1887

Chapter 9 : Dissimilatory Reduction of Selenate and Arsenate in Nature

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Dissimilatory Reduction of Selenate and Arsenate in Nature, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap09-2.gif

Abstract:

This chapter discusses the biogeochemical reduction of selenate (Se(VI)) and arsenate (As(V)) when they enter anoxic environments and are used as electron acceptors for the oxidation of organic matter. These reductions are of a dissimilative nature and support the anaerobic growth of selected bacteria which conserve energy from this process. The chapter summarizes what is known about the bacteria's taxonomy, physiology, and biochemistry. Reduction to the solid, relatively unreactive Se(0) represents a mechanism for the removal of toxic Se(VI) and Se(IV) from natural waters. The environmental ramifications of these issues are also discussed in the chapter. The number of bacterial species known to respire selenate and arsenate continues to increase. The biological reduction of selenate and arsenate occurs for a number of reasons. In general, these are assimilation, regulation of reducing equivalents, detoxification, and dissimilation. Each is discussed in detail in the chapter. The realization that arsenate and selenate are indeed suitable electron acceptors and are readily available in both natural and contaminated environments suggests that even more unrelated species will be discovered. The initial biochemical studies also suggest that there may be different pathways for selenate and arsenate reduction, with specific terminal reductases and cytochromes.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9

Key Concept Ranking

Chemicals
0.50465006
Nitrates and Nitrites
0.4878534
Scanning Electron Microscopy
0.46856478
Transmission Electron Microscopy
0.46157122
16s rRNA Sequencing
0.43746597
0.50465006
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Dissolved selenate, selenite, sulfate, and chloride in the porewaters of sediments from an agricultural wastewater evaporation pond located in the San Joaquin Valley, Calif. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Chemical gradients in Mono Lake during a period of meromixis in the 1980s. Reprinted from reference , with permission of the publisher.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Arsenate reduction in estuarine sediments incubated under an atmosphere of nitrogen (A), hydrogen (B), air (C), or nitrogen with autoclaved sediments (D). Symbols: o As(V); ●, As(III). Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Reduction of Se(VI) by sediments from Hunter Drain located in western Nevada. Counts in pellet indicate the formation of Se(0). Sediments were incubated at ambient Se(VI) concentrations of ∼0.5 M with no additions or with addition of 17 M unlabeled Se(VI) or were heat killed and incubated with ambient levels of Se(VI). Reprinted from reference with permission of the publisher.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

(A) Reduction of Se(VI) to solid Se(V) by sediments taken from Massie Slough in western Nevada. (B) Recovery of counts into various solvent fractions. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Michaelis-Menten kinetics displayed by selenate reduction in sediments from Massie Slough. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Metabolism of [2-C]acetate to CH and CO by estuarine sediments incubated with 10 mM sulfate, with sulfate plus 1, 10, or 20 mM molybdate, or with sulfate plus 1, 10, or 20 mM selenate. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Metabolism of [2-C]acetate to CH and CO by anoxic sediments from salt marsh (A) or freshwater lake (B) sources in the presence of different concentrations of arsenate. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Selenate reduction activity in depth profiles taken from three sites in western Nevada: (A) South Lead Lake; (B) Hunter Drain; and (C) Massie Slough. Symbols: ●·, 0 to 5 cm; o, 5 to 10 cm; ■, 10 to 15 cm. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Electron micrographs of the selenium-reducing bacteria strain SES-3 (A and B), strain E-1H from Mono Lake (C and D), and strain MLS-10 from Mono Lake (E and F). (A, C, and E) Scanning electron microscopy by J. Switzer Blum, A. Burns, and R. S. Oremland (unpublished). (B. D, and F) Transmission electron microscopy by J. F. Stolz. Bars, 0.5 m. Extracellular ball-like particles in panel E are elemental selenium as determined from X-ray energy-dispersive spectrometry done in association with the scanning electron microscopy.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Phylogenic trees based on 16S rRNA sequence data using maximum-parsimony analysis of the gram-positive arsenate- and selenate-reducing bacterium E1-H (A) and the gram-negative arsenate- and selenate-reducing bacterium strain SES-3 and the arsenate-reducing bacterium strain MIT-13 (B).

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Growth of strain SES-3 with Se(VI) as the electron acceptor. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Growth of strain E-IH in Mono Lake water with Se(VI) as the electron acceptor. From J. Switzer Blum, A. Burns Bindi, and R. S. Oremland, unpublished data.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Growth of strain MLS-10 in Mono Lake water with Se(IV) as the electron acceptor. From J. Switzer Blum, A. Burns Bindi, and R. S. Oremland, unpublished data.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

Growth of strain SES-3 with As(V) as the electron acceptor. Reprinted from reference with permission of the American Society for Microbiology.

