1887

Chapter 2 : Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap02-2.gif

Abstract:

Over the past decade it has become clear that iron and manganese can be important electron acceptors for anaerobic respiration carried out by a diverse array of prokaryotes. This chapter is biased toward iron, in part because a number of recent findings concerning the role of microbes in iron (Fe) oxidation make this area of particular interest at the organismal level and in part because an excellent review on manganese (Mn) oxidation was recently published. It is also biased toward organisms rather than molecules, since virtually nothing is know about the molecules, involved in Fe oxidation at neutral pH, although there is an emerging story in this regard concerning Mn. In terms of biological reactivity, the two most relevant oxidation states of iron are Fe(II), the reduced ferrous form, and Fe(III), the oxidized ferric form. To illustrate the commonalities and differences that are manifested by the sites, four quite different examples are discussed. The examples are Marselisborg, Loihi, Plant Rhizosphere, and Anaerobic Environments. Representatives of some of the Fe oxidizers that are known to occur in the habitats are discussed in detail in this chapter. The oxidation of the manganous ion, Mn(II), to the manganic form, Mn(IV), is a two-electron transfer, which can proceed via one-electron steps through an unstable intermediate, Mn(III). Examples of three quite different Mn-oxidizing organisms are discussed in detail. The three Mn-oxidizing organisms are , sp. strain SG-1, and .

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Phase contrast light micrographs of iron oxides from environmental samples. (A) Sample from a circumneutral iron spring in Northern Virginia. The arrows denote L. ochracea-like sheaths. Note also the presence of finer filaments of Fe oxides that are of unknown origin, as well as the larger amorphous particles of Fe oxides. Bar, 10 μm. (B) Sample collected from an iron-rich hydrothermal vent site on the North Gorda Ridge in the Pacific Ocean. The arrows again denote the remains of L. ochracea-like sheath structures. Bar, 20 μm.

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Transmission electron micrographs of Fe-oxidizing bacteria from the Marselisborg iron seep. (A) L. ochracea ensheathed cell and empty sheath in cross-section. Note the thick Fe oxide crust on the sheath. Bar, 0.5 μm. (A) G. ferruginea. The arrow points to a portion of the stalk that is attached to the cell. Bar, 0.5 μm.

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Anaerobic growth of on iron and nitrate under chemolithoau-totrophic conditions. Symbols: ■, ferric iron in growing culture, ○, autoxidation in uninoculated culture medium at 85°C, ●, nitrate in growing culture, ▲, number of cells per milliliter. Reprinted from reference with permission of the publisher.

Citation: Emerson D. 2000. Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH, p 31-52. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap2
1. Adams, L. F.,, and W. C. Ghiorse. 1987. Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS1. J. Bacteriol. 169: 12791285.
2. Adams, L. F.,, and W. C. Ghiorse. 1986. Physiology and ultrastructure of Leptothrix discophora SS-1. Arch. Microbiol. 145:126135.
3. Barghoorn, E. S.,, and S. A. Tyler. 1965. Microorganisms from Gunflint chert. Science 147:563577.
4. Beijerinck, M. 1913. Oxydation des Mangancarbonates durch Bakterien. Folia Microbiol. Delft 2:123134.
5. Boogerd, F. C.,, and J. P. M. De Vrind. 1987. Manganese oxidation by Leptothrix discophora. J. Bacteriol. 169:489494.
6. Buchholz-Cleven, B. E. E.,, B. Rattunde,, and K. L. Straub. 1997. Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst. Appl. Microbiol. 20:301309.
7. Caldwell, D. E.,, and S. J. Caldwell. 1980. Fine structure of in situ microbial iron deposits. Geomicrobiol. J. 2:3953.
8. Cloud, P. 1973. Paleoecological significance of the banded iron-formation. Econ. Geol. 68:11351143.
9. Corstjens, P. L. A. M.,, J. P. M. De Vrind,, P. Westbroek,, and E. W. De Vrind-De Jong. 1992. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. Appl. Environ. Microbiol. 58:450454.
10. Corstjens, P. L. A. M.,, J. P. M. de Vrind,, T. Goosen,, and E. W. deVrind-de Jong. 1997. Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol. J. 14:91108.
