. J. Caldwell. 1980. Fine structure of in situ microbial iron deposits. Geomicrobiol. J. 2: 39 53.
8. Cloud, P. 1973. Paleoecological significance of the banded iron-formation. Econ. Geol. 68: 1135 1143.
9. Corstjens, P. L. A. M.,, J. P. M. De Vrind,, P. Westbroek,, and E. W. De Vrind-De Jong. 1992. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. Appl. Environ. Microbiol. 58: 450 454.
10. Corstjens, P. L. A. M.,, J. P. M. de Vrind,, T. Goosen,, and E. W. deVrind-de Jong. 1997. Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol. J. 14: 91 108.
11. Cowen, J. P.,, and M. W. Silver. 1984. The association of iron and manganese with bacteria on marine macroparticulate material. Science 224: 1340 1342.
12.Czekalla, C , W. Mevius, and H. Hanert 1985. Quantitative removal of iron and manganese by microorganisms in rapid sand filters (in situ investigations). Water Supply 3: 111123.
13. De Vrind-De Jong, E. W.,, P. L. A. M. Corstjens,, E. S. Kempers,, P. Westbroek,, and J. P. M. De Vrind. 1990. Oxidation of manganese and iron by Leptothrix discophora: use of N,N,N',N'- tetramethyl-p-phenylenediamine as an indicator of metal oxidation. Appl. Environ. Microbiol. 56: 3458 3462.
14. Dickinson, W. H.,, F. Caccavo Jr.,, B. Olesen,, and Z. Lewandowski. 1997. Ennoblement of stainless steel by the manganese-depositing bacterium Leptothrix discophora. Appl. Environ. Microbiol. 63: 2502 2506.
15. Dorn, R. L.,, and T. M. Oberlander. 1981. Microbial origin of desert varnish. Science 213: 1245 1247.2:
16. Douka, C. 1980. Kinetics of manganese oxidation by cell-free extracts of bacteria isolated from manganese concretions from soil. Appl. Environ. Microbiol. 39: 74 80.
17. Dymond, J.,, R. W. Collier,, and M. E. Watwood. 1989. Bacterial mats from Crater Lake, Oregon and their relationship to possible deep-lake hydrothermal venting. Nature 342: 673 675.
18. Ehrenberg, C. G. 1838. Gallionella ferruginea. Taylor's Scientific Mem. 1: 402.
19. Ehrenberg, C. G. 1836. Vorlage mettheilungen ueber das wirklige vorkommen fossiler infusorien und ihre grosse verbreitung. Poggendorfs Ann. Phys. Chem. 38: 213 227.
20. Ehrenreich, A.,, and F. Widdel. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ. Microbiol. 60: 4517 4526.
21. Ehrlich, H. L.,, W. J. Ingledew,, and J. C. Salerno,. 1991. Iron- and manganese-oxidizing bacteria, p. 147 170. In J. M. Shively, and L. L. Barton (ed.), Variations in Autotrophic Life. Academic Press Inc., San Diego, Calif.
22. Embley, R. W.,, W. W. Chadwick,, I. R. Jonasson,, D. A. Butterfield,, and E. T. Baker. 1995. Initial results of the rapid response to the 1993 CoAxial event: relationships between hydrothermal and volcanic processes. Geophys. Res. Lett. 22: 143 146.
23. Emerson, D.,, R. E. Garen,, and W. C Ghiorse. 1989. Formation of Metallogenium-hke structures by a manganese-oxidizing fungus. Arch. Microbiol. 151: 223 231.
24. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl. Environ. Microbiol. 60: 4022 4031.
25. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl. Environ. Microbiol. 60: 4032 4038.
26. Emerson, D.,, and W. C. Ghiorse. 1992. Isolation, cultural maintenance, and taxonomy of a sheathforming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl. Environ. Microbiol. 58: 4001 4010.
27. Emerson, D.,, and W. C. Ghiorse. 1993. Role of disulfide bonds in maintaining the structural integrity of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 175: 7819 7827.
28. Emerson, D. 1989. Ph.D. thesis. Cornell University, Ithaca, N.Y.
29. Emerson, D.,, and W. C. Ghiorse. 1993. Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 175: 7808 7818.
30. Emerson, D.,, and. C. L. Mover. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63: 4784 4792.
31. Francois, L. M. 1986. Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320: 352 354.
32. Ghiorse, W. C. 1984. Biology of iron- and manganese-depositing bacteria. Annu. Rev. Microbiol. 38: 515 550.
33. Ghiorse, W. C.,, and S. C. Chapnick,. 1983. Metal-depositing bacteria and the distribution of manganese and iron in swamp waters, p. 367 376. In R. Hallberg (ed.), Environmental Biogeochemistry, vol. 35. Ecological Bulletin, Stockholm, Sweden.
