1887

Chapter 5 : Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap05-2.gif

Abstract:

This chapter examines and reviews features of biologically induced mineralization (BIM)- and biologically controlled mineralization (BCM)-type magnetic particles. It describes microorganisms that produce magnetic minerals (focusing mainly on the magnetotactic bacteria) and also describes the biomineralization processes involved in the synthesis of magnetic minerals. The chapter also reviews the physics and function of magnetotaxis in light of recent findings. In the microbial world, the most widely recognized example of BCM is magnetosome production by the magnetotactic bacteria. Although all freshwater magnetotactic bacteria synthesize magnetite as the mineral phase of their magnetsomes, many marine, estuarine, and salt marsh species produce an iron sulfide-type magnetosome which consists primarily of the magnetic iron sulfide greigite. The chapter discusses stoichiometry changes and specifically whether iron can be replaced with other transition metal ions and whether sulfur and oxygen can replace each other as the nonmetal component in the magnetosome mineral phase. The fact that many higher creatures biomineralize single-magnetic-domain magnetite crystals of similar morphologies suggests the intriguing idea that all these organisms have the same or a similar set of genes responsible for magnetite biomineralization that would probably have originated in the magnetotactic bacteria. Thus, studying how magnetotactic bacteria biomineralize magnetite might have a scientific impact far beyond the studies of microbiology and geology.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5

Key Concept Ranking

Sodium Dodecyl Sulfate
0.46194333
Inorganic Chemicals
0.45330623
Pulsed-Field Gel Electrophoresis
0.44255584
Transmission Electron Microscopy
0.44076416
0.46194333
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Depiction of the OATZ in the water column as typified by Salt Pond (Woods Hole, Mass.). Note the inverse double concentration gradients of oxygen ([O]) diffusing from the surface and sulfide ([S]) generated by sulfate-reducing bacteria in the anaerobic zone (vertical arrows). Magnetite-producing magnetotactic bacteria exist in their greatest numbers at the OATZ, where microaerobic conditions predominate, and greigite-producers are found just below the OATZ, where S becomes detectable. When polar-magneto-aerotactic, magnetite-producing coccoid cells are above the OATZ in vertical concentration gradients of O and S (higher [O] than optimal), they swim downward (small arrows above OATZ) along the inclined geomagnetic field lines (dashed lines). When they are below the OATZ (lower [O] than optimal), they reverse direction (by reversing the direction of their flagellar motor) and swim upward (small arrows below the OATZ) along the inclined geomagnetic field lines. The direction of flagellar rotation is coupled to a aerotactic sensory system that acts as a switch when cells are at a suboptimal position in the gradient as defined in the text. The magnetotactic spirilla (and other axial magneto-aerotactic microorganisms) align along the geomagnetic field lines and swim up and down, relying on a temporal sensory mechanism of aerotaxis to find and maintain position at their optimal oxygen concentration at the OATZ.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Morphologies of intracellular magnetite (FeO) particles produced by magnetotactic bacteria collected from the OATZ of the Pettaquamscutt Estuary, (a) Dark-field scanning-transmission electron micrograph (STEM) of a chain of cubo-octahedra in cells of an unidentified rod-shaped bacterium, viewed along a [ ] zone axis for which the particle projections appear hexagonal, (b) Bright-field STEM of a chain of crystals within a cell of an unidentified marine vibrio, with paralle-lepipedal projections, (c) Bright-field STEM of tooth-shaped (anisotropic) magnetosomes from an unidentified marine rod-shaped bacterium.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Idealized magnetite (a to d) and greigite (e and f) crystal morphologies derived from high-resolution TEM studies of magnetosomes from magnetotactic bacteria, (a and e) Cubo-octahedrons. (b, c, and f) Variations of pseudo-hexagonal prisms, (d) Elongated cubo-octahedron. Adapted from references and .

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Morphologies of greigite (FeS) particles within cells of unidentified rod-shaped bacteria collected from the sulfidic waters of a salt marsh pool, (a) TEM of cubo-octahedra. (b) TEM of rectangular prisms.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

High-magnification bright-field STEM of pleomorphic greigite-mackinawite particles within MMP cells.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Dark-field STEM of rectangular prismatic greigite (g) and tooth-shaped magnetite particles (m) co-organized within the same chains of magnetosomes in an unusual rod-shaped magnetotactic bacterium collected from the Pettaquamscutt Estuary (see the text).

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Dark-field STEM of pseudo-hexagonal prismatic magnetite particles from the marine magnetotactic coccus strain MC-1, surrounded by the magnetosome membrane (arrowhead).

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of wild-type strain MV-1 cell fractions. Cell fractions were separated by differential ultracentri-fugation. Lanes: SF, soluble fraction; MF, membrane fraction (excluding magnetosome membranes); MM, magnetosome membranes; MW, molecular mass standards, with masses in kilodaltons shown on the right. Magnetosomes were purified as previously described ( ), and magnetosome membranes were extracted from magnetosomes with 1% sodium dodecyl sulfate in 20 mM HEPES (pH 7.2) (Dubbels and Bazylinski, Abstr. 98th Gen. Meet. Am. Soc. Microbiol. 1998). The large arrow denotes a soluble 19-kDa protein that is not produced by a nonmagnetotactic mutant of strain MV-1 (see the text), and the small arrows denote some proteins that appear to be associated with the magnetosome membrane but not with the other cell fractions.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap5
1. Akai, J.,, S. Takaharu,, and S. Okusa. 1991. TEM study on biogenic magnetite in deep-sea sediments from the Japan Sea and the western Pacific Ocean. J. Electron Microsc. 40:110117.