11. Cowen, J. P.,, and M. W. Silver. 1984. The association of iron and manganese with bacteria on marine macroparticulate material. Science 224:13401342.
12.Czekalla, C , W. Mevius, and H. Hanert 1985. Quantitative removal of iron and manganese by microorganisms in rapid sand filters (in situ investigations). Water Supply 3:111123.
13. De Vrind-De Jong, E. W.,, P. L. A. M. Corstjens,, E. S. Kempers,, P. Westbroek,, and J. P. M. De Vrind. 1990. Oxidation of manganese and iron by Leptothrix discophora: use of N,N,N',N'- tetramethyl-p-phenylenediamine as an indicator of metal oxidation. Appl. Environ. Microbiol. 56: 34583462.
14. Dickinson, W. H.,, F. CaccavoJr.,, B. Olesen,, and Z. Lewandowski. 1997. Ennoblement of stainless steel by the manganese-depositing bacterium Leptothrix discophora. Appl. Environ. Microbiol. 63:25022506.
15. Dorn, R. L.,, and T. M. Oberlander. 1981. Microbial origin of desert varnish. Science 213:12451247.2:
16. Douka, C. 1980. Kinetics of manganese oxidation by cell-free extracts of bacteria isolated from manganese concretions from soil. Appl. Environ. Microbiol. 39:7480.
17. Dymond, J.,, R. W. Collier,, and M. E. Watwood. 1989. Bacterial mats from Crater Lake, Oregon and their relationship to possible deep-lake hydrothermal venting. Nature 342:673675.
18. Ehrenberg, C. G. 1838. Gallionella ferruginea. Taylor's Scientific Mem. 1:402.
19. Ehrenberg, C. G. 1836. Vorlage mettheilungen ueber das wirklige vorkommen fossiler infusorien und ihre grosse verbreitung. Poggendorfs Ann. Phys. Chem. 38:213227.
20. Ehrenreich, A.,, and F. Widdel. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ. Microbiol. 60:45174526.
21. Ehrlich, H. L.,, W. J. Ingledew,, and J. C. Salerno,. 1991. Iron- and manganese-oxidizing bacteria, p. 147170. In J. M. Shively, and L. L. Barton (ed.), Variations in Autotrophic Life. Academic Press Inc., San Diego, Calif.
22. Embley, R. W.,, W. W. Chadwick,, I. R. Jonasson,, D. A. Butterfield,, and E. T. Baker. 1995. Initial results of the rapid response to the 1993 CoAxial event: relationships between hydrothermal and volcanic processes. Geophys. Res. Lett. 22:143146.
23. Emerson, D.,, R. E. Garen,, and W. C Ghiorse. 1989. Formation of Metallogenium-hke structures by a manganese-oxidizing fungus. Arch. Microbiol. 151:223231.
24. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl. Environ. Microbiol. 60:40224031.
25. Emerson, D.,, and N. P. Revsbech. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl. Environ. Microbiol. 60:40324038.
26. Emerson, D.,, and W. C. Ghiorse. 1992. Isolation, cultural maintenance, and taxonomy of a sheathforming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl. Environ. Microbiol. 58:40014010.
27. Emerson, D.,, and W. C. Ghiorse. 1993. Role of disulfide bonds in maintaining the structural integrity of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 175:78197827.
28. Emerson, D. 1989. Ph.D. thesis. Cornell University, Ithaca, N.Y.
29. Emerson, D.,, and W. C. Ghiorse. 1993. Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 175:78087818.
30. Emerson, D.,, and. C. L. Mover. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63:47844792.
31. Francois, L. M. 1986. Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320:352354.
32. Ghiorse, W. C. 1984. Biology of iron- and manganese-depositing bacteria. Annu. Rev. Microbiol. 38:515550.
33. Ghiorse, W. C.,, and S. C. Chapnick,. 1983. Metal-depositing bacteria and the distribution of manganese and iron in swamp waters, p. 367376. In R. Hallberg (ed.), Environmental Biogeochemistry, vol. 35. Ecological Bulletin, Stockholm, Sweden.