34. Ghiorse, W. C.,, and H. L. Ehrlich,. 1993. Microbial biomineralization of iron and manganese, p. 75 107. In R. W. Fitzpatrick, and H. C. W. Skinner (ed.), Iron and Manganese Biomineralization Processes in Modern and Ancient Environments. Catena, Cremlingen-Destedt, Germany.
35. Gregory, E.,, R. S. Perry,, and J. T. Staley. 1980. Characterization, distribution, and significance of Metallogenium in Lake Washington. Microb. Ecol. 6: 125 140.
36. Hafenbrandl, D.,, M. Keller,, R. Dirmeier,, R. Rachel,, P. Ropnagel,, S. Burggraf,, H. Huber,, and K. O. Stetter. 1996. Ferroglobus placidus gen. nov., sp. nov. a novel hyperthermophilic archaeum that oxidizes Fe2 + at neutral pH under anoxic conditions. Arch. Microbiol. 166: 308 314.
37. Hallbeck, L.,, and K. Pederson. 1991. Autotrophic and auxotrophic growth of Gallionella ferruginea. J. Gen. Microbiol. 137: 2657 2661.
38. Hallbeck, L.,, F. Stahl,, and K. Pedersen. 1993. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J. Gen. Microbiol. 139: 1531 1535.
39. Hallbeck, L.,, and K. Pedersen. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J . Gen. Microbiol. 136: 1675 1680.
40. Hanert, H. H., 1992. The Genus Gallionella, p. 4082 4088. In H. G. Triiper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. 4. Springer-Verlag, New York, N.Y.
41. Hanert, H. H., 1992. The genus Siderocapsa (and other iron- or manganese-oxidizing eubacteria), p. 4102 4113. In H. G. Triiper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. 4. Springer-Verlag, New York, N.Y.
42. Harder, E. C. 1919. Iron-depositing bacteria and their geologic relations. U.S. Geol. Surv. Prof. Pap. 113: 7 89.
43. Heldal, M.,, K. M. Fagerbakke,, P. Tuomi,, and G. Bratbak. 1996. Abundant populations of iron and manganese sequestering bacteria in coastal water. Aquat. Microb. Ecol. 11: 127 133.
44. Heldal, M.,, and O. Tumyr. 1983. Gallionella from metaliminion in an eutrophic lake: morphology and X-ray energy-dispersive microanalysis of apical cells and stalks. Can. J. Microbiol. 29: 303 308.
45. Home, R. A. 1978. The Chemistry of Our Environment. John Wiley & Sons, New York, N.Y.
46. Ivarson, K. C.,, and M. Sojak. 1978. Microorganisms and ochre deposits in field drains of Ontario. Can. J. Soil Sci. 58: 1 17.
47. Jannasch, H. W.,, and M. J. Mottl. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717 725.
48. Jones, J. G. 1986. Iron transformations by freshwater bacteria. Adv. Microb. Ecol. 9: 149 185.
49. Juniper, S. K.,, and B. M. Tebo,. 1995. Microbe-metal interactions and mineral deposition at hydrothermal vents, p. 219 253. In D. M. Karl (ed.), The Microbiology of Deep-Sea Hydrothermal Vents. CRC Press Inc., Boca Raton, Fla.
50. Karl, D. M.,, A. M. Brittain,, and B. D. Tilbrook. 1989. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-Sea Res. 36: 1655 1673.
51. Karl, D. M.,, G. M. McMurtry,, G. M. Malahoff,, and M. O. Garcia. 1988. Loihi seamount, Hawaii, a mid-plate volcano with a distinctive hydrothermal system. Nature 335: 532 535.
52.Klaveness. 1977. Morphology, distribution and significance of the manganese-accumulating microorganism Metallogenium in lakes. Hydrobiologia 56: 2533.
53. Kucera, S.,, and R. S. Wolfe. 1957. A selective enrichment method for Gallionella ferruginea. J. Bacteriol. 74: 344 349.
