Chapter 7 : Microbially Influenced Corrosion of Steel

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbially Influenced Corrosion of Steel, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap07-2.gif


This chapter presents traditional and new concepts on the microbially influenced corrosion (MIC) from the microbiological viewpoint. Many review articles on microbially influenced corrosion take the viewpoint of metal destruction. It also investigates corroding iron as a food source for hydrogen-consuming bacteria. Some calculations are presented to visualize quantitative aspects of this economically important process. The process of corrosion is best known as rust formation of steel when in contact with oxygen and water. In this process, oxygen is the oxidizing agent responsible for accepting the electrons from metallic iron. In the absence of oxygen, iron is usually much more stable. However, in oxygen-free environments that are rich in anaerobic microbial activity, particularly with active bacterial sulfate reduction, iron is repeatedly found to deteriorate at high rates, sometimes higher than those due to oxygen alone. In anaerobic environments, organic material is broken down by different groups of bacteria, with molecular hydrogen being one of the most important fermentation end products. The chapter states that mechanisms other than bacterial hydrogen consumption must be responsible for the steel destruction in the presence of anaerobic bacteria. The ability of bacteria to supply protons to the metal surface is discussed in the chapter. The chapter is concerned with the ability of microbes to stimulate the overall corrosion rate. In future research on MIC in the petroleum industry, new capacities and the oil degradation capability of sulfate-reducing bacteria (SRB) will have to be considered.

Citation: Cord-Ruwisch R. 2000. Microbially Influenced Corrosion of Steel, p 159-173. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch7

Key Concept Ranking

Hydrogen Sulfide
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Role of hydrogen-consuming SRB in the anaerobic corrosion of steel. This diagram uses elemental sulfur rather than sulfate as the electron acceptor for SRB to demonstrate a possible mechanism for proton recycling after precipitation of hydrogen sulfide with ferrous iron as an iron sulfide deposit. In principle, four different ways of stimulating the corrosion process can be visualized: 1, consumption of cathodic hydrogen (cathodic depolarization); 2, anodic depolarization by Fe removal; 3, stimulation by the formation of an iron sulfide layer, which may be cathodic; and 4, supply of protons to the cathode.