34. Ghiorse, W. C.,, and H. L. Ehrlich,. 1993. Microbial biomineralization of iron and manganese, p. 75107. In R. W. Fitzpatrick, and H. C. W. Skinner (ed.), Iron and Manganese Biomineralization Processes in Modern and Ancient Environments. Catena, Cremlingen-Destedt, Germany.
35. Gregory, E.,, R. S. Perry,, and J. T. Staley. 1980. Characterization, distribution, and significance of Metallogenium in Lake Washington. Microb. Ecol. 6:125140.
36. Hafenbrandl, D.,, M. Keller,, R. Dirmeier,, R. Rachel,, P. Ropnagel,, S. Burggraf,, H. Huber,, and K. O. Stetter. 1996. Ferroglobus placidus gen. nov., sp. nov. a novel hyperthermophilic archaeum that oxidizes Fe2 + at neutral pH under anoxic conditions. Arch. Microbiol. 166:308314.
37. Hallbeck, L.,, and K. Pederson. 1991. Autotrophic and auxotrophic growth of Gallionella ferruginea. J. Gen. Microbiol. 137:26572661.
38. Hallbeck, L.,, F. Stahl,, and K. Pedersen. 1993. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J. Gen. Microbiol. 139:15311535.
39. Hallbeck, L.,, and K. Pedersen. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J. Gen. Microbiol. 136:16751680.
40. Hanert, H. H., 1992. The Genus Gallionella, p. 40824088. In H. G. Triiper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. 4. Springer-Verlag, New York, N.Y.
41. Hanert, H. H., 1992. The genus Siderocapsa (and other iron- or manganese-oxidizing eubacteria), p. 41024113. In H. G. Triiper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. 4. Springer-Verlag, New York, N.Y.
42. Harder, E. C. 1919. Iron-depositing bacteria and their geologic relations. U.S. Geol. Surv. Prof. Pap. 113:789.
43. Heldal, M.,, K. M. Fagerbakke,, P. Tuomi,, and G. Bratbak. 1996. Abundant populations of iron and manganese sequestering bacteria in coastal water. Aquat. Microb. Ecol. 11:127133.
44. Heldal, M.,, and O. Tumyr. 1983. Gallionella from metaliminion in an eutrophic lake: morphology and X-ray energy-dispersive microanalysis of apical cells and stalks. Can. J. Microbiol. 29:303308.
45. Home, R. A. 1978. The Chemistry of Our Environment. John Wiley & Sons, New York, N.Y.
46. Ivarson, K. C.,, and M. Sojak. 1978. Microorganisms and ochre deposits in field drains of Ontario. Can. J. Soil Sci. 58:117.
47. Jannasch, H. W.,, and M. J. Mottl. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229:717725.
48. Jones, J. G. 1986. Iron transformations by freshwater bacteria. Adv. Microb. Ecol. 9:149185.
49. Juniper, S. K.,, and B. M. Tebo,. 1995. Microbe-metal interactions and mineral deposition at hydrothermal vents, p. 219253. In D. M. Karl (ed.), The Microbiology of Deep-Sea Hydrothermal Vents. CRC Press Inc., Boca Raton, Fla.
50. Karl, D. M.,, A. M. Brittain,, and B. D. Tilbrook. 1989. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-Sea Res. 36:16551673.
51. Karl, D. M.,, G. M. McMurtry,, G. M. Malahoff,, and M. O. Garcia. 1988. Loihi seamount, Hawaii, a mid-plate volcano with a distinctive hydrothermal system. Nature 335:532535.
52.Klaveness. 1977. Morphology, distribution and significance of the manganese-accumulating microorganism Metallogenium in lakes. Hydrobiologia 56:2533.
53. Kucera, S.,, and R. S. Wolfe. 1957. A selective enrichment method for Gallionella ferruginea. J. Bacteriol. 74:344349.
54. Liang, L.,, J. A. McNabb,, J. M. Paulk,, B. Gu,, and J. F. McCarthy. 1993. Kinetics of Fe(II) oxygenation at low partial pressure of oxygen in the presence of natural organic matter. Environ. Sci. Technol 27:18641870.
55. Liinsdorf, H.,, I. Briimmer,, K. N. Timmis,, and I. Wagner-Dobler. 1997. Metal selectivity of in situ microcolonies in biofilms of the Elbe River. J. Bacteriol. 179:3140.