54. Liang, L.,, J. A. McNabb,, J. M. Paulk,, B. Gu,, and J. F. McCarthy. 1993. Kinetics of Fe(II) oxygenation at low partial pressure of oxygen in the presence of natural organic matter. Environ. Sci. Technol 27: 1864 1870.
55. Liinsdorf, H.,, I. Briimmer,, K. N. Timmis,, and I. Wagner-Dobler. 1997. Metal selectivity of in situ microcolonies in biofilms of the Elbe River. J. Bacteriol. 179: 31 40.
56.Lutters-Czekalla. 1990. Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source. Arch. Microbiol 154: 417421.
57. Maki, J. S.,, B. M. Tebo,, F. E. Palmer,, K. H. Nealson,, and J. T. Staley. 1987. The abundance and biological activity of manganese-oxidizing bacteria and Metallogenium-Yike morphotypes in Lake Washington, USA. FEMS Microbiol Ecol. 45: 21 29.
58. Mandernack, K. W.,, J. Post,, and B. M. Tebo. 1995. Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: evidence for the direct oxidation of Mn (II) to Mn (IV). Geochim. Cosmochim. Acta 59: 4393 4408.
59. Martin, J. H., and 42 others. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 1973 1802
60. McKay, D. S.,, E. K. Gibson Jr,, K. L. Thomas-Keprta,, H. Vali,, C. S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling,, and R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273: 924 930.
61. Mendelssohn, I. A.,, B. A. Kleiss,, and J. S. Wakeley. 1995. Factors controlling the formation of oxidized root channels: a review. Wetlands 15: 37 46.
62. Miyajima, T. 1992. Production of Metallogenium-Wke particles by heterotrophic bacteria collected from a lake. Arch. Microbiol. 158: 100 106.
63. Mojzsiz, S. J.,, G. Arrhenius,, K. D. McKeegan,, T. M. Harrison,, A. P. Nutman,, and C. R. L. Friend. 1996. Evidence for life on Earth before 3,800 million years ago. Nature 384: 55 59.
64. Mouchet, P. 1992. From conventional fo biological removal of iron and manganese in France. J. Am. Water Works Assoc. 84: 158 167.
65. Mover, C. L.,, F. C. Dobhs,, and D. M. Karl. 1994. Estimation of diversity and community structure through restriction fragment polymorphism distribution analysis of bacterial I6S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60: 871 879.
66. Moyer, C. L.,, F. C. Dobbs,, and D. M, Karl, 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61: 1555 1562.
67. Mulder, E. G.,, and M. H. Deinema,. 1992. The sheathed bacteria, p. 2612 2624. In H. G. Truper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, vol. 2. Springer- Verlag, New York, N.Y.
68. Nealson, K. H., 1983. The microbial iron cycle, p. 159 190. In W. Krumbein (ed.), Microbial geochemistry. Blackwell Scientific, Boston, Mass.
69. Nealson, K. H., 1983. The microbial manganese cycle, p. 191 221. In W. Krumbein (ed.), Microbial Geochemistry. Blackwell Scientific, Boston, Mass.
70. Nealson, K. H.,, B. M. Tebo,, and R. A. Rosson. 1988. Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33: 279 318.
71. Nealson, K. H.,, and J. Ford. 1980. Surface enhancement of bacterial manganese oxidation: implications for aquatic environments. Geomicrobiol. J. 2: 21 37.
72. Nelson, D. C.,, and H. W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol. 136: 262 269.
73. Peck, S. B. 1986. Bacterial deposition of iron and manganese oxides in North American caves. Natl. Speleol. Soc. Bull. 44: 26 30.
74. Perfil'ev, B. V.,, and D. R. Gabe. 1961. Capillary Methods of Investigating Microorganisms. Oliver & Boyd, Edinburgh, United Kingdom.
75. Pringsheim, E. G. 1949. Iron bacteria. Biol. Rev. 24: 200 245.
76. Rawlings, D. E.,, and T. Kusano. 1994. Molecular genetics of Thiobacillus ferrooxidans. Microbiol. Rev. 58: 39 55.
77. Robbins, E. I.,, and A. S. Iberall. 1991. Mineral remains of early life on Earth? On Mars? Geomicrobiol. J. 9: 51 66.
78. Rogers, S. R.,, and J.J. Anderson. 1976. Measurement of growth and iron deposition in Spaerotilus discophorus. J. Bacteriol. 126: 257 263.
