1887

Chapter 3 : Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap03-2.gif

Abstract:

It is clear that iron metabolizing acidophilic microorganisms comprise a diverse range of prokaryotes that vary considerably in aspects of their physiologies, phylogenies, and biochemistries. Acidophilic ferrous iron-oxidizing prokaryotes have frequently been categorized on the basis of their temperature optima for growth. Three groups have been described: mesophilic iron oxidizers, which have temperature optima of ca. 25 to 37°C, thermotolerant iron oxidizers, which have temperature optima of ca. 40 to 60°C, and thermophilic iron oxidizers, which have temperature optima of >60°C. An immediate and striking feature of cell extracts derived from bacteria grown by aerobic respiration on iron is the rich and varied color of the extracted material. Thus, cell-free extracts of , "" and are deep blue, red, and bright yellow, respectively. These colors correspond to the conspicuous redox-active biomolecules expressed by each organism as it respires aerobically on ferrous ions. The extent of the apparent diversity in iron respiratory chains and their components is not limited to just the novel chromophores. The comparative spectroscopic analyses summarized are intended to provide an overview of the most conspicuous components of the respiratory chains involved in iron oxidation as the first step in a more detailed investigation of the oxidation process in the different bacteria. The existence of multiple biochemical strategies to extract energy from the aerobic oxidation of iron provides more opportunities to investigate the molecular basis of energy conservation in these bacteria.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3

Key Concept Ranking

Bacteria and Archaea
0.4470223
Ferrous Iron Oxidation
0.434567
16s rRNA Sequencing
0.40508398
0.4470223
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Phylogenetic tree based on a comparison of 16S rRNA gene sequences, showing the distribution on iron-metabolizing prokaryotes in the domains Archaea and Bacteria. With the exceptions of Acidiphilium acidophilum and Acidiphilium strain SJH, which catalyze the dissimilatory reduction of ferric iron, all the micro-organisms shown are iron-oxidizing prokaryotes.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Scanning electron micrographs of some iron-oxidizing acidophilic bacteria, (a) T. ferrooxidans; (b) “L. ferrooxidans-”: (c) “F. acidophilus”; (d) S. acidophilus; (e) A. ferrooxidans; and (f) a mesophilic Sulfobacillus sp. (geothermal spring, Montserrat). Bars, 1 μm.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Absorbance spectra of oxidized (solid line) and reduced (dashed line) rusticyanin from T. ferrooxidans. The absorbance spectrum of the reduced rusticyanin was determined 10 min after the sample of oxidized rusticyanin was mixed with excess ferrous sulfate.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Absorbance spectra of oxidized (solid line) and reduced (dashed line) cell extracts from T. ferrooxidans ATCC 23270 (A), strain JWC (B), and 7: prosperus DSM 5130 (Ñ). Each inset shows a difference spectrum in the far-visible region that represents the absolute spectrum of the oxidized extract minus that of the Fe(II)-reduced extract.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Absorbance spectra of oxidized (dashed line) and reduced (solid line) red cytochrome from “L. ferrooxidans” The inset shows a difference spectrum representing the absolute spectrum of the Fe(II)-reduced red cytochrome minus that of the oxidized red cytochrome.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Absorbance spectra of oxidized (solid line) and reduced (dashed line) yellow chromophore from 5. thermosulfidooxidans. The inset shows a difference spectrum representing the absolute spectrum of the oxidized yellow chromophore minus that of the Fe(II)-reduced yellow chromophore.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Absorbance spectra of oxidized (dashed line) and reduced (solid line) yellow cytochrome from M. sedula. The inset shows a difference spectrum representing the absolute spectrum of the Fe(II)-reduced yellow cytochrome minus that of the oxidized yellow cytochrome.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Absorbance spectra of the reduced cell extracts from strain JW14C (solid line), “L. ferrooxidans” P3A (dashed line), and M. sedula DSM 5348 (dot-dashed line). The left and right halves represent the Soret and alpha absorbance bands, respectively, of each cytochrome preparation, showing the wavelengths of maximum absorbance of each spectrum.

