1887

Chapter 5 : Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap05-2.gif

Abstract:

This chapter examines and reviews features of biologically induced mineralization (BIM)- and biologically controlled mineralization (BCM)-type magnetic particles. It describes microorganisms that produce magnetic minerals (focusing mainly on the magnetotactic bacteria) and also describes the biomineralization processes involved in the synthesis of magnetic minerals. The chapter also reviews the physics and function of magnetotaxis in light of recent findings. In the microbial world, the most widely recognized example of BCM is magnetosome production by the magnetotactic bacteria. Although all freshwater magnetotactic bacteria synthesize magnetite as the mineral phase of their magnetsomes, many marine, estuarine, and salt marsh species produce an iron sulfide-type magnetosome which consists primarily of the magnetic iron sulfide greigite. The chapter discusses stoichiometry changes and specifically whether iron can be replaced with other transition metal ions and whether sulfur and oxygen can replace each other as the nonmetal component in the magnetosome mineral phase. The fact that many higher creatures biomineralize single-magnetic-domain magnetite crystals of similar morphologies suggests the intriguing idea that all these organisms have the same or a similar set of genes responsible for magnetite biomineralization that would probably have originated in the magnetotactic bacteria. Thus, studying how magnetotactic bacteria biomineralize magnetite might have a scientific impact far beyond the studies of microbiology and geology.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5

Key Concept Ranking

Sodium Dodecyl Sulfate
0.46194333
Inorganic Chemicals
0.45330623
Pulsed-Field Gel Electrophoresis
0.44255584
Transmission Electron Microscopy
0.44076416
0.46194333
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Depiction of the OATZ in the water column as typified by Salt Pond (Woods Hole, Mass.). Note the inverse double concentration gradients of oxygen ([O]) diffusing from the surface and sulfide ([S]) generated by sulfate-reducing bacteria in the anaerobic zone (vertical arrows). Magnetite-producing magnetotactic bacteria exist in their greatest numbers at the OATZ, where microaerobic conditions predominate, and greigite-producers are found just below the OATZ, where S becomes detectable. When polar-magneto-aerotactic, magnetite-producing coccoid cells are above the OATZ in vertical concentration gradients of O and S (higher [O] than optimal), they swim downward (small arrows above OATZ) along the inclined geomagnetic field lines (dashed lines). When they are below the OATZ (lower [O] than optimal), they reverse direction (by reversing the direction of their flagellar motor) and swim upward (small arrows below the OATZ) along the inclined geomagnetic field lines. The direction of flagellar rotation is coupled to a aerotactic sensory system that acts as a switch when cells are at a suboptimal position in the gradient as defined in the text. The magnetotactic spirilla (and other axial magneto-aerotactic microorganisms) align along the geomagnetic field lines and swim up and down, relying on a temporal sensory mechanism of aerotaxis to find and maintain position at their optimal oxygen concentration at the OATZ.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Morphologies of intracellular magnetite (FeO) particles produced by magnetotactic bacteria collected from the OATZ of the Pettaquamscutt Estuary, (a) Dark-field scanning-transmission electron micrograph (STEM) of a chain of cubo-octahedra in cells of an unidentified rod-shaped bacterium, viewed along a [ ] zone axis for which the particle projections appear hexagonal, (b) Bright-field STEM of a chain of crystals within a cell of an unidentified marine vibrio, with paralle-lepipedal projections, (c) Bright-field STEM of tooth-shaped (anisotropic) magnetosomes from an unidentified marine rod-shaped bacterium.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Idealized magnetite (a to d) and greigite (e and f) crystal morphologies derived from high-resolution TEM studies of magnetosomes from magnetotactic bacteria, (a and e) Cubo-octahedrons. (b, c, and f) Variations of pseudo-hexagonal prisms, (d) Elongated cubo-octahedron. Adapted from references and .

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Morphologies of greigite (FeS) particles within cells of unidentified rod-shaped bacteria collected from the sulfidic waters of a salt marsh pool, (a) TEM of cubo-octahedra. (b) TEM of rectangular prisms.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

High-magnification bright-field STEM of pleomorphic greigite-mackinawite particles within MMP cells.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Dark-field STEM of rectangular prismatic greigite (g) and tooth-shaped magnetite particles (m) co-organized within the same chains of magnetosomes in an unusual rod-shaped magnetotactic bacterium collected from the Pettaquamscutt Estuary (see the text).

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Dark-field STEM of pseudo-hexagonal prismatic magnetite particles from the marine magnetotactic coccus strain MC-1, surrounded by the magnetosome membrane (arrowhead).

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of wild-type strain MV-1 cell fractions. Cell fractions were separated by differential ultracentri-fugation. Lanes: SF, soluble fraction; MF, membrane fraction (excluding magnetosome membranes); MM, magnetosome membranes; MW, molecular mass standards, with masses in kilodaltons shown on the right. Magnetosomes were purified as previously described ( ), and magnetosome membranes were extracted from magnetosomes with 1% sodium dodecyl sulfate in 20 mM HEPES (pH 7.2) (Dubbels and Bazylinski, Abstr. 98th Gen. Meet. Am. Soc. Microbiol. 1998). The large arrow denotes a soluble 19-kDa protein that is not produced by a nonmagnetotactic mutant of strain MV-1 (see the text), and the small arrows denote some proteins that appear to be associated with the magnetosome membrane but not with the other cell fractions.