79. Rosson, R. A.,, and K. H. Nealson. 1982. Manganese binding and oxidation by spores of a marine bacillus. J. Bacteriol. 151: 1027 1034.
80. Schlesinger, W. H. 1997. Biogeochemistry: an Analysis of Global Change, 2nd ed. Academic Press Inc., New York, N.Y.
81. Schmidt, W. D.,, and J. Overbeck. 1984. Studies of 'iron bacteria' from Lake Pluss. Z. Allg. Mikrobiol. 24: 329 339.
82. Sheldon, S. P.,, and D. K. Skelly. 1990. Differential colonization and growth of algae and ferromanganese- depositing bacteria in a mountain stream. J. Fresh Water Ecol. 5: 475 485.
83. Siering, P. L.,, and W. C. Ghiorse. 1997. PCR detection of a putative manganese oxidation gene (mofA) in environmental samples and assessement of mofA homology among diverse manganeseoxidizing bacteria. Geomicrobiol. J. 14: 109 125.
84. Siering, P. L.,, and W. C. Ghiorse. 1996. Phylogeny of the Sphaerotilus-Leptothrix group inferred from morphological comparisons, genomic fingerprinting, and 16S ribosomal DNA sequence analysis. Int. J. Syst. Bacteriol. 46: 173 182.
85. Starkey, R. L. 1945. Transformations of iron by bacteria in water. J. Am. Water Works Assoc. 37: 963 984.
86. Straub, K. L.,, M. Benz,, B. Schink,, and F. Widdel. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62: 1458 1460.
87. Straub, K. L.,, F. A. Rainey,, and F. Widdel. 1999. Isolation and characterization of marine phototrophic ferrous iron-oxidizing purple bacteria, Rhodovulum iodoswn sp. nov. and Rhodovulum robiginosum sp. nov. Int. J. Syst. Bacteriol. 49: 729 735.
88. Stumm, W.,, and J. J. Morgan. 1981. Aquatic Chemistry, 2nd ed. John Wiley & Sons, Inc., New York, N.Y.
89. Sunda, W. G.,, and D. J. Kieber. 1994. Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 367: 62 64.
90. Tebo, B. M.,, W. C. Ghiorse,, L. G. van Waasbergen,, P. L. Siering,, and R. Caspi. 1997. Bacterially- mediated mineral formation: insights into manganese (II) oxidation from molecular genetic and biochemical studies. Rev. Mineral. 35: 225 266.
91. Tipping, E. A.,, J. G. Jones,, and C. Woof. 1985. Lacustrine manganese oxides: Mn oxidation states and relationships to “Mn depositing bacteria.” Arch. Hydrobiol. 105: 161 175.
92. Trolldenier, G. 1988. Visualization of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanzeneraehr. Bodenkd. 151: 117 121.
93. Tuhela, L.,, L. Carlson,, and O. H. Tuovinen. 1997. Biogeochemical transformations of Fe and Mn in oxic groundwater and well water environments. J. Environ. Sci. Health A 32: 407 426.
94. Tyrrel, S. F.,, and P. Howsam. 1994. Field observations of iron biofouling in water supply boreholes. Biofouling 8: 65 69.
95. van Veen, W. L.,, E. G. Mulder,, and M. H. Deinema. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42: 329 356.
96. Van Waasbergen, L. G.,, J. A. Hoch,, and B. M. Tebo. 1993. Genetic analysis of the marine manganese-oxidizing Bacillus sp. strain SG-1L protoplast transformation, Tn977 mutagenesis, and identification of chromosomal loci involved in manganese oxidation. J. Bacteriol. 175: 7594 7603.
97. Van Waasbergen, L. G.,, M. Hildebrand,, and B. M. Tebo. 1996. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J. Bacteriol. 178: 3517 3530.
98. Walker, J. C. G.,, C. Klein,, M. Schidlowski,, J. W. Schopf,, D. J. Stevenson,, and M. R. Walter,. 1983. Environmental evolution of the Archaean-Early Proterozoic biosphere, p. 260 290. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Princeton University Press, Princeton, N.J.
99. Widdel, F.,, S. Schnell,, S. Heising,, A. Ehrenreich,, B. Assmus,, and B. Schink. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834 836.
100. Winogradsky, S. 1888. Ueber Eisenbakterien. Bot. Z. 46: 262 270.
101.Zavarzin. 1992. The genus Metallogenium, p. 524528. In H. G. Triiper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. 2. Springer-Verlag, New York, N.Y.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error