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap3
1. Bacelar-Nicolau, P. 1996. Novel iron-oxidising acidophilic heterotrophic bacteria from mineral leaching environments. Ph.D. thesis. University of Wales, Bangor, United Kingdom.
2. Blake, R. C., II,, and S. McGinness,. 1993. Electron-transfer proteins of bacteria that respire on iron, p. 615628. In A. E. Torma,, M. L. Apel,, and C. L. Brierley (ed.), Biohydrometallurgical Technologies, vol. II. Minerals. Metals & Materials Society, Warrendale, Pa..
3. Blake, R. C., II,, and N. Ohmura,. 1999. Thiobacillus ferrooxidans binds specifically to iron atoms at the exposed edge of the pyrite crystal lattice, p. 663672. In R. Amils, and A. Ballester (ed.), Biohydrometallurgy and the Environment toward the Mining of the 21s' Century. Elsevier, New York, N.Y..
4. Blake, R. C., II,, and E. A. Shute. 1987. Respiratory enzymes of Thiobacillus ferrooxidans. A kinetic study of electron transfer between iron and rusticyanin in sulfate media. J. Biol. Chem. 262: 1498314989.
5. Blake, R. C., II,, and E. A. Shute. 1994. Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron:rusticyanin oxidoreductase. Biochemistry 33:92209228.
6. Blake, R. C., II,, and E. A. Shute. 1997. Purification and characterization of a novel cytochrome from Leptospirillum ferrooxidans, p. PB3.1PB3.10. In International Biohydrometallurgy Symposium '97. Australian Mineral Foundation, Glenside, Australia.
7. Blake, R. C., II,, E. A. Shute,, M. M. Greenwood,, G. H. Spencer,, and W. J. Ingledew. 1993 Enzymes of aerobic respiration on iron. FEMS Microbiol. Rev. 11:918.
8. Blake, R. C., II,, E. A. Shute,, J. Waskovsky,, and A. P. Harrison, Jr. 1993. Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiol. J. 10:173192.
9. Bridge, T. A. M. 1995. Iron reduction by acidophilic bacteria. Ph.D. thesis. University of Wales, Bangor, United Kingdom.
10. Bridge, T. A. M.,, and D. B. Johnson. 1998. Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ. Microbiol. 64:21812186.
11. Brock, T. D.,, and J. Gustafson. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32:567571.
12. Brookins, D. G. 1988. Eh-pH Diagrams for Geochemistry. Springer-Verlag KG, Berlin, Germany.
13. Cavazza, C.,, M. T. Giudici-Orticoni,, W. Nitschke,, C. Appia,, V. Bonnefoy,, and M. Bruschi. 1996. Characterization of a soluble cytochrome C4 isolated from Thiobacillus ferrooxidans. Eur. J. Biochem. 242:308314.
14. Clark, D. A.,, and P. R. Norris. 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixedculture ferrous iron oxidation with Sulfobacillus species. Microbiology 141:785790.
15. Cobley, J. G.,, and B. A. Haddock. 1975. The respiratory chain of Thiobacillus ferrooxidans: the reduction of cytochromes by Fe2 + and the preliminary characterization of rusticyanin a novel 'blue' copper protein. FEBS Lett. 60:2933.
16. Colmer, A. R.,, K. L. Temple,, and M. E. Hinkle. 1950. An iron-oxidizing bacterium from the acid drainage of some butiminous coal mines. J. Bacteriol. 59:317328.
17. Cox, J. C.,, and D. H. Boxer. 1978. The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans. Biochem. J. 174:497502.
18. Das, A.,, A. K. Mishra,, and P. Roy. 1992. Anaerobic growth on elemental sulfur using dissimilar iron reduction by Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 97:167172.
19. De Siloniz, M. A.,, P. Lorenzo,, M. Murua,, and J. Perera. 1993. Characterization of a new metalmobilizing Thiobacillus isolate. Arch. Microbiol. 159:237243.
