1887

Chapter 4 : Trace Metal-Phytoplankton Interactions in Aquatic Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Trace Metal-Phytoplankton Interactions in Aquatic Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap04-2.gif

Abstract:

This chapter examines the effects of trace metals on the growth, composition, and trophic dynamics of phytoplankton communities. To do this, metal interactions are considered at several levels, including the molecular, cellular, community, and ecosystem levels, of organization. The effect of phytoplankton communities on the concentration, complexation, and redox cycling of metals is also need to be considered, which results in feedback relationships between plankton dynamics and trace metal chemistry. The chapter emphasizes interactions in marine systems due to the recent discovery of iron limitation in the ocean as well as the growing body of knowledge about trace metal chemistry, biogeochemical cycling, and controls on phytoplankton dynamics in these systems. Trace metal concentrations vary widely in aquatic systems due to differences in rates of input, loss, and internal cycling. Both complexation and redox cycling affect the behavior of these metals in aquatic systems because of the large differences in the reactivity, kinetic lability, and solubility of different metal oxidation states and coordination species. A number of trace metals (Fe, Zn, Mn, Co, Cu, Mo, and Ni) are essential micronutrients and thus exert important controls on algal growth and metabolism. To fully understand the effects of trace metals on phytoplankton communities, it is necessary to take into account numerous complex interactions, ranging from those at the molecular level to those involving whole ecosystems.

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4

Key Concept Ranking

RNA Polymerase
0.4870294
Vitamin B12
0.47251606
Biogeochemical Cycle
0.46122354
0.4870294
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Conceptual diagram showing the controlling influence of trace metal chemistry on the productivity and species composition of phytoplankton communities and the reciprocal effects of phytoplankton on trace metal concentrations, complexation, and redox cycling. Adapted from reference .

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Depth profiles for total dissolved concentrations of major nutrients (nitrate, phosphate, and silicate), trace metal nutrients (zinc, iron, nickel, and copper), and the nutrient analog cadmium in the North Pacific. Data for station H-77 (32.7°N; 145.0°W) are from reference , while those for station T-7 (50.0°N; 145.0°W) are from reference .

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic diagram for the interrelationship between trace metal ion speciation in the external medium and cellular metal uptake by a membrane transport protein. The intracellular uptake rate is controlled by the amount of metal bound to a receptor site on the protein, which in turn is controlled by either the external free metal ion concentration (equilibrium control) or the concentration of kinetically labile free ions plus inorganic complexes (kinetic control). Organic complexation decreases metal uptake by decreasing the concentration of free ions and inorganic complexes. Reprinted from reference .

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(A) Regulation of cellular Mn in the oceanic diatom . (B and C) The uptake of Mn follows Michaelis-Menten kinetics, and , but not , increases with decreasing [Mn] (B). Increases in allow the cells to maintain relatively constant steady-state Mn uptake rates ( ) and therefore constant cellular Mn concentrations at a constant growth rate, down to [Mn] of 10 M. Panel C gives short-term uptake rates for cells preconditioned at [Mn] of 10 M (open symbols) and 10 M (closed symbols). The dotted line in this panel is the steady-state uptake rate for acclimated cells (see panel B). Cellular Mn is given in units of moles per liter of cell volume. Adapted from reference and based on data from reference .

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Variations in steady-state uptake rates for zinc, cadmium, and cobalt in the oceanic diatom as functions of log [Zn] in the external seawater medium. At [Zn] < 10 M, the zinc uptake approaches limiting rates for diffusion of labile inorganic zinc species to the cell surface (dashed line). At [Zn] below 10 M, Co and Cd uptake rates increase dramatically due to induction of a transport system (possibly the high affinity Zn system) that is under negative feedback control by cellular Zn. [Co] and [Cd] were held constant at 10 and 10 M, respectively. Metal uptake was determined with radiotracers, and free ion concentrations were controlled with EDTA-trace metal ion buffer systems at 20°C. Zn and Co data are from reference , while Cd data are from Sunda and Huntsman (unpublished).