2. Balkwill, D. L.,, D. Maratea,, and R. P. Blakemore. 1980. Ultrastructure of a magnetic spirillum. J. Bacteriol. 141:13991408.
3. Bazylinski, D. A. 1995. Structure and function of the bacterial magnetosome. ASM News 61:337343.
4. Bazylinski, D. A. 1999. Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol 2:7180.
5. Bazylinski, D. A.,, and R. P. Blakemore. 1983. Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr. Microbiol. 9:305308.
6. Bazylinski, D. A.,, and R. P. Blakemore. 1983. Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appi Environ. Microbiol 46:11181124.
6.a. Bazylinski, D. A.,, A. J. Dean,, D. Schüler,, E. J. P. Phillips,, and D. R. Lovley. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol, in press.
7. Bazylinski, D. A.,, and R. B. Frankel,. 1992. Production of iron sulfide minerals by magnetotactic bacteria from sulfidic environments, p. 147159. In H. C. W. Skinner, and R. W. Fitzpatrick (ed.), Biomineralization Processes of Iron and Manganese: Modern and Ancient Environments. Catena Verlag, Cremlingen-Destedt, Germany.
8. Bazylinski, D. A.,, R. B. Frankel,, A. J. Garratt-Reed,, and S. Mann,. 1990. Biomineralization of iron sulfides in magnetotactic bacteria from sulfidic environments, p. 239255. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
9. Bazylinski, D. A.,, R. B. Frankel,, B. R. Heywood,, S. Mann,, J. W. King,, P. L. Donaghay,, and A. K. Hanson. 1995. Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 61:32323239.
10. Bazylinski, D. A.,, R. B. Frankel,, and H. W. Jannasch. 1988. Anaerobic production of magnetite by a marine magnetotactic bacterium. Nature (London) 334:518519.
11. Bazylinski, D. A.,, A. J. Garratt-Reed,, A. Abedi,, and R. B. Frankel. 1993. Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch. Microbiol 160:3542.
12. Bazylinski, D. A.,, A. J. Garratt-Reed,, and R. B. Frankel. 1994. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech. 27:389401.
13. Bazylinski, D. A.,, B. R. Heywood,, S. Mann,, R. B. Frankel. 1993. Fe3O4 and Fe3S4 in a bacterium. Nature (London) 366:218.
14. Bazylinski, D. A.,, and C. M. Moscowitz. 1997. Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. Rev. Mineral 35:181223.
14.a. Beard, B. L.,, C. M. Johnson,, L. Cox,, H. Sun,, K. H. Nealson,, and C. Aguilar. 1999. Iron isotope biosignatures. Science 285:18891892.
15. Bell, P. E.,, A. L. Mills,, and J. S. Herman. 1987. Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction. Appl. Environ. Microbiol. 53:26102616.
16. Berner, R. A. 1962. Synthesis and description of tetragonal iron sulfide. Science 137:669.
17. Berner, R. A. 1964. Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. J. Geol. 72:293306.
18. Berner, R. A. 1967. Thermodynamic stability of sedimentary iron sulfides. Am. J. Sci. 265:773785.
19. Berner, R. A. 1969. The synthesis of framboidal pyrite. Econ. Geol. 64:383393.
20. Berner, R. A. 1970. Sedimentary pyrite formation. Am. J. Sci. 268:123.
21. Berner, R. A., 1974. Iron sulfides in Pleistocene deep Black Sea sediments and their palaeoocean-ographic significance, p. 524531. In E. T. Degens, and D. A. Ross (ed.), The Black Sea: Geology, Chemistry and Biology. AAPG Memoirs 20. American Association of Petroleum Geologists, Tulsa, Okla.
22. Berson, A. E.,, D. V. Hudson,, and N. S. Waleh. 1991. Cloning of a sequence of Aquaspirillum magnetotacticum that complements the aroD gene of Escherichia coli. Mol Microbiol. 5:22612264.
23. Berson, A. E.,, M. R. Peters,, and N. S. Waleh. 1989. Cloning and characterization of the recA gene of Aquaspirillum magnetotacticum. Arch. Microbiol. 152:567571.
24. Berson, A. E.,, M. R. Peters,, and N. S. Waleh. 1990. Nucleotide sequence of recA gene of Aquaspirillum magnetotacticum .Nucleic Acids Res. 18:675.
25. Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43:147171.
26. Blakemore, R. P. 1975. Magnetotactic bacteria. Science 190:377379.
27. Blakemore, R. P. 1982. Magnetotactic bacteria. Annu. Rev. Microbiol 36:217238.
28. Blakemore, R. P.,, and N. A. Blakemore,. 1990. Magnetotactic magnetogens, p. 5167. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..>
29. Blakemore, R. P.,, N. A. Blakemore,, D. A. Bazylinski,, and T. T. Moench,. 1989. Magnetotactic bacteria, p. 18821889. In J. T. Staley,, M. P. Bryant,, N. Pfennig,, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 3. The Williams & Wilkins Co., Baltimore, Md..