20. De Wulf-Durand, P.,, L. J. Bryant,, and L. I. Sly. 1997. PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl. Environ. Microbiol. 63:29442948.
21. Durand, P. 1996. Primary structure of the 16S rRNA gene of Sulfobacillus thermosulfidooxidans by direct sequncing of PCR amplified gene and its similarity with that of other moderately thermophilic chemolithotrophic bacteria. Syst. Appl. Microbiol. 19:360364.
22. Ehrenreich, A.,, and F. Widdel. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ. Microbiol 60:45174526.
23. Fuchs, T.,, H. Huber,, S. Burggraf,, and K. O. Stetter. 1996. 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst. Appl. Microbiol 19:5660.
24. Fukumori, Y.,, T. Yano,, A. Sato,, and T. Yamanaka. 1988. Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 50:169172.
25. Ghauri, M. A.,, and D. B. Johnson. 1991. Physiological diversity amongst some moderately thermophilic iron-oxidising bacteria. FEMS Microbiol. Ecol. 85:327334.
26. Giudici-Orticoni, M. T.,, W. Nitschke,, C. Cavazza,, and M. Bruschi. 1997. Characterization and functional role of a cytochrome C4 involved in the iron respiratory electron transport chain of Thiobacillus ferrooxidans, p. PB4.1PB4.10. In International Biohydrometallurgy Symposium '97. Australian Mineral Foundation, Glenside, Australia.
27. Goebel, B. M.,, and E. Stackebrandt 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ. Microbiol. 60:16141621.
28. Goebel, B. M.,, and E. Stackebrandt,. 1995. Molecular analysis of the microbial biodiversity in a natural acidic environment, p. 4352. In T. Vargas,, C. A. Jerez,, J. V. Wiertz,, and H. Toledo (ed.), Biohydrometallurgical Processing II. University of Chile, Santiago.
29. Golovacheva, R. S.,, O. V. Golyshina,, G. I. Karavaiko,, A. G. Dorofeev,, T. A. Pivovarova,, and N. A. Chernykh. 1992. A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans, sp. nov. Microbiology 61:10561065.
30. Golovacheva, R. S.,, and G. I. Karavaiko. 1979. Sulfobacillus—a new genus of spore-forming thermophilic bacteria. Microbiology 48:658665.
31. Harrison, A. P., Jr. 1982. Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch. Microbiol 131:6876.
32. Hart, A.,, J. C. Murrell,, R. K. Poole,, and P. R. Norris. 1991. An acid-stable cytochrome in ironoxidizing Leptospirillum ferrooxidans. FEMS Microbiol. Lett. 81:8994.
33. Huber, H.,, C. Spinnler,, A. Gambacorta,, and K. O. Stetter. 1989. Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archae bacteria. Syst. Appl. Microbiol. 12:3847.
34. Huber, H.,, and K. O. Stetter. 1989. Thiobacillus prosperus, sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch. Microbiol. 151: 479485.
35. Huber, G.,, and K. O. Stetter. 1991. Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst. Appl. Microbiol. 14:372378.
36. Ingledew, W. J. 1982. The bioenergetics of an acidophilic chemolithotroph. Biochim. Biophys. Acta 683:89117.
37. Ingledew, W. J.,, and J. C. Cobley. 1980. A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. Biochim. Biophys. Acta 590:141158.
38. Ingledew, W. J.,, and A. Houston. 1986. The organization of the respiratory chain of Thiobacillus ferrooxidans. Biotechnol. Appl. Biochem. 8:242248.
39. Jedlicki, E.,, R. Reyes,, X. Jordana,, O. Mercereau-Puijalon,, and J. E. Allende. 1986. Rusticyanin: initial studies on the regulation of its synthesis and gene isolation. Biotechnol. Appl. Biochem. 8: 342350.
40. Johnson, D. B. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J. Microbiol. Methods 23:205218.