Citation: Bazylinski D, Frankel R. 2000. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria, p 109-144. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap5
1. Akai, J.,, S. Takaharu,, and S. Okusa. 1991. TEM study on biogenic magnetite in deep-sea sediments from the Japan Sea and the western Pacific Ocean. J. Electron Microsc. 40: 110 117.
2. Balkwill, D. L.,, D. Maratea,, and R. P. Blakemore. 1980. Ultrastructure of a magnetic spirillum. J. Bacteriol. 141: 1399 1408.
3. Bazylinski, D. A. 1995. Structure and function of the bacterial magnetosome. ASM News 61: 337 343.
4. Bazylinski, D. A. 1999. Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol 2: 71 80.
5. Bazylinski, D. A.,, and R. P. Blakemore. 1983. Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr. Microbiol. 9: 305 308.
6. Bazylinski, D. A.,, and R. P. Blakemore. 1983. Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appi Environ. Microbiol 46: 1118 1124.
6.a. Bazylinski, D. A.,, A. J. Dean,, D. Schüler,, E. J. P. Phillips,, and D. R. Lovley. N 2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol, in press.
7. Bazylinski, D. A.,, and R. B. Frankel,. 1992. Production of iron sulfide minerals by magnetotactic bacteria from sulfidic environments, p. 147 159. In H. C. W. Skinner, and R. W. Fitzpatrick (ed.), Biomineralization Processes of Iron and Manganese: Modern and Ancient Environments. Catena Verlag, Cremlingen-Destedt, Germany.
8. Bazylinski, D. A.,, R. B. Frankel,, A. J. Garratt-Reed,, and S. Mann,. 1990. Biomineralization of iron sulfides in magnetotactic bacteria from sulfidic environments, p. 239 255. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
9. Bazylinski, D. A.,, R. B. Frankel,, B. R. Heywood,, S. Mann,, J. W. King,, P. L. Donaghay,, and A. K. Hanson. 1995. Controlled biomineralization of magnetite (Fe 3O4) and greigite (Fe 3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 61: 3232 3239.
10. Bazylinski, D. A.,, R. B. Frankel,, and H. W. Jannasch. 1988. Anaerobic production of magnetite by a marine magnetotactic bacterium. Nature (London) 334: 518 519.
11. Bazylinski, D. A.,, A. J. Garratt-Reed,, A. Abedi,, and R. B. Frankel. 1993. Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch. Microbiol 160: 35 42.
12. Bazylinski, D. A.,, A. J. Garratt-Reed,, and R. B. Frankel. 1994. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech. 27: 389 401.
13. Bazylinski, D. A.,, B. R. Heywood,, S. Mann,, R. B. Frankel. 1993. Fe 3O4 and Fe 3S4 in a bacterium. Nature (London) 366: 218.
14. Bazylinski, D. A.,, and C. M. Moscowitz. 1997. Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. Rev. Mineral 35: 181 223.
14.a. Beard, B. L.,, C. M. Johnson,, L. Cox,, H. Sun,, K. H. Nealson,, and C. Aguilar. 1999. Iron isotope biosignatures. Science 285: 1889 1892.
15. Bell, P. E.,, A. L. Mills,, and J. S. Herman. 1987. Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction. Appl. Environ. Microbiol. 53: 2610 2616.
16. Berner, R. A. 1962. Synthesis and description of tetragonal iron sulfide. Science 137: 669.
17. Berner, R. A. 1964. Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. J. Geol. 72: 293 306.
18. Berner, R. A. 1967. Thermodynamic stability of sedimentary iron sulfides. Am. J. Sci. 265: 773 785.
19. Berner, R. A. 1969. The synthesis of framboidal pyrite. Econ. Geol. 64: 383 393.
20. Berner, R. A. 1970. Sedimentary pyrite formation. Am. J. Sci. 268: 1 23.
21. Berner, R. A., 1974. Iron sulfides in Pleistocene deep Black Sea sediments and their palaeoocean-ographic significance, p. 524 531. In E. T. Degens, and D. A. Ross (ed.), The Black Sea: Geology, Chemistry and Biology. AAPG Memoirs 20. American Association of Petroleum Geologists, Tulsa, Okla.
22. Berson, A. E.,, D. V. Hudson,, and N. S. Waleh. 1991. Cloning of a sequence of Aquaspirillum magnetotacticum that complements the aroD gene of Escherichia coli. Mol Microbiol. 5: 2261 2264.
23. Berson, A. E.,, M. R. Peters,, and N. S. Waleh. 1989. Cloning and characterization of the recA gene of Aquaspirillum magnetotacticum. Arch. Microbiol. 152: 567 571.
24. Berson, A. E.,, M. R. Peters,, and N. S. Waleh. 1990. Nucleotide sequence of recA gene of Aquaspirillum magnetotacticum . Nucleic Acids Res. 18: 675.
25. Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43: 147 171.
26. Blakemore, R. P. 1975. Magnetotactic bacteria. Science 190: 377 379.
27. Blakemore, R. P. 1982. Magnetotactic bacteria. Annu. Rev. Microbiol 36: 217 238.
28. Blakemore, R. P.,, and N. A. Blakemore,. 1990. Magnetotactic magnetogens, p. 51 67. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..>
29. Blakemore, R. P.,, N. A. Blakemore,, D. A. Bazylinski,, and T. T. Moench,. 1989. Magnetotactic bacteria, p. 1882 1889. In J. T. Staley,, M. P. Bryant,, N. Pfennig,, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 3. The Williams & Wilkins Co., Baltimore, Md..
