1887

Chapter 6 : The Role of Siderophores in Iron Oxide Dissolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Role of Siderophores in Iron Oxide Dissolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap06-2.gif

Abstract:

For over 50 years microbiologists have been aware of a class of compounds, produced by microorganisms, called siderophores. This chapter examines the type of Iron(Fe) to which siderophores bind and the location where they do so. The assumption in the literature has been that the purpose of siderophores is to supply Fe to the cell-so often stated that this quote is rarely referenced. Even though the dissolution of Fe oxides has been reviewed extensively in the literature, it is worthwhile to briefly review dissolution mechanisms, since they apply to the potential involvement of siderophores. In a study, Fe release and siderophore production by (a gram-negative, asymbiotic nitrogen-fixing soil bacterium with an absolute requirement for Fe) was investigated by using several Fe oxide minerals as sources of Fe. Undoubtedly, siderophores are used by microorganisms to acquire Fe and are produced by microorganisms in response to a limited availability of Fe. These two observations are supported by hundreds of publications in the open literature. However, the results discussed in the chapter suggest that siderophores may not be entirely responsible for Fe oxide dissolution, that the role that siderophores play in the dissolution of Fe oxides remains unclear, and thus that the microbial dissolution of Fe oxides merits further investigation.

Citation: Hersman L. 2000. The Role of Siderophores in Iron Oxide Dissolution, p 145-157. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch6