41. Johnson, D. B. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol 27:307317.
42. Johnson, D. B.,, P. Bacelar-Nicolau,, D. F. Bruhn,, and F. F. Roberto,. 1995. Iron-oxidising heterotrophic acidophiles: ubiquitous novel bacteria in leaching environments, p. 4756. In T. Vargas,, C. A. Jerez,, J. V. Wiertz,, and H. Toledo (ed.), Biohydrometallurgical processing I. University of Chile, Santiago.
43. Johnson, D. B.,, M. A. Ghauri,, and M. F. Said. 1992. Isolation and characterization of an acidophilic heterotrophic bacterium capable of oxidizing ferrous iron. Appl. Environ. Microbiol. 58:14231428.
44. Johnson, D. B.,, and S. McGinness. 1991. Ferric iron reduction by acidophilic heterotrophic bacteria. Appl. Environ. Microbiol. 57:207211.
45. Johnson, D. B.,, S. McGinness,, and M. A. Ghauri. 1993. Biogeochemical cycling of iron and sulfur in leaching environments. FEMS Microbiol. Rev. 11:6370.
46. Johnson, D. B.,, and F. F. Roberto,. 1997. Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals, p. 259279. In D. W. Rawlings (ed.), Biomining: Theory, Microbes and Industrial Processes. Landes Bioscience, Austin, Tex..
47. Kai, M.,, T. Yano,, H. Tamegai,, Y. Fukumori,, and T. Yamanaka. 1992. Thiobacillus ferrooxidans cytochrome c oxidase: purification, and molecular and enzymatic features. J. Biochem. 112:816821
48. Kelly, D. P., 1978. Bioenergetics of chemolithotrophic bacteria, p. 363386. In A. T. Bull, and P. M. Meadows (ed.), Companion to Microbiology. Longman, London, United Kingdom.
49. Kelly, D. P.,, and O. H. Tuovinen. 1972. Recommendation that the names Ferrobacillus ferrooxidans Leathen and Braley and Ferrobacillus sulfooxidans Kinsel be recognized as synonyms of Thiobacillus ferrooxidans Temple and Colmer. Int. J. Syst. Bacteriol. 22:170172.
50. Kulpa, C. F., Jr.,, N. Mjoli,, and M. T. Roskey. 1986. Comparison of iron and sulfur oxidation in Thiobacillus ferrooxidans: inhibition of iron oxidation by growth on sulfur. Biotechnol. Bioeng. Symp. 16:289295.
51. Kusano, T.,, T. Takeshima,, K. Sugawara,, C. Inoue,, T. Shiratori,, T. Yano,, Y. Fukumori,, and T. Yamanaka. 1992. Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) oxidase. J. Biol. Chem. 267:1124211247.
52. Lane, D. J.,, A. P. Harrison, Jr.,, D. Stahl,, B. Pace,, S. J. Giovannoni,, G. J. Olsen,, and N. R. Pace. 1992. Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J. Bacteriol. 174:269278.
53. Leduc, L. G.,, and G. D. Ferroni. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14:103120.
54. Lindstrom, E. B.,, E. Gunneriusson,, and O. H. Tuovinen. 1992. Bacterial oxidation of refractory sulfide ores for gold recovery. Crit. Rev. Biotechnol. 12:133155.
55. Nordstrom, D. K.,, E. A. Jenne,, and J. W. Ball. 1979. Redox equilibria of iron in acid mine waters. ACS Symp. Ser. 93:5179.
56. Norris, P. R., 1990. Acidophilic bacteria and their activity in mineral sulfide oxidation, p. 327. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill, New York, N.Y..
57. Norris, P. R.,, D. W. Barr,, and D. Hinson,. 1988. Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite, p. 4359. In P. R. Norris, and D. P. Kelly (ed.), Biohydrometallurgy: Proceedings of the 1987 International Symposium. Science and Technology Letters, Kew, United Kingdom.
58. Norris, P. R.,, D. A. Clark,, J. P. Owen,, and S. Waterhouse. 1996. Characteristics of Sulfobacillus acidophilus so. nov. and other moderately thermophilic mineral sulphide-oxidizing bacteria. Microbiology 141:775783.