30. Blakemore, R. P.,, R. B. Frankel,, and A. J. Kalmijn. 1980. South-seeking magnetotactic bacteria in the southern hemisphere. Nature (London) 236:384385.
31. Blakemore, R. P.,, D. Maratea,, and R. S. Wolfe. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140:720729.
32. Blakemore, R. P.,, K. A. Short,, D. A. Bazylinski,, C. Rosenblatt,, and R. B. Frankel. 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Gemicrobiol J. 4:5371.
33. Bradley, J. P.,, R. P. Harvey,, and H. Y. McSween, Jr. 1996. Magnetite whiskers and platelets in the ALH84001 martian meteorite: evidence for vapor phase growth. Geochim. Cosmochim. Acta 60: 51495155.
34. Burgess, J. G.,, R. Kanaguchi,, T. Sakaguchi,, R. H. Thornhill,, and T. Matsunaga. 1993. Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rRNA sequences. J. Bacteriol. 175:66896694.
35. Butler, R. E.,, and S. K. Banerjee. 1975. Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 80:40494058.
36. Caccavo, R., Jr.,, D. J. Lonergan,, D. R. Lovley,, M. Davis,, J. R. Stolz,, and M. J. McInerny. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal reducing microorganism. Appl. Environ. Microbiol. 60:37523759.
37. Chang, S.-B. R.,, and J. L. Kirschvink. 1989. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu. Rev. Earth Planet. Sci. 17:169195.
38. Chang, S.-B. R.,, J. F. Stolz,, J. L. Kirschvink,, and S. M. Awramik. 1989. Biogenic magnetite in stromatolites. 2. Occurrence in ancient sedimentary environments. Precambrian Res. 43:305312.
39. Dean, A. J.,, and D. A. Bazylinski. 1999. Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis. Curr. Microbiol. 39:219225.
40. DeLong, E. F.,, R. B. Frankel,, and D. A. Bazylinski. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803806.
41. Devouard, B.,, M. Posfai,, X. Hua,, D. A. Bazylinski,, R. Â. Frankel, and P. R. Buseck. 1998. Magnetite from magnetotactic bacteria: size distributions and twinning. Am. Mineral. 83:13871398.
42. Diaz-Ricci, J. C.,, and J. L. Kirschvink. 1992. Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): a comparison of theory with magnetosome observations. J. Geophys. Res. 97:1730917315.
43. DiChristina, T. J.,, and E. F. DeLong. 1993. Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens. J. Bacteriol. 59:41524160.
44. Donaghay, P. L.,, H. M. Rines,, and J. M. Sieburth. 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36:97108.
45. Dunin-Borkowski, R. E.,, M. R. McCartney,, R. B. Frankel,, D. A. Bazylinski,, M. Posfai,, and P. R. Buseck. 1998. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282:18681870.
46. Eden, P. A.,, T. M. Schmidt,, R. P. Blakemore,, and N. R. Pace. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41:324325.
47. Fabricus, F. 1961. Die Strukturen des “Rogenpyrits” (Kossener Schichten, Rat) als Betrag zum Problem der “Vererzten Bakterien.” Geol. Rundschau 51:647657.
48. Farina, M.,, D. M. S. Esquivel,, and H. G. P. Lins deBarros. 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature (London) 343:256258.
49. Farina, M.,, H. Lins deBarros,, D. M. S. Esquivel,, and J. Danon. 1983. Ultrastructure of a magnetotactic bacterium. Biol. Cell 48:8588.
50. Frankel, R. B. 1984. Magnetic guidance of organisms. Annu. Rev. Biophys. Bioeng. 13:85103.
51. Frankel, R. b.,, and D. A. Bazylinski. 1994. Magnetotaxis and magnetic particles in bacteria. Hyperfine Interact. 90:135142.
52. Frankel, R. B.,, D. A. Bazylinski,, M. Johnson,, and B. L. Taylor. 1997. Magneto-aerotaxis in marine, coccoid bacteria. Biophys. J. 73:9941000.
53. Frankel, R. B.,, D. A. Bazylinski,, and D. Schüler. 1998. Biomineralization of magnetic iron minerals in bacteria. Supramol Sci. 5:383390.
54. Frankel, R. B.,, R. P. Blakemore,, F. F. Torres de Araujo,, D. M. S. Esquivel,, and J. Danon. 1981. Magnetotactic bacteria at the geomagnetic equator. Science 212:12691270.
55. Frankel, R. B.,, R. P. Blakemore,, and R. S. Wolfe. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203:13551356.
56. Frankel, R. B.,, G. Ñ. Papaefthymiou, R. P. Blakemore, and W. O'Brien. 1983. Fe3O4 precipitation in magnetotactic bacteria. Biochim. Biophys. Acta 763:147159.
57. Frankel, R. B.,, J.-P. Zhang,, and D. A. Bazylinski. 1998. Single magnetic domains in magnetotactic bacteria. J. Geophys. Res. 103:3060130604.