30. Blakemore, R. P.,, R. B. Frankel,, and A. J. Kalmijn. 1980. South-seeking magnetotactic bacteria in the southern hemisphere. Nature (London) 236: 384 385.
31. Blakemore, R. P.,, D. Maratea,, and R. S. Wolfe. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140: 720 729.
32. Blakemore, R. P.,, K. A. Short,, D. A. Bazylinski,, C. Rosenblatt,, and R. B. Frankel. 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Gemicrobiol J. 4: 53 71.
33. Bradley, J. P.,, R. P. Harvey,, and H. Y. McSween, Jr. 1996. Magnetite whiskers and platelets in the ALH84001 martian meteorite: evidence for vapor phase growth. Geochim. Cosmochim. Acta 60: 5149 5155.
34. Burgess, J. G.,, R. Kanaguchi,, T. Sakaguchi,, R. H. Thornhill,, and T. Matsunaga. 1993. Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rRNA sequences. J. Bacteriol. 175: 6689 6694.
35. Butler, R. E.,, and S. K. Banerjee. 1975. Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 80: 4049 4058.
36. Caccavo, R., Jr.,, D. J. Lonergan,, D. R. Lovley,, M. Davis,, J. R. Stolz,, and M. J. McInerny. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal reducing microorganism. Appl. Environ. Microbiol. 60: 3752 3759.
37. Chang, S.-B. R.,, and J. L. Kirschvink. 1989. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu. Rev. Earth Planet. Sci. 17: 169 195.
38. Chang, S.-B. R.,, J. F. Stolz,, J. L. Kirschvink,, and S. M. Awramik. 1989. Biogenic magnetite in stromatolites. 2. Occurrence in ancient sedimentary environments. Precambrian Res. 43: 305 312.
39. Dean, A. J.,, and D. A. Bazylinski. 1999. Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis. Curr. Microbiol. 39: 219 225.
40. DeLong, E. F.,, R. B. Frankel,, and D. A. Bazylinski. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science 259: 803 806.
41. Devouard, B.,, M. Posfai,, X. Hua,, D. A. Bazylinski,, R. Â. Frankel, and P. R. Buseck. 1998. Magnetite from magnetotactic bacteria: size distributions and twinning. Am. Mineral. 83: 1387 1398.
42. Diaz-Ricci, J. C.,, and J. L. Kirschvink. 1992. Magnetic domain state and coercivity predictions for biogenic greigite (Fe 3S4): a comparison of theory with magnetosome observations. J. Geophys. Res. 97: 17309 17315.
43. DiChristina, T. J.,, and E. F. DeLong. 1993. Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens. J. Bacteriol. 59: 4152 4160.
44. Donaghay, P. L.,, H. M. Rines,, and J. M. Sieburth. 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 97 108.
45. Dunin-Borkowski, R. E.,, M. R. McCartney,, R. B. Frankel,, D. A. Bazylinski,, M. Posfai,, and P. R. Buseck. 1998. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282: 1868 1870.
46. Eden, P. A.,, T. M. Schmidt,, R. P. Blakemore,, and N. R. Pace. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41: 324 325.
47. Fabricus, F. 1961. Die Strukturen des “Rogenpyrits” (Kossener Schichten, Rat) als Betrag zum Problem der “Vererzten Bakterien.” Geol. Rundschau 51: 647 657.
48. Farina, M.,, D. M. S. Esquivel,, and H. G. P. Lins deBarros. 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature (London) 343: 256 258.
49. Farina, M.,, H. Lins deBarros,, D. M. S. Esquivel,, and J. Danon. 1983. Ultrastructure of a magnetotactic bacterium. Biol. Cell 48: 85 88.
50. Frankel, R. B. 1984. Magnetic guidance of organisms. Annu. Rev. Biophys. Bioeng. 13: 85 103.
51. Frankel, R. b.,, and D. A. Bazylinski. 1994. Magnetotaxis and magnetic particles in bacteria. Hyperfine Interact. 90: 135 142.
52. Frankel, R. B.,, D. A. Bazylinski,, M. Johnson,, and B. L. Taylor. 1997. Magneto-aerotaxis in marine, coccoid bacteria. Biophys. J. 73: 994 1000.
53. Frankel, R. B.,, D. A. Bazylinski,, and D. Schüler. 1998. Biomineralization of magnetic iron minerals in bacteria. Supramol Sci. 5: 383 390.
54. Frankel, R. B.,, R. P. Blakemore,, F. F. Torres de Araujo,, D. M. S. Esquivel,, and J. Danon. 1981. Magnetotactic bacteria at the geomagnetic equator. Science 212: 1269 1270.
55. Frankel, R. B.,, R. P. Blakemore,, and R. S. Wolfe. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355 1356.
56. Frankel, R. B.,, G. Ñ. Papaefthymiou, R. P. Blakemore, and W. O'Brien. 1983. Fe 3O4 precipitation in magnetotactic bacteria. Biochim. Biophys. Acta 763: 147 159.
57. Frankel, R. B.,, J.-P. Zhang,, and D. A. Bazylinski. 1998. Single magnetic domains in magnetotactic bacteria. J. Geophys. Res. 103: 30601 30604.