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Specific growth rate as a function of intracellular Fe/C for coastal diatoms (□ and ■, ; Δ, ) and dinoflagellates (Δ and ▲, ; ○ ) representing a range of cell diameters (3.5, 11 to 12, 12 to 13, and 28 to 32 m, respectively). Measurements were made at high and low light levels (500 and 50 microeinsteins m s [open and solid symbols, respectively]). Cells were grown in EDTA-metal ion buffered seawater media at 20°C under a 14-h/10-h light/dark cycle. Adapted from reference .

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Hypothetical model showing competition among metals for uptake by the Mn transport system (site 1) and the zinc transport system (site 2) in phytoplankton. Both systems are under negative feedback control by either cellular Mn or Zn. CuX, CdX, ZnX, etc. refer to various bound forms of intracellular metals.

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap4
1. Ahner, B. A.,, S. Kong,, and F. M. Morel. 1995. Phytochelatin production in marine algae. I. An intraspecies comparison. Limnol. Oceanogr. 40: 649 657.
2. Ahner, B. A.,, and F. M. Morel. 1995. Phytochelatin production in marine algae. II. Induction by various metals. Limnol Oceanogr. 40: 658 665.
3. AUnutt, F. C. T.,, and W. D. Bonner, Jr. 1987. Evaluation of reductive release as a mechanism for iron uptake from ferrioxamine B by Chlorella vulgaris. Plant Physiol. 85: 751 756.
4. Anderson, M. A.,, and F. M. M. Morel. 1982. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 27: 789 813.
5. Anderson, M. A.,, and F. M. M. Morel. 1980. Uptake of Fe(II) by a diatom in oxic culture medium. Mar. Biol. Lett. 1: 263 268.
6. Behrenfeld, M. J.,, A. J. Bale,, Z. S. Kolber,, J. Aiken,, and P. G. Falkowski. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific. Nature 383: 508 511.
7. Berg, J. M.,, and Y. Shi. 1996. The galvanization of biology: a growing appreciation of the roles of zinc. Science 271: 1081 1085.
8. Boyle, E. A.,, F. Sclater,, and J. M. Edmond. 1976. On the marine geochemistry of cadmium. Nature 263: 42 44.
9. Boyle, E. A.,, J. M. Edmond,, and E. R. Sholkovitz. 1977. The mechanism of iron removal in estuaries. Geochim. Cosmochim. Acta 41: 1313 1324.
10. Brand, L. E.,, W. G. Sunda,, and R. R. L. Guillard. 1983. Limitation of marine phytoplankton reproductive rates by zinc, manganese and iron. Limnol. Oceanogr. 28: 1182 1198.
11. Brand, L. E.,, W. G. Sunda,, and R. R. L. Guillard. 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol Ecol. 96: 225 250.
12. Brand, L. E. 1991. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36: 1756 1772.
13. Bruland, K. W.,, G. A. Knauer,, and J. H. Martin. 1978. Zinc in north-east Pacific water. Nature 271: 741 743.
14. Bruland, K. W. 1980. Oceanographie distributions of cadmium, zinc, nickel and copper in the North Pacific. Earth Planet. Sci. Lett. 47: 176 198.
15. Bruland, K. W.,, and R. P. Franks,. 1983. Mn, Ni, Cu, Zn, and Cd in the western North Atlantic, p. 395 414. In C. S. Wong,, E. Boyle,, K. W. Bruland,, J. D. Burton,, and E. D. Goldberg (ed.), Trace Metals in Sea Water. Plenum Press, New York, N.Y..
16. Bruland, K. W. 1989. Complexation of zinc by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 34: 269 285.
17. Bruland, K. W. 1992. Complexation of cadmium by natural organic ligands in the central North Pacific. Limnol Oceanogr. 37: 1008 1017.
18. Bruland, K. W.,, K. J. Orians,, and J. P. Cowen. 1994. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. Acta 58: 3171 3182.
19. Buma, A. G. J.,, H. J. W. de Baar,, R. F. Nolting,, and A. J. van Bennekom. 1991. Metal enrichment experiments in the Weddell-Scotia Seas: effects of iron and manganese on various plankton communities. Limnol Oceanogr. 36: 1865 1878.