58. Freke, A. M.,, and D. Tate. 1961. The formation of magnetic iron sulphide by bacterial reduction of iron solutions. J. Biochem. Microbiol. Technol. Eng. 3:2939.
59. Funaki, M.,, H. Sakai,, and T. Matsunaga. 1989. Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria. J. Geomagn. Geoelectr. 41:7787.
60. Funaki, M.,, H. Sakai,, T. Matsunaga,, and S. Hirose. 1992. The S pole distribution on magnetic grains in pyroxenite determined by magnetotactic bacteria. Phys. Earth Planet. Interiors 70:253260.
61. Futschik, K.,, H. Pfutzner,, A. Doblander,, P. Schonhuber,, T. Dobeneck,, N. Petersen,, and H. Vali. 1989. Why not use magnetotactic bacteria for domain analyses? Phys. Scr. 40:518521.
62. Gorby, Y. A. 1989. Regulation of Magnetosome Biogenesis by Oxygen and Nitrogen. p. 7288. Ph.D. dissertation. University of New Hampshire, Durham..
63. Gorby, Y. A.,, T. J. Beveridge,, and R. P. Blakemore. 1988. Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170:834841.
64. Greene, A. C.,, B. K. C. Patel,, and A. J. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47:505509.
65. Gould, J. L.,, J. L. Kirschvink,, and K. S. Deffeyes. 1978. Bees have magnetic remanence. Science 201:10261028.
66. Guerin, W. F.,, and R. P. Blakemore. 1992. Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 58:11021109.
67. Guerinot, M. L. 1994. Microbial iron transport. Annu. Rev. Microbiol. 48:743772.
68. Hanzlik, M. M.,, N. Petersen,, R. Keller,, and E. Schmidbauer. 1996. Electron microscopy and 57Fe Mossbauer spectra of 10 nm particles, intermediate in composition between Fe3O4-gammma;-Fe2O3, produced by bacteria. Geophys. Res. Lett. 23:479482.
69. Heywood, B. R.,, D. A. Bazylinski,, A. J. Garratt-Reed,, S. Mann,, and R. B. Frankel. 1990. Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften 77:536538.
70. Heywood, B. R.,, S. Mann,, and R. B. Frankel,. 1991. Structure, morphology and growth of biogenic greigite (Fe3S4), p. 93108. In M. Alpert,, P. Calvert,, R. B. Frankel,, P. Rieke,, and D. Tirrell (ed.), Materials Synthesis Based on Biological Processes. Materials Research Society, Pittsburgh, Pa..
71. Iida, A.,, and J. Akai. 1996. Crystalline sulfur inclusions in magnetotactic bacteria. Sci. Rep. Niigata Univ. Ser. E 11:3542.
72. Iida, A.,, and J. Akai. 1996. ÒÅÌ study on magnetotactic bacteria and contained magnetite grains as biogenic minerals, mainly from Hokuriku-Niigata region, Japan. Sci. Rep. Niigata Univ. Ser. E 11:4366.
73. Janvier, B.,, P. Constantinidou,, P. Aucher,, Z. V. Marshall,, C. W. Penn,, and J. L. Fauchere. 1998. Characterization and gene sequencing of a 19-kDa periplasmic protein of Campylobacter jejuni E coli. Res. Microbiol. 149:95107.
74. Kawaguchi, R.,, J. G. Burgess,, T. Sakaguchi,, H. Takeyama,, R. H. Thornhill,, and T. Matsunaga. 1995. Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the δ-Proteobacteria. FEMS Microbiol. Lett. 126:277282.
75. Kirschvink, J. L. 1980. South-seeking magnetic bacteria. J. Exp. Biol. 86:345347.
76. Kirschvink, J. L.,, A. Kobayashi-Kirschvink,, and B. J. Woodford. 1992. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 89:76837687.
77. Kobayashi, A.,, J. L. Kirschvink. 1995. Magnetoreception and elctromagnetic field effects: sensory perception of the geomagnetic field in animals and humans. Adv. Chem. Ser. 250:367394.
78. Konhauser, K. O. 1998. Diversity of bacterial iron mineralization. Earth Sci. Rev. 43:91121.
79. Kostka, J. E.,, and K. H. Nealson. 1995. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29:25352540.
80. Kuterbach, D. A.,, B. Walcott,, R. J. Reeder,, and R. B. Frankel. 1982. Iron-containing cells in the honeybee (Apis mellifera). Science 218:695697.
81. Liu, S. V.,, J. Zhou,, C. Zhang,, D. R. Cole,, M. Gajdarziska-Josifovska,, and T. J. Phelps. 1997. Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:11061109.
82. Lohmann, K. J. 1991. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J. Exp. Biol. 155:3749.
83. Lohmann, K. J.,, and A. O. D. Willows. 1987. Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235:331334.
84. Lonergan, D. J.,, H. L. Jenter,, J. D. Coates,, E. J. P. Phillips,, T. M. Schmidt,, and D. R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178:24022408.
85. Love, L. G.,, and D. O. Zimmerman. 1961. Bedded pyrite and microrganisms from the Mount Isa Shale. Econ. Geol. 56:873896.