58. Freke, A. M.,, and D. Tate. 1961. The formation of magnetic iron sulphide by bacterial reduction of iron solutions. J. Biochem. Microbiol. Technol. Eng. 3: 29 39.
59. Funaki, M.,, H. Sakai,, and T. Matsunaga. 1989. Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria. J. Geomagn. Geoelectr. 41: 77 87.
60. Funaki, M.,, H. Sakai,, T. Matsunaga,, and S. Hirose. 1992. The S pole distribution on magnetic grains in pyroxenite determined by magnetotactic bacteria. Phys. Earth Planet. Interiors 70: 253 260.
61. Futschik, K.,, H. Pfutzner,, A. Doblander,, P. Schonhuber,, T. Dobeneck,, N. Petersen,, and H. Vali. 1989. Why not use magnetotactic bacteria for domain analyses? Phys. Scr. 40: 518 521.
62. Gorby, Y. A. 1989. Regulation of Magnetosome Biogenesis by Oxygen and Nitrogen. p. 72 88. Ph.D. dissertation. University of New Hampshire, Durham..
63. Gorby, Y. A.,, T. J. Beveridge,, and R. P. Blakemore. 1988. Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170: 834 841.
64. Greene, A. C.,, B. K. C. Patel,, and A. J. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47: 505 509.
65. Gould, J. L.,, J. L. Kirschvink,, and K. S. Deffeyes. 1978. Bees have magnetic remanence. Science 201: 1026 1028.
66. Guerin, W. F.,, and R. P. Blakemore. 1992. Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 58: 1102 1109.
67. Guerinot, M. L. 1994. Microbial iron transport. Annu. Rev. Microbiol. 48: 743 772.
68. Hanzlik, M. M.,, N. Petersen,, R. Keller,, and E. Schmidbauer. 1996. Electron microscopy and 57Fe Mossbauer spectra of 10 nm particles, intermediate in composition between Fe 3O4-gammma;-Fe 2O3, produced by bacteria. Geophys. Res. Lett. 23: 479 482.
69. Heywood, B. R.,, D. A. Bazylinski,, A. J. Garratt-Reed,, S. Mann,, and R. B. Frankel. 1990. Controlled biosynthesis of greigite (Fe 3S4) in magnetotactic bacteria. Naturwissenschaften 77: 536 538.
70. Heywood, B. R.,, S. Mann,, and R. B. Frankel,. 1991. Structure, morphology and growth of biogenic greigite (Fe 3S4), p. 93 108. In M. Alpert,, P. Calvert,, R. B. Frankel,, P. Rieke,, and D. Tirrell (ed.), Materials Synthesis Based on Biological Processes. Materials Research Society, Pittsburgh, Pa..
71. Iida, A.,, and J. Akai. 1996. Crystalline sulfur inclusions in magnetotactic bacteria. Sci. Rep. Niigata Univ. Ser. E 11: 35 42.
72. Iida, A.,, and J. Akai. 1996. ÒÅÌ study on magnetotactic bacteria and contained magnetite grains as biogenic minerals, mainly from Hokuriku-Niigata region, Japan. Sci. Rep. Niigata Univ. Ser. E 11: 43 66.
73. Janvier, B.,, P. Constantinidou,, P. Aucher,, Z. V. Marshall,, C. W. Penn,, and J. L. Fauchere. 1998. Characterization and gene sequencing of a 19-kDa periplasmic protein of Campylobacter jejuni E coli. Res. Microbiol. 149: 95 107.
74. Kawaguchi, R.,, J. G. Burgess,, T. Sakaguchi,, H. Takeyama,, R. H. Thornhill,, and T. Matsunaga. 1995. Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the δ-Proteobacteria. FEMS Microbiol. Lett. 126: 277 282.
75. Kirschvink, J. L. 1980. South-seeking magnetic bacteria. J. Exp. Biol. 86: 345 347.
76. Kirschvink, J. L.,, A. Kobayashi-Kirschvink,, and B. J. Woodford. 1992. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 89: 7683 7687.
77. Kobayashi, A.,, J. L. Kirschvink. 1995. Magnetoreception and elctromagnetic field effects: sensory perception of the geomagnetic field in animals and humans. Adv. Chem. Ser. 250: 367 394.
78. Konhauser, K. O. 1998. Diversity of bacterial iron mineralization. Earth Sci. Rev. 43: 91 121.
79. Kostka, J. E.,, and K. H. Nealson. 1995. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29: 2535 2540.
80. Kuterbach, D. A.,, B. Walcott,, R. J. Reeder,, and R. B. Frankel. 1982. Iron-containing cells in the honeybee ( Apis mellifera). Science 218: 695 697.
81. Liu, S. V.,, J. Zhou,, C. Zhang,, D. R. Cole,, M. Gajdarziska-Josifovska,, and T. J. Phelps. 1997. Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277: 1106 1109.
82. Lohmann, K. J. 1991. Magnetic orientation by hatchling loggerhead sea turtles ( Caretta caretta). J. Exp. Biol. 155: 37 49.
83. Lohmann, K. J.,, and A. O. D. Willows. 1987. Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235: 331 334.
84. Lonergan, D. J.,, H. L. Jenter,, J. D. Coates,, E. J. P. Phillips,, T. M. Schmidt,, and D. R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178: 2402 2408.
85. Love, L. G.,, and D. O. Zimmerman. 1961. Bedded pyrite and microrganisms from the Mount Isa Shale. Econ. Geol. 56: 873 896.