20. Byrne R. H.,, L. R. Kump,, and K. J. Cantrell. 1988. The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem. 25: 163 181.
21. Coale, K. H., et al. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383: 495 501.
22. Coale, K. H.,, and K. W. Bruland. 1988. Copper complexation in the northeast Pacific. Limnol. Oceanogr. 33: 1084 1101.
23. Coale, K. H.,, and K. W. Bruland. 1990. Spatial and temporal variability in copper complexation in the North Pacific. Deep-Sea Res. 34: 317 336.
24. Coale, K. H. 1991. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific. Limnol. Oceanogr. 36: 1851 1864.
25. Cowen, J. P.,, and K. W. Bruland. 1985. Metal deposits associated with bacteria: implications for Fe and Mn marine biogeochemistry. Deep-Sea Res. 32: 253 272.
26. Cullen, J. T. 1991. Hypotheses to explain high nutrient conditions in the open sea. Limnol. Oceanogr. 36: 1579 1599.
27. daSilva, J. J. R. F.,, and R. J. P. Williams. 1991. The Biological Chemistry of the Elements. Clarendon Press, Oxford, United Kingdom.
28. Donat, J. R.,, and K. W. Bruland. 1990. A comparison of two voltammetric techniques for determining zinc speciation in northeast Pacific Ocean waters. Mar. Chem. 28: 301 323.
29. Doucette, E. J.,, D. L. Erdner,, M. L. Peleato,, J. J. Hartman,, and D. M. Anderson. 1996. Quantitative analysis of iron-stress related proteins in Thalassiosira weissflogii: measurement of flavodoxin and ferredoxin using HPLC. Mar. Ecol. Prog. Ser. 130: 269 276.
30. Droop, M. R. 1968. Vitamin B l2 and marine ecology. IV. Kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. U. K. 48: 689 733.
31. Dymond, J.,, and M. Lyle. 1985. Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: implications for atmospheric CO 2 variations during the Pleistocene. Limnol. Oceanogr. 30: 699 712.
32. Eide, D.,, and M. L. Guerinot. 1997. Metal ion uptake in eucaryotes. ASM News 63: 199 205.
33. Emerson, S.,, S. Kalhorn,, L. Jacobs,, B. M. Tebo,, K. H. Nealson,, and R. A. Rosson. 1982. Environmental oxidation rate of manganese (II): bacterial catalysis. Geochim. Cosmochim. Acta 46: 1073 1079.
34. Entsch, B.,, R. G. Sim,, and B. G. Hatcher. 1983. Indications from photosynthetic components that iron is a limiting nutrient in primary producers on coral reefs. Mar. Biol. 73: 17 30.
35. Falchuk, K. H.,, A. Krishan,, and B. L. Vallee. 1975. DNA distribution in the cell cycle of Euglena gracilis. Cytofluorometry of zinc deficient cells. Biochemistry 14: 3439 3444.
36. Falkowski, P. G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO 2 in the ocean. Nature 387: 272 274.
37. Falkowski, P. G.,, T. G. Owens,, A. C. Ley,, and D. C. Mauzerall. 1981. Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol. 68: 969 973.
38. Finden, D. A. S.,, E. Tipping,, G. H. M. Jaworski,, and C. S. Reynolds. 1984. Light-induced reduction of natural iron(HI) oxide and its relevance to phytoplankton. Nature 309: 783 784.
39. Gavis, J.,, R. R. L. Guillard,, and B., L. Woodward. 1981. Cupric ion activity and the growth of phytoplankton clones isolated from different marine environments. J. Mar. Res. 39: 315 333.
40. Gledhill, M.,, and C. M. G. van den Berg. 1994. Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar. Chem. 47: 41 54.
41. Goldman, J. C.,, J. J. McCarthy,, and D. G. Peavey. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210 215.
42. Green, R. M.,, Z. S. Kolber,, D. G. Swift,, N. W. Tindale,, and P. G. Falkowski. 1994. Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from variability in the quantum yield of flourescence. Limnol. Oceanogr. 39: 1061 1074.
43. Gutknecht, J. 1981. Inorganic mercury (Hg 2+) transport through lipid bilayer membranes. J. Membr. Biol. 61: 61 66.