86. Lovley, D. R. 1987. Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J. 5:375399.
87. Lovley, D. R., 1990. Magnetite formation during microbial dissimilatory iron reduction, p. 151166. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
88. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 55:259287.
89. Lovley, D. R.,, S. J. Giovannoni,, D. C. White,, J. E. Champine,, E. J. P. Phillips,, Y. A. Gorby,, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159:336344.
90. Lovley, D. R.,, and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:14721480.
91. Lovley D. R.,, J. F. Stolz,, G. L. Nord, Jr.,, and E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature (London) 330:252254.
92. Lowenstam, H. A. 1981. Minerals formed by organisms. Science 211:11261131.
93. Maher, B. A., 1990. Inorganic formation of ultrafine-grained magnetite, p. 179192. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
94. Maher, B. A.,, and R. M. Taylor. 1988. Formation of ultra-fine grained magnetite in soils. Nature (London) 336:368370.
95. Mandernack, K. W.,, D. A. Bazylinski,, W. C. Shanks,, and T. D. Bullen. 1999. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science 285:18921896.
96. Mann, S. 1986. On the nature of boundary-organised biomineralization. J. Inorg. Chem. 28:363371.
97. Mann, S.,, and R. B. Frankel,. 1989. Magnetite biomineralization in unicellular organisms, p. 389426. In S. Mann,, J. Webb,, and R. J. P. Williams (ed.), Biomineralization: Chemical and Biochemical Perspectives. VCH Publishers, New York, N.Y..
98. Mann, S.,, R. B. Frankel,, and R. P. Blakemore. 1984. Structure, morphology and crystal growth of bacterial magnetite. Nature (London) 310:405407.
99. Mann, S.,, T. T. Moench,, and R. J. P. Williams. 1984. A high resolution electron microscopic investigation of bacterial magnetite. Implications for crystal growth. Proc. R. Soc. Lond. Sec. B B 221:385393.
100. Mann, S.,, N. H. C. Sparks,, and R. P. Blakemore. 1987. Ultrastructure and characterization of anisotropic inclusions in magnetotactic bacteria. Proc. R. Soc. Lond. Ser. B 231:469476.
101. Mann, S.,, N. H. C. Sparks,, and R. P. Blakemore. 1987. Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc. R. Soc. Lond. Ser. B 231:477487.
102. Mann, S.,, N. H. C. Sparks,, and R. G. Board. 1990. Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism, and biotechnology. Adv. Microb. Physiol. 31:125181.
103. Mann, S.,, N. H. C. Sparks,, S. B. Couling,, M. C. Larcombe,, and R. B. Frankel. 1989. Crys-tallochemical characterization of magnetic spinels prepared from aqueous solution. J. Chem. Soc. Faraday Trans. 85:30333044.
104. Mann, S.,, N. H. C. Sparks,, R. B. Frankel,, D. A. Bazylinski,, and H. W. Jannasch. 1990. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature (London) 343:258260.
105. Manson, M. D. 1992. Bacterial chemotaxis and motility. Adv. Microb. Physiol. 33:277346.
106. Maratea, D.,, and R. P. Blakemore. 1981. Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int. J. Syst. Bacteriol. 31:452455.
107. Matitashvili, E. A.,, D. A. Matojan,, T. S. Gendler,, T. V. Kurzchalia,, and R. S. Adamia. 1992 Magnetotactic bacteria from freshwater lakes in Georgia. J. Basic Microbiol. 32:185192.
108. Matsuda, T.,, J. Endo,, N. Osakabe,, A. Tonomura,, and T. Arii. 1983. Morphology and structure of biogenic magnetite particles. Nature (London) 302:411412.
109. Matsunaga, T. 1991. Applications of bacterial magnets. Trends Biotechnol. 9:9195.
110. Matsunaga, T.,, K. Hashimoto,, N. Nakamura,, K. Nakamura,, and S. Hashimoto. 1989. Phagocytosis of bacterial magnetite by leucocytes. Appl. Microbiol. Biotechnol. 31:401405.
111. Matsunaga, T.,, and S. Kamiya. 1987. Use of magnetic particles isolated from magnetotactic bacteria for enzyme mobilization. Appl. Microbiol. Biotechnol. 26:328332.
112. Matsunaga, T.,, C. Nakamura,, J. G. Burgess,, and K. Sode. 1992. Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetite synthesis. J. Bacteriol. 174:27482753.
113. Matsunaga, T.,, T. Sakaguchi, and E Tadokoro. 1991. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol. 35:651655.
114. Matsunaga, T.,, F. Tadokoro,, and N. Nakamura. 1990. Mass culture of magnetic bacteria and their application to flow type immunoassays. IEEE Trans. Magn. 26:15571559.
115. Matsunaga, T.,, and N. Tsujimura. 1993. Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically. Appl. Microbiol. Biotechnol. 39:368371.
116. McFadden, B. A.,, and J. M. Shively,. 1991. Bacterial assimilation of carbon dioxide by the Calvin cycle, p. 2549. In J. M. Shively, and L. L. Barton (ed.). Variations in Autotrophic Life. Academic Press, Inc., San Diego, Calif..
117. McKay, D. S.,, E. K. Gibson, Jr.,, K. L. Thomas-Keprta,, H. Vali,, C. S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling,, and R. N. Zare, 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924930.