86. Lovley, D. R. 1987. Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J. 5: 375 399.
87. Lovley, D. R., 1990. Magnetite formation during microbial dissimilatory iron reduction, p. 151 166. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
88. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 55: 259 287.
89. Lovley, D. R.,, S. J. Giovannoni,, D. C. White,, J. E. Champine,, E. J. P. Phillips,, Y. A. Gorby,, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159: 336 344.
90. Lovley, D. R.,, and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472 1480.
91. Lovley D. R.,, J. F. Stolz,, G. L. Nord, Jr.,, and E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature (London) 330: 252 254.
92. Lowenstam, H. A. 1981. Minerals formed by organisms. Science 211: 1126 1131.
93. Maher, B. A., 1990. Inorganic formation of ultrafine-grained magnetite, p. 179 192. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
94. Maher, B. A.,, and R. M. Taylor. 1988. Formation of ultra-fine grained magnetite in soils. Nature (London) 336: 368 370.
95. Mandernack, K. W.,, D. A. Bazylinski,, W. C. Shanks,, and T. D. Bullen. 1999. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science 285: 1892 1896.
96. Mann, S. 1986. On the nature of boundary-organised biomineralization. J. Inorg. Chem. 28: 363 371.
97. Mann, S.,, and R. B. Frankel,. 1989. Magnetite biomineralization in unicellular organisms, p. 389 426. In S. Mann,, J. Webb,, and R. J. P. Williams (ed.), Biomineralization: Chemical and Biochemical Perspectives. VCH Publishers, New York, N.Y..
98. Mann, S.,, R. B. Frankel,, and R. P. Blakemore. 1984. Structure, morphology and crystal growth of bacterial magnetite. Nature (London) 310: 405 407.
99. Mann, S.,, T. T. Moench,, and R. J. P. Williams. 1984. A high resolution electron microscopic investigation of bacterial magnetite. Implications for crystal growth. Proc. R. Soc. Lond. Sec. B B 221: 385 393.
100. Mann, S.,, N. H. C. Sparks,, and R. P. Blakemore. 1987. Ultrastructure and characterization of anisotropic inclusions in magnetotactic bacteria. Proc. R. Soc. Lond. Ser. B 231: 469 476.
101. Mann, S.,, N. H. C. Sparks,, and R. P. Blakemore. 1987. Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc. R. Soc. Lond. Ser. B 231: 477 487.
102. Mann, S.,, N. H. C. Sparks,, and R. G. Board. 1990. Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism, and biotechnology. Adv. Microb. Physiol. 31: 125 181.
103. Mann, S.,, N. H. C. Sparks,, S. B. Couling,, M. C. Larcombe,, and R. B. Frankel. 1989. Crys-tallochemical characterization of magnetic spinels prepared from aqueous solution. J. Chem. Soc. Faraday Trans. 85: 3033 3044.
104. Mann, S.,, N. H. C. Sparks,, R. B. Frankel,, D. A. Bazylinski,, and H. W. Jannasch. 1990. Biomineralization of ferrimagnetic greigite (Fe 3S4) and iron pyrite (FeS 2) in a magnetotactic bacterium. Nature (London) 343: 258 260.
105. Manson, M. D. 1992. Bacterial chemotaxis and motility. Adv. Microb. Physiol. 33: 277 346.
106. Maratea, D.,, and R. P. Blakemore. 1981. Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int. J. Syst. Bacteriol. 31: 452 455.
107. Matitashvili, E. A.,, D. A. Matojan,, T. S. Gendler,, T. V. Kurzchalia,, and R. S. Adamia. 1992 Magnetotactic bacteria from freshwater lakes in Georgia. J. Basic Microbiol. 32: 185 192.
108. Matsuda, T.,, J. Endo,, N. Osakabe,, A. Tonomura,, and T. Arii. 1983. Morphology and structure of biogenic magnetite particles. Nature (London) 302: 411 412.
109. Matsunaga, T. 1991. Applications of bacterial magnets. Trends Biotechnol. 9: 91 95.
110. Matsunaga, T.,, K. Hashimoto,, N. Nakamura,, K. Nakamura,, and S. Hashimoto. 1989. Phagocytosis of bacterial magnetite by leucocytes. Appl. Microbiol. Biotechnol. 31: 401 405.
111. Matsunaga, T.,, and S. Kamiya. 1987. Use of magnetic particles isolated from magnetotactic bacteria for enzyme mobilization. Appl. Microbiol. Biotechnol. 26: 328 332.
112. Matsunaga, T.,, C. Nakamura,, J. G. Burgess,, and K. Sode. 1992. Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetite synthesis. J. Bacteriol. 174: 2748 2753.
113. Matsunaga, T.,, T. Sakaguchi, and E Tadokoro. 1991. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol. 35: 651 655.
114. Matsunaga, T.,, F. Tadokoro,, and N. Nakamura. 1990. Mass culture of magnetic bacteria and their application to flow type immunoassays. IEEE Trans. Magn. 26: 1557 1559.
115. Matsunaga, T.,, and N. Tsujimura. 1993. Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically. Appl. Microbiol. Biotechnol. 39: 368 371.
116. McFadden, B. A.,, and J. M. Shively,. 1991. Bacterial assimilation of carbon dioxide by the Calvin cycle, p. 25 49. In J. M. Shively, and L. L. Barton (ed.). Variations in Autotrophic Life. Academic Press, Inc., San Diego, Calif..