59. Norris, P. R.,, and D. B. Johnson,. 1998. Acidophilic microorganisms, p. 133154. In K. Horikoshi, and W. D. Grant (ed.), Extremophiles: Microbial Life in Extreme Environments. John Wiley & Sons, Inc., New York, N.Y..
60. Ohmura, N.,, and R. C. Blake II. 1997. Aporusticyanin mediates the adherence of Thiobacillus ferrooxidans to pyrite, p. PB1.1PB1.10. In International Biohydrometallurgy Symposium '97. Australian Mineral Foundation, Glenside, Australia.
61.. Pronk, J. T.,, and D. B. Johnson. 1992. Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol. J. 10:153171.
62. Rawlings, D. E.,, and S. Silver. 1995. Mining with microbes. Bio/Technology 13:773778.
63. Rawlings, D. E.,, H. Tributsch,, and G. S. Hansford. 1999. Reasons why “Leptospirillum”-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:513.
64. Rawlings, D. E.,, D. R. Woods,, and N. P. Mjoli,. 1991. The cloning and structure of genes from the autotrophic biomining bacterium Thiobacillus ferrooxidans, p. 215237. In P. J. Greenaway (ed.), Advances in Gene Technology. JAI Press, Ltd., London, United Kingdom.
65. Sand, W.,, K. Rohde,, B. Sobotke,, and C. Zenneck. 1992. Evaluation of Leptospirillum ferrooxidans for leaching. Appl. Environ. Microbiol. 58:8592.
66. Sato, A.,, Y. Fukumori,, T. Yano,, M. Kai,, and T. Yamanaka. 1989. Thiobacillus ferrooxidans cytochrome c-552: purification and some of its molecular features. Biochim. Biophys. Acta 976:129134.
67. Segerer, A.,, A. Neuner,, J. K. Kristjansson,, and K. O. Stetter. 1986. Acidianus infemus gen. nov., sp. nov., and Acidianus brierleyi comb, nov.: facultatively aerobic, extremely acidophilic, thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Bacteriol. 36:559564.
68. Shooner, F.,, J. Bousquet,, and R. D. T^agi. 1996. Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int. J. Syst. Bacteriol. 46:409415.
69. Straub, K. L.,, and B. E. E. Buchholz-Cleven. 1998. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Appl. Environ. Microbiol. 64:48464856.
70. Tourova, T. P.,, A. B. Poltoraus,, I. A. Lebedeva,, I. A. Tsaplina,, T. I. Bogdanova,, and G. I. Karavaiko. 1994. 16S ribosomal RNA (rDNA) sequence analysis and phylogenetic position of Sulfobacillus thermosulfidooxidans. Syst. Appl. Microbiol. 17:509512.
71. Vernon, L. P.,, J. H. Mangum,, J. V. Beck,, and F. M. Shafia. 1960. Studies on a ferrous-ionoxidizing bacterium. II. Cytochrome composition. Arch. Biochem. Biophys. 88:227231.
72. Walton, K. C.,, and D. B. Johnson. 1992. Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. Environ. Pollut. 76:169175.
73. Yahya, A.,, F. F. Roberto,, and D. B. Johnson,. 1999. Novel mineral-oxidizing bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics, p. 729741. In R. Amils, and A. Ballester (ed.), Biohydrometallurgy and the Environment toward the Mining of the 21st Century. Elsevier, New York, N.Y..
74. Yamanaka, T.,, T. Yano,, M. Kai,, H. Tamegai,, A. Sato,, and Y. Fukumori,. 1991. The electron transfer system in an acidophilic iron-oxidizing bacterium, p. 223246. In Y. Mukohata (ed.), New Era of Bioenergetics. Academic Press, Inc., Tokyo, Japan.

Tables

Generic image for table
Table 1

Acidophilic microorganisms that respire on iron

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3
Generic image for table
Table 2

Kinetic data relating to ferrous iron oxidation by acidophilic microorganisms

Citation: Blake R, Johnson D. 2000. Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron, p 53-78. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error