118. Meldrum, F. C.,, B. R. Heywood,, S. Mann,, R. B. Frankel,, and D. A. Bazylinski. 1993. Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proc. R. Soc. Lond. Ser. B 251:237242.
119. Meldrum, F. C.,, B. R. Heywood,, S. Mann,, R. B. Frankel,, and D. A. Bazylinski. 1993. Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc. R. Soc. Lond. Ser. B 251:231236.
120. Moench, T. T. 1988. Biliphococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus. Antonie Leeuwenhoek 54:483496.
121. Moench, T. T.,, and W. A. Konetzka. 1978. A novel method for the isolation and study of a magnetic bacterium. Arch. Microbiol. 119:203212.
122.Moskowitz, B. M. 1995. Biomineralization of magnetic minerals. Rev. Geophvs. Suppl. 33:123128.
123. Moskowitz, B. M.,, R. B. Frankel,, D. A. Bazylinski. 1993. Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet. Sci. Lett. 120:283300.
124. Moskowitz, B. M.,, R. B. Frankel,, D. A. Bazylinski,, H. W. Jannasch,, and D. R. Lovley. 1989. A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophys. Res. Lett. 16:665668.
125. Myers, C. R.,, and K. H. Nealson,. 1990. Iron mineralization by bacteria: metabolic coupling of iron reduction to cell metabolism in Alteromonas putrefaciens MR-1, p. 131149. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
126. Nakamura, C.,, J. G. Burgess,, K. Sode,, and T. Matsunaga. 1995. An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum AMB-1. J. Biol. Chem. 270:2839228396.
127. Nakamura, C.,, T. Kikuchi,, J. G. Burgess,, and T. Matsunaga. 1995. Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J. Biochem. 118:2327.
128. Nakamura, C.,, T. Sakaguchi,, S. Kudo,, J. G. Burgess,, K. Sode,, and T. Matsunaga. 1993. Characterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1. Appl. Biochem. Biotechnol. 39/40:169176.
129. Nakamura, N.,, J. G. Burgess,, K. Yagiuda,, S. Kudo,, T. Sakaguchi,, and T. Matsunaga. Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal. Chem. 65:20362039.
130. Nakamura, N.,, K. Hashimoto,, and T. Matsunaga. 1991. Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal. Chem. 63:268272.
131. Nakamura, N.,, and T. Matsunaga. 1993. Highly sensitive detection of allergen using bacterial magnetic particles. Anal. Chim. Acta 281:585589.
132. Neiiands, J. B. 1984. A brief history of iron metabolism. Biol. Metals 4:16.
133. Noguchi, Y.,, T. Fujiwara,, K. Yoshimatsu,, and Y. Fukumori. 1999. Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J. Bacteriol. 181: 21422147.
134. Oberhack, M.,, R. Sussmuth,, and F. Hermann. 1987. Magnetotactic bacteria from freshwater. Z. Naturforsch. Ser. 42E:300306.
135. O'Brien, W.,, L. C. Paoletti,, and R. R Blakemore. 1987. Spectral analysis of cytochromes in Aquaspirillum magnetotacticum. Curr. Microbiol. 15:121127.
136. Okuda, Y.,, K. Denda,, and Y. Fukumori. 1996. Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99102.
137. Oldfield, F. 1992. The source of fine-grained magnetite in sediments. Holocene 2:180182.
138. Palache, C.,, H. Berman,, and C. Frondel. 1944. Dana's System of Mineralogy. John Wiley & Sons, Inc., New York, N.Y..
139. Paoletti, L. C.,, and R. P. Blakemore. 1986. Hydroxamate production by Aquaspirillum magnetotacticum. J. Bacteriol. 167:7376.
140. Paoletti, L. C.,, and R. P. Blakemore. 1988. Iron reduction by Aquaspirillum magnetotacticum. Curr. Microbiol. 17:339342.
141. Peck, J. A.,, and J. W. King. 1996. Magnetofossils in the sediments of Lake Baikal, Siberia. Earth Planet. Sci. Lett. 140:159172.
142. Penninga, I.,, H. de Waard,, B. M. Moskowitz,, D. A. Bazylinski,, and R. B. Frankel. 1995 Remanence curves for individual magnetotactic bacteria using a pulsed magnetic field. J. Magn. Magn. Mater. 149:279286.
143. Petersen, N.,, T. von Dobeneck,, and H. Vali. 1986. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature (London) 320:611615.
144. Phillips, J. B. 1986. Two magnetoreception pathways in a migratory salamander. Science 233: 765767.
145. Posfai, M.,, P. R. Buseck,, D. A. Bazylinski,, and R. B. Frankel. 1998. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 280:880883.
146. Posfai, M.,, P. R. Buseck,, D. A. Bazylinski,, and R. B. Frankel. 1998. Iron sulfides from magnetotactic bacteria: structure, compositions, and phase transitions. Am. Mineral. 83:14691481.
147. Proksch, R. B.,, B. M. Moskowitz,, E. D. Dahlberg,, T. Schaeffer,, D. A. Bazylinski,, and R. B. Frankel. 1995. Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl. Phys. Lett. 66:25822584.