44. Harrison, G. I.,, and F. M. M. Morel. 1986. Response of the marine diatom Thalassiosira weissflogii to iron stress. Limnol Oceanogr. 31: 989 997.
45. Harrison, G. I.,, and F. M. M. Morel. 1983. Antagonism between cadmium and iron in the marine diatom Thalassiosira weissflogii. J. Phycol. 19: 495 507.
46. Hart, B. A.,, P. E. Bertram,, and B. D. Scaife. 1979. Cadmium transport by Chlorella pyrenoidosa. Environ. Res. 18: 327 335.
47. Hart, T. J. 1934. On the phytoplankton in the southwest Atlantic and Bellinghausen Sea, 1929-31. Discovery Rep. 8: 1 268.
48. Howarth, R. W.,, R. Marino,, and J. J. Cole. 1988. Nitrogen fixation in fresh water, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33: 688 701.
49. Hudson, R. J. M., and F. M. M. Morel. 1993. Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep-Sea Res. 40: 129 151.
50. Hudson, R. J. M.,, and F. M. M. Morel. 1990. Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 35: 1002 1020.
51. Hutchins, D. A.,, and K. W. Bruland. 1998. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393: 561 564.
52. Hutchins, D. A.,, G. R. Ditullio,, Y. Zhang,, and K. W. Bruland. 1998. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43: 1037 1054.
53. Johnson, K. S.,, R. M. Gordon,, and K. H. Coale. 1997. What controls dissolved iron concentrations in the world ocean? Mar. Chem. 57: 137 161.
54. Jones, G. J.,, B. P. Palenik,, and F. M. M. Morel. 1987. Trace metal reduction by phytoplankton: the role of plasmalemma redox enzymes. J. Phycol. 23: 237 244.
55. Knauer, K.,, R. Behra,, and L. Sigg. 1997. Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J. Phycol. 33: 596 601.
56. Kozelka, P. B.,, and K. W. Bruland. 1998. Chemical speciation of dissolved Cu, Zn, Cd, Pb, in Narragansett Bay, Rhode Island. Mar. Chem. 60: 267 282.
57. LaRoche, J.,, P. W. Boyd,, R. M. L. McKay,, and R. J. Geider. 1996. Flavodoxin as in situ marker for iron stress in phytoplankton. Nature 382: 802 805.
58. Lee, J. G.,, S. B. Roberts,, and F. M. M. Morel. 1995. Cadmium: a nutrient for the marine diatom Thalassiosira weissflogii. Limnol. Oceanogr. 40: 1056 1063.
59. Lee, J. G.,, B. A. Ahner,, and F. M. M. Morel. 1996. Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ. Sci. Technol. 30: 1814 1821.
60. Lee, J. G.,, and F. M. M. Morel. 1995. Replacement of zinc by cadmium in marine phytoplankton. Mar. Ecol. Prog. Ser. 127: 305 309.
61. Lewis, B. L.,, G. W. Luther,, and T. M. Church. 1995. Determination of metal-organic complexation in natural waters by SWASV with pseudopolarograms. Electroanalysis 7: 166 177.
62. Maldonado, M. T.,, and N. M. Price. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Res., in press.
63. Maldonado, M. T.,, and N. M. Price. 1996. Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Prog. Ser. 141: 161 172.
64. Martin, J. H., et al. 1994. Testing the iron hypothesis in ecosystems of the Equatorial Pacific Ocean. Nature 371: 123 129.
65. Martin, J. H.,, R. M. Gordon,, S. E. Fitzwater,, and W. W. Broenkow. 1989. VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res. 36: 649 680.
66. Martin, J. H.,, S. E. Fitzwater,, and R. M. Gordon. 1990. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem. Cycles 4: 5 12.
67. Martin, J. H.,, R. M. Gordon,, and S. E. Fitzwater. 1991. The case for iron. Limnol. Oceanogr. 36: 1793 1802.
68. Mason, R. R.,, J. R. Reinfelder,, and F. M. M. Morel. 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 30: 1835 1845.
69. Miles, C. J.,, and P. L. Brezonik. 1981. Oxygen consumption in humic colored waters by a photochemical ferrous-ferric catalytic cycle. Environ. Sci. Technol. 15: 1089 1095.
70. Miller, C. B.,, B. W. Frost,, P. A. Wheeler,, M. R. Landry,, N. Welschmeyer and,, T. M. Powell. 1991. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol. Oceanogr. 36: 1600 1615.