117. McKay, D. S.,, E. K. Gibson, Jr.,, K. L. Thomas-Keprta,, H. Vali,, C. S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling,, and R. N. Zare, 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273: 924 930.
118. Meldrum, F. C.,, B. R. Heywood,, S. Mann,, R. B. Frankel,, and D. A. Bazylinski. 1993. Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proc. R. Soc. Lond. Ser. B 251: 237 242.
119. Meldrum, F. C.,, B. R. Heywood,, S. Mann,, R. B. Frankel,, and D. A. Bazylinski. 1993. Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc. R. Soc. Lond. Ser. B 251: 231 236.
120. Moench, T. T. 1988. Biliphococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus. Antonie Leeuwenhoek 54: 483 496.
121. Moench, T. T.,, and W. A. Konetzka. 1978. A novel method for the isolation and study of a magnetic bacterium. Arch. Microbiol. 119: 203 212.
122.Moskowitz, B. M. 1995. Biomineralization of magnetic minerals. Rev. Geophvs. Suppl. 33: 123128.
123. Moskowitz, B. M.,, R. B. Frankel,, D. A. Bazylinski. 1993. Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet. Sci. Lett. 120: 283 300.
124. Moskowitz, B. M.,, R. B. Frankel,, D. A. Bazylinski,, H. W. Jannasch,, and D. R. Lovley. 1989. A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophys. Res. Lett. 16: 665 668.
125. Myers, C. R.,, and K. H. Nealson,. 1990. Iron mineralization by bacteria: metabolic coupling of iron reduction to cell metabolism in Alteromonas putrefaciens MR-1, p. 131 149. In R. B. Frankel, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y..
126. Nakamura, C.,, J. G. Burgess,, K. Sode,, and T. Matsunaga. 1995. An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum AMB-1. J. Biol. Chem. 270: 28392 28396.
127. Nakamura, C.,, T. Kikuchi,, J. G. Burgess,, and T. Matsunaga. 1995. Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J. Biochem. 118: 23 27.
128. Nakamura, C.,, T. Sakaguchi,, S. Kudo,, J. G. Burgess,, K. Sode,, and T. Matsunaga. 1993. Characterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1. Appl. Biochem. Biotechnol. 39/ 40: 169 176.
129. Nakamura, N.,, J. G. Burgess,, K. Yagiuda,, S. Kudo,, T. Sakaguchi,, and T. Matsunaga. Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal. Chem. 65: 2036 2039.
130. Nakamura, N.,, K. Hashimoto,, and T. Matsunaga. 1991. Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal. Chem. 63: 268 272.
131. Nakamura, N.,, and T. Matsunaga. 1993. Highly sensitive detection of allergen using bacterial magnetic particles. Anal. Chim. Acta 281: 585 589.
132. Neiiands, J. B. 1984. A brief history of iron metabolism. Biol. Metals 4: 1 6.
133. Noguchi, Y.,, T. Fujiwara,, K. Yoshimatsu,, and Y. Fukumori. 1999. Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J. Bacteriol. 181: 2142 2147.
134. Oberhack, M.,, R. Sussmuth,, and F. Hermann. 1987. Magnetotactic bacteria from freshwater. Z. Naturforsch. Ser. 42E: 300 306.
135. O'Brien, W.,, L. C. Paoletti,, and R. R Blakemore. 1987. Spectral analysis of cytochromes in Aquaspirillum magnetotacticum. Curr. Microbiol. 15: 121 127.
136. Okuda, Y.,, K. Denda,, and Y. Fukumori. 1996. Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171: 99 102.
137. Oldfield, F. 1992. The source of fine-grained magnetite in sediments. Holocene 2: 180 182.
138. Palache, C.,, H. Berman,, and C. Frondel. 1944. Dana's System of Mineralogy. John Wiley & Sons, Inc., New York, N.Y..
139. Paoletti, L. C.,, and R. P. Blakemore. 1986. Hydroxamate production by Aquaspirillum magnetotacticum. J. Bacteriol. 167: 73 76.
140. Paoletti, L. C.,, and R. P. Blakemore. 1988. Iron reduction by Aquaspirillum magnetotacticum. Curr. Microbiol. 17: 339 342.
141. Peck, J. A.,, and J. W. King. 1996. Magnetofossils in the sediments of Lake Baikal, Siberia. Earth Planet. Sci. Lett. 140: 159 172.
142. Penninga, I.,, H. de Waard,, B. M. Moskowitz,, D. A. Bazylinski,, and R. B. Frankel. 1995 Remanence curves for individual magnetotactic bacteria using a pulsed magnetic field. J. Magn. Magn. Mater. 149: 279 286.
143. Petersen, N.,, T. von Dobeneck,, and H. Vali. 1986. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature (London) 320: 611 615.
144. Phillips, J. B. 1986. Two magnetoreception pathways in a migratory salamander. Science 233: 765 767.
145. Posfai, M.,, P. R. Buseck,, D. A. Bazylinski,, and R. B. Frankel. 1998. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 280: 880 883.
146. Posfai, M.,, P. R. Buseck,, D. A. Bazylinski,, and R. B. Frankel. 1998. Iron sulfides from magnetotactic bacteria: structure, compositions, and phase transitions. Am. Mineral. 83: 1469 1481.