148. Rickard, D. T. 1969. The microbiological formation of iron sulfides. Stockh. Contrib. Geol. 20: 5066.
149. Rickard, D. T. 1969. The chemistry of iron sulfide formation at low temperatures. Stockh. Contrib. Geol. 20:6795.
150. Rogers, F. G.,, R. P. Blakemore,, N. A. Blakemore,, R. B. Frankel,, D. A. Bazylinski,, D. Maratea,, and C. Rogers. 1990. Intercellular structure in a many-celled magnetotactic procaryote. Arch. Microbiol. 154:1822.
151. Rogers, F. G.,, R. P. Blakemore,, N. A. Blakemore,, R. B. Frankel,, D. A. Bazylinski,, D. Maratea,, and C. Rogers,. 1990. Intercellular junctions, motility and magnetosome structure in a multicellular magnetotactic procaryote, p. 239255. In R. B. Frankel, and R. R. Blakemore (ed,) Iron Biominerals. Plenum Press, New York, N.Y.
152. Rossello-Mora, R. A.,, F. Caccavo, Jr.,, K. Osterlehner,, N. Springer,, S. Spring,, D. Schüuler,, W. Ludwig,, R. Amann,, M. Vannacanneyt,, and K.-H. Schleifer. 1994. Isolation and taxonomic characterization of a halotolerant, facultative anaerobic iron-reducing bacterium. Syst. Appl. Microbiol. 17:569573.
153. Sakaguchi, T.,, J. G. Burgess,, and T. Matsunaga. 1993. Magnetite formation by a sulphate-reducing bacterium. Nature (London) 365:4749.
154. Sakaguchi, H.,, H. Hagiwara,, Y. Fukumori,, Y. Tamaura,, M. Funaki,, and S. Hirose. 1993. Oxygen concentration-dependent induction of a 140-kDa protein in magnetic bacterium Magnetospirillum magnetotacticum MS-1. FEMS Microbiol. Lett. 107:169174.
155. Schleifer, K.-H.,, D. Schüler,, S. Spring,, M. Weizenegger,, R. Amann,, W. Ludwig,, and M. Kohier. 1991. The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov., and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb, nov. Syst. Appl. Microbiol. 14:379385.
156. Schüler, D.,, and E. Baeuerlein. 1996. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol. 166:301307.
157. Schüler, D.,, and E. Baeuerlein. 1998. Dynamics of iron uptake and Fe3O4 mineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180:159162.
158. Schüler, D.,, S. Spring,, and D. A. Bazylinski. 1999. Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. Syst. Appl. Microbiol. 22:466471.
159. Segali, J. E.,, S. M. Block,, and H. C. Berg. 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83:89878991.
160. Short, K. A.,, and R. P. Blakemore. 1986. Iron respiration-driven proton translocation in aerobic bacteria. J. Bacteriol. 167:729731.
161. Short, K. A.,, and R. P. Blakemore. 1989. Periplasmic superoxide dismutases in Aquaspirillum magnetotacticum. Arch. Microbiol. 152:342346.
162. Silverman, M.,, and M. Simon. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature (London) 249:7374.
163. Slobodkin, A. I.,, C. Jeanthon,, S. L'Haridon,, T. Nazina,, M. Miroschnichenko,, and E. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39:99102.
164. Slobodkin, A. I.,, A.-L. Reysenbach,, N. Strutz,, M. Dreier,, and J. Wiegel. 1997. Thermoterra-bacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int. J. Syst. Bacteriol. 47:541547.
165. Sparks, N. H. C., 1990. Structural and morphological characterization of biogenic magnetite crystals, p. 167177. In R. B. Frankel, and R. P. Blakemore (ed,) Iron Biominerals. Plenum Press, New York, N.Y..
166. Sparks, N. H., C. S. Mann,, D. A. Bazylinski,, D. R. Lovley,, H. W. Jannasch,, and R. B. Frankel. 1990. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth Planet. Sci. Lett. 98:1422.
167. Spormann, A. M.,, and R. S. Wolfe. 1984. Chemotactic, magnetotactic and tactile behavior in a magnetic spirillum. FEMS Microbiol. Lett. 22:171177.
168. Spring, S.,, R. Amann,, W. Ludwig,, K.-H. Schleifer,, H. van Gemerden,, and N. Petersen. 1993. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol. 59:23972403.
169. Spring, S.,, R. Amann,, W. Ludwig,, K.-H. Schleifer,, and N. Petersen. 1992. Phylogenetic diversity and identification of non-culturable magnetotactic bacteria. Syst. Appi Microbiol. 15:116122.
170. Spring, S.,, R. Amann,, W. Ludwig,, K.-H. Schleifer,, D. Schiiler,, K. Poralla,, and N. Petersen. 1994. Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria. Syst. Appl. Microbiol. 17:501508.
171. Spring, S.,, U. Lins,, R. Amann,, K.-H. Schleifer,, L. C. S. Ferreira,, D. M. S. Esquivel,, and M. Farina. 1998. Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch. Microbiol. 169:136147.