Key Concept Ranking

High-Performance Liquid Chromatography
0.45289737
Scanning Electron Microscopy
0.43882486
Metal Oxides
0.43866545
0.45289737
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818098.chap6
1. Ackers, H. A. 1981. The effect of waterlogging on the quantity of microbial iron chelators (siderophores) in soils. Soil Sci 132:150152.
2. Ackers, H. A. 1983. Multiple hydroxamic acid microbial chelators (siderophores) in soils. Soil Sci. 135:156160.
3. Ackers, H. A. 1983. Isolation of the siderophore schizokinen from soil of rice field. Appl. Environ. Microbiol. 45:17041706.
4. Adams, J. B.,, F. Palmer,, and J. T. Staley. 1992. Rock weathering in deserts: Mobilization and concentration of ferric iron by microorganisms. Geomicrobiol. J. 10:99114.
5. Archibald, F. 1983. Micrococcus lysodeikticus, an organism not requiring iron. FEMS Microbiol. Lett. 19:2932.
6. Bar-Ness, E.,, Y. Hadar,, Y. Chen,, V. Romheld,, and H. Marschner. 1992. Short-term effects of rhizosphere microorganisms on the Fe uptake from microbial siderophores by maize and oat. Plant Physiol. 100:451456.
7. Barton, L. L.,, and B. C. Hemming. 1993. Iron Chelation in Plants and Soil Microorganisms. Academic Press, Inc., San Diego, Calif.
8. Bennett, P. C.,, and W. Casey,. 1994. Chemistry and mechanisms of low-temperature dissolution of silicates by organic acids, p. 162200. In E. D. Pittman, and M. D. Lewan (ed.), Organic Acids in Geochemical Processes. Springer-Verlag, New York, N.Y.
9. Bossier, P.,, M. Hoft,, and W. Verstraete. 1988. Ecological significance of siderophores in soil. Adv. Microb. Ecol. 10:385414.
10. Briat, J.-F. 1992. Iron assimilation and storage in prokaryotes. J. Gen. Microbiol. 138:24752483.
11. Buyer, J. S.,, M. G. Kratzke,, and L. J. Sikora. 1993. A method for detection of pseudobactin, the siderophore produced by a plant-growth-promoting Pseudomonas strain, in the barley rhizosphere. Appl. Environ. Microbiol. 59:677681.
12. Buyer, J. S.,, and J. Leong. 1986. Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J. Biol. Chem. 261:791794.
13. Buyer, J. S.,, and L. J. Sikora. 1990. Rhizosphere interactions and siderophores. Plant Soil 129:101107.
14. Buysens, S.,, K. Heungens,, K. Poppe,, and M. Hofte. 1996. Involvement of pyrochelin and pyroverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62:865871.
15. Carson, K. C.,, A. R. Glen,, and M. J. Dilworth. 1994. Specificity of siderophore-mediated transport of iron in rhizobia. Arch. Microbiol. 161:333339.
16. Casey, W. H.,, and C. Ludwig. 1996. The mechanism of dissolution of oxide minerals. Nature 381:506509.
17. Crowley, D. E.,, V. Romheld,, H. Marschner,, and P. J. Szanislo. 1992. Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142:17.
18. De Weger, L. A.,, J. J. C. M. van Arendonk,, K. Recourt,, J. A. J. M. van der Hofstad,, P. J. Weisbeek,, and B. Lugtenberg. 1988. Siderophore-mediated uptake of Fe3+ by plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. J. Bacteriol. 170:46934698.
19. DuijfF, B. J.,, W. J. de Kogel,, P. A. H. M. Bakker,, and B. Schippers. 1994. Influence of pseudobactin 358 on the iron nutrition of barley. Soil Biol. Biochem. 26:16811688.
20. Furrer, G.,, and W. Stumm. 1986. The coordination chemistry of weathering. I. Dissolution of delta-Al2O3 and BeO. Geochim. Cosmochim. Acta 50:18471860.
21. Grantham, M. C.,, and P. M. Dove. 1996. Investigation of bacterial-mineral interactions using fluid tapping mode atomic force microscopy. Geochim. Comochim. Acta 60:24732480
22. Guerinot, M. L. 1994. Microbial iron transport. Annu. Rev. Microbiol. 48:743772.
23. Guerinot, M. L.,, and Y. Yi. 1994. Iron: nutritious, noxious and not readily available. Plant Physiol. 104:815820.
24. Handelsman, J.,, and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:18551869.
25. Hersman, L.,, T. Lloyd,, and G. Sposito. 1995. Siderophore-promoted dissolution of hematite. Geochim. Cosmochim. Acta 59:33273330.
26. Hersman, L.,, P. Maurice,, and G. Sposito. 1996. Iron acquisition from hydrous Fe(III) oxides by an aerobic Pseudomonas sp. Chem. Geol. 132:2531.
27. Hersman, L. E.,, P. D. Palmer,, and D. E. Hobart 1993. The role of siderophores in the transport of radionuclides. Mater. Res. Soc. Proc. 294:765770.
28. Hillel, D. 1980. Fundamentals of Soil Physics, p. 12. John Wiley & Sons, Inc., New York, N.Y.
29. Holmen, B. A.,, and W. H. Casey. 1996. Hydroxymate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH(s)]. Geochim. Cosmochim. Acta 60:44034416.
30. Holmen, B. A.,, M. I. Tejedor-Tejedor,, and W. H. Casey. 1997. Hydroxymate complexes in solution and at the goethite-water interface: a cylindrical internal reflection Fourier transform infrared spectroscopy study. Langmuir 13:21972206.
31. Jurkevitch, E.,, Y. Hadar,, and Y. Chen. 1992. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58:119124.
32. Loper, J. E. 1988. Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166172.