147. Proksch, R. B.,, B. M. Moskowitz,, E. D. Dahlberg,, T. Schaeffer,, D. A. Bazylinski,, and R. B. Frankel. 1995. Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl. Phys. Lett. 66: 2582 2584.
148. Rickard, D. T. 1969. The microbiological formation of iron sulfides. Stockh. Contrib. Geol. 20: 50 66.
149. Rickard, D. T. 1969. The chemistry of iron sulfide formation at low temperatures. Stockh. Contrib. Geol. 20: 67 95.
150. Rogers, F. G.,, R. P. Blakemore,, N. A. Blakemore,, R. B. Frankel,, D. A. Bazylinski,, D. Maratea,, and C. Rogers. 1990. Intercellular structure in a many-celled magnetotactic procaryote. Arch. Microbiol. 154: 18 22.
151. Rogers, F. G.,, R. P. Blakemore,, N. A. Blakemore,, R. B. Frankel,, D. A. Bazylinski,, D. Maratea,, and C. Rogers,. 1990. Intercellular junctions, motility and magnetosome structure in a multicellular magnetotactic procaryote, p. 239 255. In R. B. Frankel, and R. R. Blakemore (ed,) Iron Biominerals. Plenum Press, New York, N.Y.
152. Rossello-Mora, R. A.,, F. Caccavo, Jr.,, K. Osterlehner,, N. Springer,, S. Spring,, D. Schüuler,, W. Ludwig,, R. Amann,, M. Vannacanneyt,, and K.-H. Schleifer. 1994. Isolation and taxonomic characterization of a halotolerant, facultative anaerobic iron-reducing bacterium. Syst. Appl. Microbiol. 17: 569 573.
153. Sakaguchi, T.,, J. G. Burgess,, and T. Matsunaga. 1993. Magnetite formation by a sulphate-reducing bacterium. Nature (London) 365: 47 49.
154. Sakaguchi, H.,, H. Hagiwara,, Y. Fukumori,, Y. Tamaura,, M. Funaki,, and S. Hirose. 1993. Oxygen concentration-dependent induction of a 140-kDa protein in magnetic bacterium Magnetospirillum magnetotacticum MS-1. FEMS Microbiol. Lett. 107: 169 174.
155. Schleifer, K.-H.,, D. Schüler,, S. Spring,, M. Weizenegger,, R. Amann,, W. Ludwig,, and M. Kohier. 1991. The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov., and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb, nov. Syst. Appl. Microbiol. 14: 379 385.
156. Schüler, D.,, and E. Baeuerlein. 1996. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol. 166: 301 307.
157. Schüler, D.,, and E. Baeuerlein. 1998. Dynamics of iron uptake and Fe 3O4 mineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180: 159 162.
158. Schüler, D.,, S. Spring,, and D. A. Bazylinski. 1999. Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. Syst. Appl. Microbiol. 22: 466 471.
159. Segali, J. E.,, S. M. Block,, and H. C. Berg. 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83: 8987 8991.
160. Short, K. A.,, and R. P. Blakemore. 1986. Iron respiration-driven proton translocation in aerobic bacteria. J. Bacteriol. 167: 729 731.
161. Short, K. A.,, and R. P. Blakemore. 1989. Periplasmic superoxide dismutases in Aquaspirillum magnetotacticum. Arch. Microbiol. 152: 342 346.
162. Silverman, M.,, and M. Simon. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature (London) 249: 73 74.
163. Slobodkin, A. I.,, C. Jeanthon,, S. L'Haridon,, T. Nazina,, M. Miroschnichenko,, and E. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39: 99 102.
164. Slobodkin, A. I.,, A.-L. Reysenbach,, N. Strutz,, M. Dreier,, and J. Wiegel. 1997. Thermoterra-bacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int. J. Syst. Bacteriol. 47: 541 547.
165. Sparks, N. H. C., 1990. Structural and morphological characterization of biogenic magnetite crystals, p. 167 177. In R. B. Frankel, and R. P. Blakemore (ed,) Iron Biominerals. Plenum Press, New York, N.Y..
166. Sparks, N. H., C. S. Mann,, D. A. Bazylinski,, D. R. Lovley,, H. W. Jannasch,, and R. B. Frankel. 1990. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth Planet. Sci. Lett. 98: 14 22.
167. Spormann, A. M.,, and R. S. Wolfe. 1984. Chemotactic, magnetotactic and tactile behavior in a magnetic spirillum. FEMS Microbiol. Lett. 22: 171 177.
168. Spring, S.,, R. Amann,, W. Ludwig,, K.-H. Schleifer,, H. van Gemerden,, and N. Petersen. 1993. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol. 59: 2397 2403.
169. Spring, S.,, R. Amann,, W. Ludwig,, K.-H. Schleifer,, and N. Petersen. 1992. Phylogenetic diversity and identification of non-culturable magnetotactic bacteria. Syst. Appi Microbiol. 15: 116 122.
170. Spring, S.,, R. Amann,, W. Ludwig,, K.-H. Schleifer,, D. Schiiler,, K. Poralla,, and N. Petersen. 1994. Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria. Syst. Appl. Microbiol. 17: 501 508.
171. Spring, S.,, U. Lins,, R. Amann,, K.-H. Schleifer,, L. C. S. Ferreira,, D. M. S. Esquivel,, and M. Farina. 1998. Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch. Microbiol. 169: 136 147.