56.Lutters-Czekalla. 1990. Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source. Arch. Microbiol 154:417421.
57. Maki, J. S.,, B. M. Tebo,, F. E. Palmer,, K. H. Nealson,, and J. T. Staley. 1987. The abundance and biological activity of manganese-oxidizing bacteria and Metallogenium-Yike morphotypes in Lake Washington, USA. FEMS Microbiol Ecol. 45:2129.
58. Mandernack, K. W.,, J. Post,, and B. M. Tebo. 1995. Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: evidence for the direct oxidation of Mn (II) to Mn (IV). Geochim. Cosmochim. Acta 59:43934408.
59. Martin, J. H., and 42 others. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:19731802
60. McKay, D. S.,, E. K. Gibson Jr,, K. L. Thomas-Keprta,, H. Vali,, C. S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling,, and R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924930.
61. Mendelssohn, I. A.,, B. A. Kleiss,, and J. S. Wakeley. 1995. Factors controlling the formation of oxidized root channels: a review. Wetlands 15:3746.
62. Miyajima, T. 1992. Production of Metallogenium-Wke particles by heterotrophic bacteria collected from a lake. Arch. Microbiol. 158:100106.
63. Mojzsiz, S. J.,, G. Arrhenius,, K. D. McKeegan,, T. M. Harrison,, A. P. Nutman,, and C. R. L. Friend. 1996. Evidence for life on Earth before 3,800 million years ago. Nature 384:5559.
64. Mouchet, P. 1992. From conventional fo biological removal of iron and manganese in France. J. Am. Water Works Assoc. 84:158167.
65. Mover, C. L.,, F. C. Dobhs,, and D. M. Karl. 1994. Estimation of diversity and community structure through restriction fragment polymorphism distribution analysis of bacterial I6S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60:871879.
66. Moyer, C. L.,, F. C. Dobbs,, and D. M, Karl, 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61:15551562.
67. Mulder, E. G.,, and M. H. Deinema,. 1992. The sheathed bacteria, p. 26122624. In H. G. Truper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, vol. 2. Springer- Verlag, New York, N.Y.
68. Nealson, K. H., 1983. The microbial iron cycle, p. 159190. In W. Krumbein (ed.), Microbial geochemistry. Blackwell Scientific, Boston, Mass.
69. Nealson, K. H., 1983. The microbial manganese cycle, p. 191221. In W. Krumbein (ed.), Microbial Geochemistry. Blackwell Scientific, Boston, Mass.
70. Nealson, K. H.,, B. M. Tebo,, and R. A. Rosson. 1988. Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33:279318.
71. Nealson, K. H.,, and J. Ford. 1980. Surface enhancement of bacterial manganese oxidation: implications for aquatic environments. Geomicrobiol. J. 2:2137.
72. Nelson, D. C.,, and H. W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol. 136:262269.
73. Peck, S. B. 1986. Bacterial deposition of iron and manganese oxides in North American caves. Natl. Speleol. Soc. Bull. 44:2630.
74. Perfil'ev, B. V.,, and D. R. Gabe. 1961. Capillary Methods of Investigating Microorganisms. Oliver & Boyd, Edinburgh, United Kingdom.
75. Pringsheim, E. G. 1949. Iron bacteria. Biol. Rev. 24:200245.
76. Rawlings, D. E.,, and T. Kusano. 1994. Molecular genetics of Thiobacillus ferrooxidans. Microbiol. Rev. 58:3955.
77. Robbins, E. I.,, and A. S. Iberall. 1991. Mineral remains of early life on Earth? On Mars? Geomicrobiol. J. 9:5166.
78. Rogers, S. R.,, and J.J. Anderson. 1976. Measurement of growth and iron deposition in Spaerotilus discophorus. J. Bacteriol. 126:257263.
79. Rosson, R. A.,, and K. H. Nealson. 1982. Manganese binding and oxidation by spores of a marine bacillus. J. Bacteriol. 151:10271034.