Citation: Cord-Ruwisch R. 2000. Microbially Influenced Corrosion of Steel, p 159-173. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Atkins, P. W. 1994. Physical Chemistry, 5th ed. Oxford University Press, Oxford, United Kingdom.
2. Beech, I. B.,, and C. Gaylarde. 1991. Microbial polysaccharides and corrosion. Int. Biodeterior. 27:95107.
3. Boopathy, R.,, and L. Daniels. 1991. Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl. Environ. Microbiol. 57:21042108.
4. Booth, G. H.,, P. M. Cooper,, and D. S. Wakerley. 1966. Corrosion of mild steel by actively growing cultures of sulfate-reducing bacteria: the influence of ferrous iron. Br. Corros. J. 1:345349.
5. Bryant, R. D.,, and E. J. Laishley. 1990. The role of hydrogenase in anaerobic biocorrosion. Can. J. Microbiol. 36:259264.
6. Bryant, R. D.,, W. Jansen,, J. Boivin,, E. J. Laishley,, and J. W. Costerton. 1991. Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Appl. Environ. Microbiol. 57:28042809.
7. Cord-Ruwisch, R.,, and F. Widdel. 1986. Corroding iron as hydrogen source for sulfate reduction in growing cultures of sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 25:169174.
8. Cord-Ruwisch, R.,, H.-J. Seitz,, and R. Conrad. 1988. The capacity of hydrogenotrophic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350357.
9. Cord-Ruwisch, R.,, W. Kleinitz,, and F. Widdel. 1987. Sulfate-reducing bacteria and their activities in oil production. J. Petrol Technol. 39:97102.
10. Daniels, L.,, N. Belay,, and B. S. Rajogopal. 1987. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509511.
11. Daumas, S.,, M. Magot,, and J. L. Crolet. 1993. Measurement of the net production of acidity by a sulfate-reducing bacterium—experimental checking of theoretical models of microbially influenced corrosion. Res. Microbiol. 144:327332.
12. Deckena, S.,, and K.-H. Blotevogel. 1990. Growth of methanogenic and sulfate-reducing bacteria with cathodic hydrogen. Biotechnol. Lett. 12:615620.
13. Deckena, S.,, and K.-H. Blotevogel. 1992. Fe0-oxidation in the presence of methanogenic and sulfate-reducing bacteria and its possible role in anaerobic corrosion. Biofouling 5:287293.
14. Eashwar, M.,, S. Maruthamuthu,, S. Sathiyanarayanan,, and K. Balakrishnan. 1995. The eno-blement of stainless alloys by marine biofilms—the neutral pH and passivity enhancement model. Corros. Sci. 37:11691176.
15. Fitz, R. M.,, and H. Cypionka. 1989. A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch. Microbiol. 152:369376.
16. Fuseler, K.,, and H. Cypionka. 1995. Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus. Arch. Microbiol. 164:104109.
17. Gaylarde, C. C. 1992. Sulfate-reducing bacteria which do not induce accelerated corrosion. Int. Biodeterior. Biodegrad. 30:331338.
18. Hamilton, W. A. 1985. Sulfate-Reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39:195217.
19. Hernandez, G.,, V. Kucera,, D. Thierry,, A. Pedersen,, and M. Hermansson. 1994 Corrosion inhibition of steel by bacteria. Corrosion 50:603608.
20. Iverson, W. P. 1987. Microbial corrosion of metals. Adv. Appl. Microbiol. 32:136.
21. Iverson, W. P.,, and G. J. Olson,. 1984. Problems related to sulfate-reducing bacteria in the petroleum industry, p. 619641. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan, New York, N.Y.
22. King, R. A.,, J. D. A. Miller,, and D. S. Wakerley. 1973. Corrosion of mild steel in cultures of sulfate-reducing bacteria, effect of changing the soluble iron concentration during growth. Br. Corros. J. 8:8993.
23. Lee, W.,, and W. G. Characklis. 1993. Corrosion of mild steel under anaerobic biofilm. Corrosion 49:186198.
24. Lee, W.,, Z. L. Andowski,, P. H. Nielsen,, and W. A. Hamilton. 1995. Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165194.
25. Lee, W.,, Z. Lewandowski,, M. Morrison,, W. G. Characklis,, R. Avci,, and P. H. Nielsen. 1993. Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Part II: At high dissolved oxygen concentration. Biofouling 7:217239.
26. Lee, W.,, Z. Lewandowski,, S. Okabe,, W. G. Characklis,, and R. Avci. 1993. Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. I. At low dissolved oxygen concentration. Biofouling 7:197216.
27. Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49:15301531.
28. Moosavi, A. N.,, R. S. Pirrie,, and W. A. Hamilton,. 1990. Effect of sulfate reducing bacteria activity on performance of sacrified anodes, p. 313. In N. Dowling,, M. M. Mittelman,, and J. C. Dank (ed.), Proceedings of the International Symposium on Microbially Influenced Corrosion.
29. Morales, J.,, P. Esparza,, S. Gonzalez,, R. Salvarezza,, and M. P. Arevalo. 1993. The role of Pseudomonas aeruginosa on the localized corrosion of 304-stainless steel. Corros. Sci. 34:15311540.
30. Ogundele, G. I.,, and W. E. White. 1986. Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide. Corros. NACE 42:7188.
31. Okabe, S.,, P. H. Nielsen,, W. L. Jones,, and W. G. Characklis. 1994. Estimation of cellular and extracellular carbon contents in sulfate-reducing bacteria biofilms by lipopolysaccharide assay and epifluorescence microscopic technique. Water Res. 28:22632266.
32. Pankhania, I. P.,, A. N. Moosavi,, and W. A. Hamilton. 1986. Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough). J. Gen. Microbiol. 132:33573365.
33. Parra, A.,, J. Carpio,, and L. Martinez. 1996. Microbial corrosion of metals exposed to air in tropical marine environments. Mater. Performance 35:4449.
34. Rabus, R.,, M. Fukui,, H. Wilkes,, and F. Widdel. 1996. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62:36053613.
35. Ramanarayanan, T. A.,, and S. N. Smith. 1990. Corrosion of iron in gaseous environments and in gas-saturated aqueous environments. Corrosion 46:6674.
36. Rueter, P.,, R. Rabus,, H. Wilkes,, F. Aeckersberg,, F. A. Rainey,, H. W. Jannasch,, and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulfate-reducing bacteria. Nature 372:455458.
37. Schaschl, E. 1980. Elemental sulfur as a corrodent in deaerated neutral aqueous solutions. Mater. Performance 19:912.
38. Schink, B. 1997. Energetics of syntrophic cooperations in methanogenic degradation. Microbiol Mol. Biol. Rev. 61:262280.
39. Schmitt, G. 1991. Effect of elemental sulfur on corrosion in sour gas systems. Corrosion 47:285308.
40. Shoesmith, D. W.,, P. Taylor,, M. G. Baily,, and D. G. Owen. 1980. The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21°C. J. Electrochem. Soc. 127:10071015.
41. Smith, C. A.,, K. G. Compton,, and F. H. Coley. 1973. Aerobic marine bacteria and the corrosion of carbon steel in seawater. Corros. Sci. 13:677685.
42. Thamdrup, B.,, K. Finster,, J. Wuergler-Hansen,, and F. Bak. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl. Environ. Microbiol. 59:101108.
43. Von Wolzogen Kuehr, C. A. H.,, and I. S. van der Vlugt. 1934. The graphitization of cast iron as an electrobiochemical process in anaerobic soils. Water 18:147165.
44. Voordouw, G.,, J. K. Voordouw,, T. R. Jack,, J. Foght,, P. M. Fedorak,, and D. W. S. Westlake. 1992. Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl. Environ. Microbiol. 58:35423552.
45. Voordouw, G.,, Y. Shen,, C. S. Harrington,, A. J. Telang,, T. R. Jack,, and D. W. S. Westlake. 1993. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl. Environ. Microbiol. 59:41014114.
46. Weathers, L. J.,, G. F. Parkin,, and P. J. Alvarez. 1997. Utilization of cathodic hydrogen as an electron donor for chloroform cometabolism by a mixed methanogenic culture. Environ. Sci. Technol. 31:880885.
47. Widdel, F., 1988. Microbial corrosion, p. 277318. In P. Praeve,, M. Schlingmann,, W. Crueger,, K. Esser,, R. Thauer,, and F. Wagner (ed.), Jahrbuch Biotechnologie, vol. 3. Carl Hanser Verlag, Munich, Germany.
48. Zinkevich, V.,, I. Bogdarina,, H. Kang,, M. A. W. Hill,, R. Tapper,, and I. B. Beech. 1996. Characterization of exo-polymers produced by different isolates of marine sulfate-reducing bacteria. Int. Biodeterior. Biodegrad. 37:163172.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error