172. Spring, S.,, and K.-H. Schleifer. 1995. Diversity of magnetotactic bacteria. Syst. Appl. Microbiol. 18:147153.
173. Stolz, J. F. 1993. Magnetosomes. J. Gen Microbiol. 139:16631670.
174. Stolz, J. F.,, S.-B. R. Chang,, and J. L. Kirschvink. 1986. Magnetotactic bacteria and single domain magnetite in hemipelagic sediments. Nature (London) 321:849850.
175. Stolz, J. F.,, D. R. Lovley,, and S. E. Haggerty. 1990. Biogenic magnetite and the magnetization of sediments. J. Geophys. Res. 95:43554361.
176. Suzuki, H.,, T. Tanaka,, T. Sasaki,, N. Nakamura,, T. Matsunaga,, and S. Mashiko. 1998. High resolution magnetic force microscope images of a magnetic particle chain extracted from magnetic bacteria AMB-1. Jpn. J. Appl. Phys. 37:L1343L1345.
177. Swancutt, M. A.,, B. S. Riley,, J. D. Radolf,, and M. V. Norgard. 1989. Molecular characterization on the pathogen-specific, 34-kilodalton membrane immunogen of Treponema pallidum. Infect. Immun. 57:33143323.
178. Tamegai, H.,, and Y. Fukumori. 1994. Purification, and some molecular and enzymatic features of a novel ccb-type cytochrome c oxidase from a microaerobic denitrifier, Magnetospirillim magnetotacticum. FEBS Lett. 347:2226.
179. Tamegai, H.,, T. Yamanaka,, and Y. Fukumori. 1993. Purification and properties of a “cytochrome a1”-like hemoprotein from a magnetotactic bacterium, Aquaspirillum magnetotacticum. Biochim. Biophys. Acta 1158:237243.
180. Taylor, B. L. 1983. How do bacteria find the optimal concentration of oxygen? Trends Biochem. Sci. 8:438441.
181. Thornhill, R. H.,, J. G. Burgess,, T. Sakaguchi,, and T. Matsunaga. 1994. A morphological classification of bacteria containing bullet-shaped magnetic particles. FEMS Microbiol. Lett. 115: 169176.
184. 182 Torres de Araujo, F. F.,, M. A. Pires,, R. B. Frankel,, and C. E. M. Bicudo. 1986. Magnetite and magnetotaxis in algae. Biophys. J. 50:385378.
183. Towe, K. M.,, and T. T. Moench. 1981. Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Lett. 52:213220.
184. van Vliet, A. H.,, K. G. Woolridge,, and J. M. Ketley. 1998. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J. Bacteriol. 180:52915298.
185. Vargas, M.,, K. Kashefi,, E. L. Blunt-Harris,, and D. R. Lovley. 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature (London) 395:6567.
186. Wakeham, S. G.,, B. L. Howes,, and J. W. H. Dacey. 1984. Dimethyl sulphide in a stratified coastal salt pond. Nature (London) 310:770772.
187. Wakeham, S. G.,, B. L. Howes,, J. W. H. Dacey,, R. P. Schwarzenbach,, and J. Zeyer. 1987. Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. Geochim. Cosmochim. Acta 51:16751684.
188. Walcott, C.,, J. L. Gould,, and J. L. Kirschvink. 1979. Pigeons have magnets. Science 205:10271029.
189. Walcott, C.,, and R. P. Green. 1974. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184:108182.
190. Waleh, N. S. 1988. Functional expression of Aquaspirillum magnetotacticum genes in Escherichia coli K12. Mol. Gen. Genet. 214:592594.
191. Walker, M. M.,, and M. E. Bitterman. 1989. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145:489494.
192. Walker, M. M.,, C. E. Diebel,, C. V. Haugh,, P. M. Pankhurst,, and J. C. Montgomery. 1997. Structure and function of the vertebrate magnetic sense. Nature 390:371376.
193. Walker, M. M.,, J. L. Kirschvink,, A. E. Dizon,, and G. Ahmed. 1992. Evidence that fin whales respond to the geomagnetic field during migration. J. Exp. Biol. 171:6778.
194. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
195. Yamazaki, T.,, H. Oyanagi,, T. Fujiwara,, and Y. Fukumori. 1995. Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum: a novel cytochrome cd1, with Fe(II): nitrite oxidoreductase activity. Eur. J. Biochem. 233:665671.
196. Zavarzin, G. A.,, E. Stackebrandt,, and R. G. E. Murray. 1991. A correlation of phylogenetic diversity in the Proteobacteria with the influences of ecological forces. Can. J. Microbiol. 37:16.
197. Zhang, C.,, S. Liu,, T. J. Phelps,, D. R. Cole,, J. Horita,, and S. M. Fortier. 1997. Physiochemical, mineralogical, and isotopie characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria. Geochim. Cosmochim. Acta 61:46214632.
198. Zhang, C.,, H. Vali,, C. S. Romanek,, T. J. Phelp,, and S. V. Lu. 1998. Formation of single domain magnetite by a thermophilic bacterium. Am. Mineral. 83:14091418.
199. Zhulin, I. B.,, V. A. Bespelov,, M. S. Johnson,, and B. L. Taylor. 1996. Oxygen taxis and proton motive force in Azospirillum brasiliense. J. Bacteriol. 178:51995204.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error