172. Spring, S.,, and K.-H. Schleifer. 1995. Diversity of magnetotactic bacteria. Syst. Appl. Microbiol. 18: 147 153.
173. Stolz, J. F. 1993. Magnetosomes. J. Gen Microbiol. 139: 1663 1670.
174. Stolz, J. F.,, S.-B. R. Chang,, and J. L. Kirschvink. 1986. Magnetotactic bacteria and single domain magnetite in hemipelagic sediments. Nature (London) 321: 849 850.
175. Stolz, J. F.,, D. R. Lovley,, and S. E. Haggerty. 1990. Biogenic magnetite and the magnetization of sediments. J. Geophys. Res. 95: 4355 4361.
176. Suzuki, H.,, T. Tanaka,, T. Sasaki,, N. Nakamura,, T. Matsunaga,, and S. Mashiko. 1998. High resolution magnetic force microscope images of a magnetic particle chain extracted from magnetic bacteria AMB-1. Jpn. J. Appl. Phys. 37: L1343 L1345.
177. Swancutt, M. A.,, B. S. Riley,, J. D. Radolf,, and M. V. Norgard. 1989. Molecular characterization on the pathogen-specific, 34-kilodalton membrane immunogen of Treponema pallidum. Infect. Immun. 57: 3314 3323.
178. Tamegai, H.,, and Y. Fukumori. 1994. Purification, and some molecular and enzymatic features of a novel ccb-type cytochrome c oxidase from a microaerobic denitrifier, Magnetospirillim magnetotacticum. FEBS Lett. 347: 22 26.
179. Tamegai, H.,, T. Yamanaka,, and Y. Fukumori. 1993. Purification and properties of a “cytochrome a 1”-like hemoprotein from a magnetotactic bacterium, Aquaspirillum magnetotacticum. Biochim. Biophys. Acta 1158: 237 243.
180. Taylor, B. L. 1983. How do bacteria find the optimal concentration of oxygen? Trends Biochem. Sci. 8: 438 441.
181. Thornhill, R. H.,, J. G. Burgess,, T. Sakaguchi,, and T. Matsunaga. 1994. A morphological classification of bacteria containing bullet-shaped magnetic particles. FEMS Microbiol. Lett. 115: 169 176.
184. 182 Torres de Araujo, F. F.,, M. A. Pires,, R. B. Frankel,, and C. E. M. Bicudo. 1986. Magnetite and magnetotaxis in algae. Biophys. J. 50: 385 378.
183. Towe, K. M.,, and T. T. Moench. 1981. Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Lett. 52: 213 220.
184. van Vliet, A. H.,, K. G. Woolridge,, and J. M. Ketley. 1998. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J. Bacteriol. 180: 5291 5298.
185. Vargas, M.,, K. Kashefi,, E. L. Blunt-Harris,, and D. R. Lovley. 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature (London) 395: 65 67.
186. Wakeham, S. G.,, B. L. Howes,, and J. W. H. Dacey. 1984. Dimethyl sulphide in a stratified coastal salt pond. Nature (London) 310: 770 772.
187. Wakeham, S. G.,, B. L. Howes,, J. W. H. Dacey,, R. P. Schwarzenbach,, and J. Zeyer. 1987. Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. Geochim. Cosmochim. Acta 51: 1675 1684.
188. Walcott, C.,, J. L. Gould,, and J. L. Kirschvink. 1979. Pigeons have magnets. Science 205: 1027 1029.
189. Walcott, C.,, and R. P. Green. 1974. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184: 108 182.
190. Waleh, N. S. 1988. Functional expression of Aquaspirillum magnetotacticum genes in Escherichia coli K12. Mol. Gen. Genet. 214: 592 594.
191. Walker, M. M.,, and M. E. Bitterman. 1989. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145: 489 494.
192. Walker, M. M.,, C. E. Diebel,, C. V. Haugh,, P. M. Pankhurst,, and J. C. Montgomery. 1997. Structure and function of the vertebrate magnetic sense. Nature 390: 371 376.
193. Walker, M. M.,, J. L. Kirschvink,, A. E. Dizon,, and G. Ahmed. 1992. Evidence that fin whales respond to the geomagnetic field during migration. J. Exp. Biol. 171: 67 78.
194. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221 271.
195. Yamazaki, T.,, H. Oyanagi,, T. Fujiwara,, and Y. Fukumori. 1995. Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum: a novel cytochrome cd 1, with Fe(II): nitrite oxidoreductase activity. Eur. J. Biochem. 233: 665 671.
196. Zavarzin, G. A.,, E. Stackebrandt,, and R. G. E. Murray. 1991. A correlation of phylogenetic diversity in the Proteobacteria with the influences of ecological forces. Can. J. Microbiol. 37: 1 6.
197. Zhang, C.,, S. Liu,, T. J. Phelps,, D. R. Cole,, J. Horita,, and S. M. Fortier. 1997. Physiochemical, mineralogical, and isotopie characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria. Geochim. Cosmochim. Acta 61: 4621 4632.
198. Zhang, C.,, H. Vali,, C. S. Romanek,, T. J. Phelp,, and S. V. Lu. 1998. Formation of single domain magnetite by a thermophilic bacterium. Am. Mineral. 83: 1409 1418.
199. Zhulin, I. B.,, V. A. Bespelov,, M. S. Johnson,, and B. L. Taylor. 1996. Oxygen taxis and proton motive force in Azospirillum brasiliense. J. Bacteriol. 178: 5199 5204.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error