80. Schlesinger, W. H. 1997. Biogeochemistry: an Analysis of Global Change, 2nd ed. Academic Press Inc., New York, N.Y.
81. Schmidt, W. D.,, and J. Overbeck. 1984. Studies of 'iron bacteria' from Lake Pluss. Z. Allg. Mikrobiol. 24:329339.
82. Sheldon, S. P.,, and D. K. Skelly. 1990. Differential colonization and growth of algae and ferromanganese- depositing bacteria in a mountain stream. J. Fresh Water Ecol. 5:475485.
83. Siering, P. L.,, and W. C. Ghiorse. 1997. PCR detection of a putative manganese oxidation gene (mofA) in environmental samples and assessement of mofA homology among diverse manganeseoxidizing bacteria. Geomicrobiol. J. 14:109125.
84. Siering, P. L.,, and W. C. Ghiorse. 1996. Phylogeny of the Sphaerotilus-Leptothrix group inferred from morphological comparisons, genomic fingerprinting, and 16S ribosomal DNA sequence analysis. Int. J. Syst. Bacteriol. 46:173182.
85. Starkey, R. L. 1945. Transformations of iron by bacteria in water. J. Am. Water Works Assoc. 37: 963984.
86. Straub, K. L.,, M. Benz,, B. Schink,, and F. Widdel. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62:14581460.
87. Straub, K. L.,, F. A. Rainey,, and F. Widdel. 1999. Isolation and characterization of marine phototrophic ferrous iron-oxidizing purple bacteria, Rhodovulum iodoswn sp. nov. and Rhodovulum robiginosum sp. nov. Int. J. Syst. Bacteriol. 49:729735.
88. Stumm, W.,, and J. J. Morgan. 1981. Aquatic Chemistry, 2nd ed. John Wiley & Sons, Inc., New York, N.Y.
89. Sunda, W. G.,, and D. J. Kieber. 1994. Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 367:6264.
90. Tebo, B. M.,, W. C. Ghiorse,, L. G. van Waasbergen,, P. L. Siering,, and R. Caspi. 1997. Bacterially- mediated mineral formation: insights into manganese (II) oxidation from molecular genetic and biochemical studies. Rev. Mineral. 35:225266.
91. Tipping, E. A.,, J. G. Jones,, and C. Woof. 1985. Lacustrine manganese oxides: Mn oxidation states and relationships to “Mn depositing bacteria.” Arch. Hydrobiol. 105:161175.
92. Trolldenier, G. 1988. Visualization of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanzeneraehr. Bodenkd. 151:117121.
93. Tuhela, L.,, L. Carlson,, and O. H. Tuovinen. 1997. Biogeochemical transformations of Fe and Mn in oxic groundwater and well water environments. J. Environ. Sci. Health A32:407426.
94. Tyrrel, S. F.,, and P. Howsam. 1994. Field observations of iron biofouling in water supply boreholes. Biofouling 8:6569.
95. van Veen, W. L.,, E. G. Mulder,, and M. H. Deinema. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42:329356.
96. Van Waasbergen, L. G.,, J. A. Hoch,, and B. M. Tebo. 1993. Genetic analysis of the marine manganese-oxidizing Bacillus sp. strain SG-1L protoplast transformation, Tn977 mutagenesis, and identification of chromosomal loci involved in manganese oxidation. J. Bacteriol. 175:75947603.
97. Van Waasbergen, L. G.,, M. Hildebrand,, and B. M. Tebo. 1996. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J. Bacteriol. 178:35173530.
98. Walker, J. C. G.,, C. Klein,, M. Schidlowski,, J. W. Schopf,, D. J. Stevenson,, and M. R. Walter,. 1983. Environmental evolution of the Archaean-Early Proterozoic biosphere, p. 260290. In J. W. Schopf (ed.), Earth's Earliest Biosphere. Princeton University Press, Princeton, N.J.
99. Widdel, F.,, S. Schnell,, S. Heising,, A. Ehrenreich,, B. Assmus,, and B. Schink. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834836.
100. Winogradsky, S. 1888. Ueber Eisenbakterien. Bot. Z. 46:262270.
101.Zavarzin. 1992. The genus Metallogenium, p. 524528. In H. G. Triiper,, A. Balows,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. 2. Springer-Verlag, New York, N.Y.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error