71. Miller, W. L.,, D. W. King,, J. Lin,, and D. R. Rester. 1995. Photochemical redox cycling of iron in coastal seawater. Mar. Chem. 50: 63 77.
72. Moffett, J. W. 1995. Temporal and spatial variability of copper complexation by strong chelators in the Sargasso Sea. Deep-Sea Res. 42: 1273 1295.
73. Moffett, J. W.,, L. E. Brand,, and R. G. Zika. 1990. Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Res. 37: 27 36.
74. Moffett, J. W.,, and L. E. Brand. 1996. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol. Oceanogr. 41: 388 395.
75. Moffett, J. W. 1994. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochim. Cosmochim. Acta 58: 695 703.
76. Moffett, J. W.,, and R. G. Zika. 1987. Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ. Sci. Technol. 21: 804 810.
77. Moffett, J. W.,, L. E. Brand,, P. L. Croot,, and K. A. Barbeau. 1997. Cu speciation and cyano-bacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol. Oceanogr. 42: 789 799.
78. Morel, F. M. M.,, and R. J. M. Hudson,. 1984. The geobiological cycle of trace elements in aquatic systems: Redfield revisited, p. 251 281. In W. Stumm (ed.), Chemical Processes in Lakes. John Wiley & Sons, Inc., New York, NY.
79. Morel, F. M. M.,, R. J. M. Hudson,, and N. M. Price. 1991. Limitation of productivity by trace metals in the sea. Limnol. Oceanogr. 36: 1742 1755.
80. Morel, F. M. M. 1987. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol. 23: 137 150.
81. Morel, F. M. M.,, J. R. Reinfelder,, S. B. Roberts,, C. P. Chamberlain,, J. G. Lee,, and D. Yee. 1994. Zinc and carbon co-limitation of marine phytoplankton. Nature 369: 740 742.
82. Murphy, L. S.,, R. R. L. Guillard,, and J. F. Brown. 1984. The effects of iron and manganese on copper sensitivity in diatoms: differences in the responses of closely related neritic and oceanic species. Biol. Oceanogr. 3: 187 202.
83. Nielands, J. B. 1981. Iron absorption and transport in microorganisms. Annu. Rev. Nutr. 1: 27 46.
84. Phinney, J. T., and K. W. Bruland. 1994. Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira weissflogii. Environ. Sci. Technol. 28: 1781 1790.
85. Price, N. M.,, and F. M. M. Morel. 1990. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344: 658 660.
86. Price, N. M.,, and F. M. M. Morel. 1991. Co-limitation of phytoplankton growth by nickel and nitrogen. Limnol. Oceanogr. 36: 1071 1077.
87. Price, N. M.,, L. F. Andersen,, and F. M. M. Morel. 1991. Iron and nitrogen nutrition of equatorial Pacific plankton. Deep-Sea Res. 38: 1361 1378.
88. Price, N. M.,, B. A. Ahner,, and F. M. M. Morel. 1994. The equatorial Pacific Ocean: grazer controlled phytoplankton populations in an iron-limited ecosystem. Limnol. Oceanogr. 39: 520 534.
89. Raven, J. A. 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon, and nitrogen sources. New Phytol. 109: 279 287.
90. Raven, J. A. 1990. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathway. New Phytol. 116: 1 18.
91. Raven, J. A.,, and A. M. Johnson. 1991. Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol. Oceanogr. 36: 1701 1714.
92. Redfield, A. C., 1934. On the proportions of organic derivatives in seawater and their relation to the composition of plankton, p. 177 192. In R. J. Daniel (ed.), James Johnson Memorial Volume, Liverpool University Press, Liverpool, United Kingdom.
93. Redfield, A. C.,, B. H. Ketchum,, and F. A. Richards,. 1963. The influence of organisms on the composition of seawater, p. 26 77. In M. N. Hill (ed.), The Sea, vol. 2. John Wiley & Sons, Inc., New York, N.Y..
94. Richardson, L. L.,, C. Aguilar,, and Ê. H. Nealson. 1988. Manganese oxidation in pH and O 2 microenvironments produced by phytoplankton. Limnol. Oceanogr. 33: 352 363.