33. Loper, J. E.,, and J. S. Buyer. 1991. Siderophores in microbial interactions on plant species. Mol. Plant-Microbe Interac. 4:513.
34. Loper, J. E.,, and M. D. Henkels 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63:99105.
35. Loper, J. E.,, and S. E. Lindow. 1994. A biological sensor for iron available to bacteria in the habitats on plant surfaces. Appl. Environ. Microbiol. 60:19341941.
36. Manthey, J. A.,, D. E. Crowley,, and D. G. Luster. 1994. Biochemistry of Metal Nutrients on the Rhizosphere. Lewis Publishers, Boca Raton, Fla.
37. Marschner, H.,, and D. S. Crowley. 1997. Iron stress and pyroverdin production by a fluorescent pseudomonad in the rhizosphere of white lupin (Lupinus albus L.) and barley (Hordeum vulgare L.). Appl. Environ. Microbiol. 63:277281.
38. Marschner, H., and V. Romheld. 1994. Strategies of plants for acquisition of iron. Plant Soil 165:261274.
39. Matzanke, B. F., 1991. Structures, coordination chemistry and functions of microbial iron chelates, p. 1560. In G. Winkelmann (ed.), Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla.
40. Matzanke, B. F.,, G. Muller-Matzanke,, and K. N. Raymond,. 1989. Siderophore mediated iron transport, p. 1121. In T. M. Loehr (ed.). Iron Carriers and Proteins. VCH Publishers, New York, N.Y.
41. Meyer, J. M.,, and M. A. Abdallah. 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physico-chemical properties. J. Gen. Microbiol. 107:321331.
42. Neilands, J. B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50:715732.
43. Neilands, J. B. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270:2672326726.
44. Neilands, J. B.,, and K. Nakamura,. 1991. Detection, determination, isolation, characterization and regulation of microbial chelates, p. 114. In G. Winkelmann (ed.), Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla.
45. Nelson, M.,, C. R. Cooper,, D. E. Crowley,, C. P. P. Reid,, and P. J. Szaniszlo. 1988. An Escherichia coli bioassay of individual siderophores in soil. J. Plant Nutr. 11:915924.
46. O'Sullivan, D. J.,, and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56:662676.
47. Page, W. J.,, and M. Huyer, 1984. Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit repletion. J. Bacteriol. 158:496502.
48. Payne, S. M. 1988. Iron and virulence in the family Enterobacteriaceae. Crit. Rev. Microbiol. 16:81111.
49. Raaijmakers, J. M.,, I. Van der Sluis,, M. Koster,, P. A. H. M. Bakker,, P. J. Weisbeek,, and B. Schippers. 1995. Utilization of heterologous siderophore and rhizosphere competence of fluorescent Pseudomonas spp. Can. J. Microbiol. 41:126135.
50. Raaijmakers, J. M.,, D. M. Weller,, and L. S. Thomashow. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63:881887.
51. Schwertmann, U. 1991. Stability and dissolution of iron oxides. Plant Soil 129:125.
52. Schwertmann, U.,, and R. M. Cornell. 1991. Iron Oxides in the Laboratory: Preparation and Characterization. VCH Publishers, Weinheim, Germany.
53. Schwertmann, U.,, and R. M. Taylor. 1989. Minerals in Soil Environments, 2nd ed. Soil Science Society of America, Madison, Wis.
54. Stumm W.,, and B. Sulzberger. 1992. The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochem. Cosmochim. Acta 56:3233.
55. Szaniszlo, P. J.,, P. E. Powell,, C. P. P. Reid,, and G. R. Cline. 1981. Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73:11581175.
56. van der Helm, D.,, M. A. F. Jahal,, and M. B. Hossain,. 1987. The crystal structure, conformations, and configurations of siderophores, p. 135165. In G. Winkelmann,, D. van der Helm,, and J. B. Neilands (ed.), Iron Transport in Microbes, Plants and Animals. VCH Publishers, Weinheim, Germany.
57. Watteau, F.,, and J. Berthelin. 1994. Microbial dissolution of iron and aluminum from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur. J. Soil Biol. 30:19.
58. Wehrli, B., 1990. Redox reactions of metal ions at mineral surfaces, p. 311336. In W. Stumm (ed.), Aquatic Chemical Kinetics. John Wiley & Sons, Inc., New York, N.Y.
59. Weinberg, E. D. Cellular regulation of iron assimilation. Q. Rev. Biol. 63:261290.
60. Winkelmann, G. 1991. CRC Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla.
61. Winkelmann, G.,, D. vanderHelm,, and J. B. Neilands (ed.). 1987. Iron Transport in Microbes, Plants and Animals. VCH Publishers, Weinheim, Germany.
62. Yehuda, Z.,, M. Shenker,, V. Romheld,, H. Marschner,, Y. Hadar,, and Y. Chen. 1996. The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol. 112:12731280.
63. Yeoman, K. H.,, M.-J. Delgado,, M. Wexler,, J. A. Downie,, and W. B. Johnston. 1996. High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL peron and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology 143:127134.
64. Zinder, B.,, G. Furrer,, and W. Stumm. 1986. The coordination chemistry of weathering. II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Acta 50:18611869.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error