95. Richardson, L. L.,, and K. D. Stolzenbach. 1995. Phytoplankton cell size and the development of microenvironments. FEMS Microb. Ecol. 16: 185 192.
96. Riedel, G. F. 1985. The relationship between chromium(VI) uptake, sulfate uptake, and chromium toxicity in the estuarine diatom Thalassiosira pseudonana. Aquat. Toxicol. 7: 191 204.
97. Roitz, J. S.,, and K. W. Bruland. 1997. Determination of dissolved manganese(II) in coastal and estuarine waters by differential pulse cathodic stripping voltammetry. Anal. Chim. Acta 344: 175 180.
98. Rue, E. L.,, and K. W. Bruland. 1995. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50: 117 138.
99. Rue, E. L.,, and K. W. Bruland. 1997. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol. Oceanogr. 42: 901 910.
100. Rueter, J. G.,, D. A. Hutchins,, R. W. Smith,, and N. L. Unsworth,. 1992. Iron nutrition of Trichodesmium, p. 289 306. In E. J. Carpenter,, D. G. Capone,, and J. G. Rueter (ed.), Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Kluwer Academic Publishers, Boston, Mass..
101. Rueter, J. G.,, and F. M. M. Morel. 1982. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana. Limnol. Oceanogr. 26: 67 73.
102. Ryther, J. H.,, and W. M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171: 1008 1013.
103. Schindler, D. W. 1976. The evolution of phosphorus limitation in lakes. Science 195: 260 262.
104. Shimada, A.,, T. Hasegawa,, I. Umeda,, N. Kadoya,, and T. Maruyama. 1993. Spatial mesoscale patterns of West Pacific picoplankton as analyzed by flow cytometry: their contribution to subsurface chlorophyll maxima. Mar. Biol. 115: 209 215.
105. Sigg, L.,, A. Kuhn,, H. Xue,, E. Kiefer,, and D. Kistler,. 1995. Cycles of trace elements (copper and zinc) in a eutrophic lake, p. 177 194. In C. P. Huang,, C. R. O’Melia,, and J. J. Morgan (ed.). Aquatic Chemistry: Interfacial and Interspecies Processes. American Chemical. Society, Washington, D.C..
106. Stumm, W.,, and J. J. Morgan. 1981. Aquatic Chemistry. John Wiley & SOns, Inc., New York, N.Y..
107. Sunda, W. G.,, and S. A. Huntsman. 1995. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 40: 1404 1417.
108. Sunda, W. G.,, and S. A. Huntsman. 1992. Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 37: 25 40.
109. Sunda, W. G.,, and P. J. Hanson,. 1979. Chemical speciation of copper in river water: Effect of total copper, pH, carbonate and dissolved organic matter, p. 147 180. In E. A. Jenne (ed.), Chemical Modeling in Aqueous Systems: Speciation, Sorption, Solubility and Kinetics. American Chemical Society, Washington, D.C..
110. Sunda, W. G.,, and S. A. Huntsman. 1991. The use of chemiluminescence and ligand competition with EDTA to measure copper concentration and speciation in seawater. Mar. Chem. 36: 137 163.
111. Sunda, W. G.,, and S. A. Huntsman. 1995. Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnol. Oceanogr. 40: 135 137.
112. Sunda, W. G.,, and S. A. Huntsman. 1987. Microbial oxidation of manganese in a North Carolina estuary. Limnol. Oceanogr. 32: 552 564.
113. Sunda, W. G.,, and S. A. Huntsman. 1988. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res. 35: 1297 1317.
114. Sunda, W. G.,, and S. A. Huntsman. 1994. Photoreduction of manganese oxides in seawater. Mar. Chem. 46: 133 152.
115. Sunda, W. G.,, and S. A. Huntsman. 1985. Regulation of cellular manganese and manganese transport rates in the unicellular alga Chlamydomonas. Limnol. Oceanogr. 30: 71 80.
116. Sunda, W. G.,, and S. A. Huntsman. 1986. Relationships among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira. J. Phycol. 22: 259 270.
117. Sunda, W. G.,, and S. A. Huntsman. 1998. Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environ. Sci. Technol. 32: 2961 2968.
118. Sunda, W. G.,, and S. A. Huntsman. 1998. Interactions among Cu 2+, Zn 2+, and Mn 2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas. Limnol Oceanogr. 43: 1055 1064.
119. Sunda, W. G.,, and S. A. Huntsman. 1997. Interrelated influence of iron, light, and cell size on growth of marine phytoplankton. Nature 390: 389 392.
120. Sunda, W. G.,, and S. A. Huntsman. 1998. Interactive effects of Mn, light and toxic metals on cellular manganese and growth in a coastal diatom. Limnol. Oceanogr. 43: 1467 1475.
121. Sunda, W. G.,, and S. A. Huntsman. 1983. Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. Limnol. Oceanogr. 28: 924 934.
122. Sunda, W. G.,, and S. A. Huntsman. 1996. Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol. Oceanogr. 41: 373 387.
123. Sunda, W. G. 1988 /89. Trace metal interactions with marine phytoplankton. Biol. Oceanogr. 6: 411 442.
124. Sunda, W. G.,, and S. A. Huntsman. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50: 189 206.
125. Sunda, W. G., 1994. Trace metal/phytoplankton interactions in the sea, p. 213 247. In G. Bidoglio, and W. Stumm (ed.), Chemistry of Aquatic Systems: Local and Global Perspectives. Kluwer Academic, Boston, Mass..
126. Takahashi, M.,, and T. Hori. 1984. The abundance of picoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Mar. Biol. 79: 177 186.
127. Takeda, S. 1998. Influence of iron availability on the nutrient consumption ratio of diatoms in oceanic waters. Nature 393: 774 777.
128. Vallee, B. L.,, and K. H. Falchuk. 1981. Zinc and gene expression. Philos. Trans. R. Soc. London 294: 185 197.
129. Van den Berg, C. M. G.,, A. G. A. Merks,, and E. K. Duursma. 1987. Organic complexation and its control of the dissolved concentration of copper and zinc in the Scheldt estuary. Estuarine Coastal Shelf Sci. 24: 785 797.
130. Waite, T. D.,, and F. M. M. Morel. 1984. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18: 860 868.
131. Wells, M. L.,, and L. M. Mayer. 1991. The photoconversion of colloidal iron oxyhydroxides in seawater. Deep-Sea Res. 38: 1379 1395.
132. Wilhelm, S. W.,, and C. G. Trick. 1994. Iron-limited growth of cyanobacteria: multiple siderophore production is a common response. Limnol. Oceanogr. 39: 1979 1984.
133. Wilhelm, S. W. 1995. Ecology of iron-limited cyanobacteria: a review of physiological responses and implications for aquatic systems. Aquat. Microb. Ecol. 9: 265 303.
134. Wood, P. M. 1978. Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in Chlamydomonas. Eur. J. Biochem. 87: 9 19.
135. Wu, J.,, and G. W. Luther. 1995. Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean (as determined) by a competitive equilibration method and kinetic approach. Mar. Chem. 50: 159 177.
136. Wurtsbaugh, W. A.,, and A. J. Horne. 1983. Iron in eutrophic Clear Lake, California: its importance for algal nitrogen fixation and growth. Can. J. Fish. Aquat. Sci. 40: 1419 1429.
137. Xue, H.,, A. Oestreich,, D. Kistler,, and L. Sigg. 1996. Free cupric ion concentrations and Cu complexation in selected Swiss Lakes. Aquat. Sci. 58: 69 87.
138. Xue, H.,, and W. G. Sunda. 1997. Comparison of [Cu 2+] measurements in lake water determined by ligand exchange and cathodic stripping voltammetry and by ion-selective electrode. Environ. Sci. Technol. 31: 1902 1909.
139. Xue, H.,, D. Kistler,, and L. Sigg. 1996. Competition of copper and zinc for strong ligands in a euthrophic lake. Limnol. Oceanogr. 40: 1142 1152.
140. Zhao, H.,, and D. Eide. 1996. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. USA 93: 2454 2458.

Tables

Generic image for table
Table 1

Nutrient metal/carbon molar ratios needed to support specific growth rates () of 0.5 and 1.2 day in coastal and oceanic phytoplankton

Citation: Sunda W. 2000. Trace Metal-Phytoplankton Interactions in Aquatic Systems, p 79-107. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error