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap9
1. Ahmann, D.,, L. R. Krumholz,, H. F. Hemond,, D. R. Lovley,, and F. M. M. Morel. 1997. Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environ. Sci. Technol. 31: 2923 2930.
2. Ahmann, D.,, A. L. Roberts,, L. R. Krumholz,, and F. M. M. Morel. 1994. Microbe grows by reducing arsenic. Nature 371: 750.
3. Anderson, L. C. D.,, and K. W. Bruland. 1991. Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environ. Sci. Technol. 25: 420 427.
4. Avazeri, C.,, R. J. Turner,, J. Pommier,, J. H. Weiner,, G. Giordano,, and A. Vermeglio. 1997. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143: 1181 1189.
5. Azcue, J. M.,, and J. O. Nriagu,. 1994. Arsenic: historical perspectives, p. 1 16. In J. O. Nriagu (ed.), Arsenic in the Environment. I. Cycling and Characterization. John Wiley & Sons, Inc., New York, N.Y.
6. Cervantes, C.,, G. Ji,, J. L. Ramirez,, and S. Silver. 1994. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15: 355 367.
7. Ciulla, R. A.,, M. R. Diaz,, B. F. Taylor,, and M. F. Roberts. 1997. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl. Environ. Microbiol. 63: 220 226.
8. Cullen, W. R.,, and K. J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89: 713 764.
9. Deng, M.,, T. Moureaux,, and M. Caboche. 1989. Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene. Plant Physiol. 91: 304 309.
10. Dilworth, G. L. 1982. Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch. Biochem. Biophys. 219: 30 38.
11. Diorio, C.,, J. Cai,, J. Marmor,, R. Shinder,, and M. S. DuBow. 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J. Bacteriol. 177: 2050 2056.
12. Dowdle, P. R.,, A. M. Laverman,, and R. S. Oremland. 1996. Bacterial reduction of arsenic(V) to arsenic(III) in anoxic sediments. Appl. Environ. Microbiol. 62: 1664 1669.
13. Eary, L. E. 1992. The solubility of amorphous As 2S3 from 25 to 90°C. Geochim. Cosmochim. Acta 56: 2267 2278.
14. Edmonds, J. S.,, and K. A. Francesconi. 1988. The origin of arsenobetaine in marine animals. Appl. Organomet. Chem. 2: 283 295.
15. Finster, K.,, W. Liesack,, and B. J. Tindall. 1997. Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int. J. Syst. Bacteriol. 47: 1212 1217.
16. Gladysheva, T. B.,, K. L. Oden,, and B. P. Rosen. 1994. Properties of the arsenate reductase of plasmid R 773. Biochemistry 33: 7288 7293.
17. Hanaoka, K., and S. Tagawa. 1985. Isolation and identification of arsenobetaine as a major water-soluble arsenic compound from muscle of blue pointer Isurus oxyrhincus and whitetip shark Carcarhinus longimanus. Bull. Jpn. Soc. Fish. Sci. 51: 681 685.
18. Hanoaka, K.,, T. Fujita,, M. Matsuura,, S. Tagawa,, and T. Kaise. 1987. Identification of arsenobetaine as a major arsenic compound in muscle of two demersal sharks, shortnose dogfish Squalus brevirostris and starspotted shark Mustelus manazo. Comp. Biochem. Physiol. 86B: 681 682.
19. Hanaoka, K.,, S. Tagawa,, and T. Kaise. 1992. The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms. Hydrobiologia 235/ 236: 623 628.
20. Hansen, H. C. B.,, O. K. Borggaard,, and J. Sorensen. 1994. Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochim. Cosmochim. Acta 58: 2599 2608.
21. Haygarth, P. M., 1994. Global importance and global cycling of selenium, p. 1 28. In W. T. Frankenberger, Jr.,, and S. Benson (ed.), Selenium in the Environment. Marcel Dekker, Inc., New York, N.Y.
22. Heider, J.,, and A. Boeck. 1994. Selenium metabolism in micro-organisms. Adv. Microbiol. Physiol. 35: 71 109.
23. Jayaweera, G. R.,, and J. W. Biggar. 1996. Role of redox potential in chemical transformations of selenium in soils. Soil Sci. Soc. Am. J. 60: 1056 1063.
24. Ji, G.,, E. A. E. Garber,, L. G. Armes,, C.-M. Chen,, J. A. Fuchs,, and S. Silver. 1994. Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33: 7294 7299.
25. Kletzin, A.,, and M. W. W. Adams. 1996. Tungsten in biological systems. FEMS Microbiol. Rev. 18: 5 63.
26. Knight, V.,, and R. P. Blakemore. 1998. Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch. Microbiol. 169: 239 248.
27. Krafft, T.,, and J. M. Macy. 1998. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255: 647 653.
28. Laverman, A. M.,, J. Switzer Blum,, J. K. Schaefer,, E. J. P. Phillips,, R. R. Lovley,, and R. S. Oremland. 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61: 3556 3561.
29. Lonergan, D. J.,, H. Jenter,, J. D. Coates,, T. Schmidt,, and D. R. Lovley. 1996. Phylogeny of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178: 2402 2408.
30. Lortie, L.,, W. D. Gould,, S. Rajan,, R. G. L. McCready,, and K.-J. Cheng. 1992. Reduction of selenate and selenite by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58: 4043 4044.
31. Losi, M. E.,, and W. T. Frankenberger Jr.. 1997. Reduction of selenium oxyanions by Enterobacter cloacae SLDla-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079 3084.
32. Losi, M. E.,, and W. T. Frankenberger Jr.. 1997. Bioremediation of selenium in soil and water. Soil. Sci. 162: 692 702.
33. Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47: 263 290.
34. Lovley, D. R.,, J. D. Coates,, D. A. Saffarini,, and D. J. Lonergan,. 1997. Dissimilatory iron reduction, p. 187 215. In G. Winkelman, and C. J. Carrano (ed.), Iron and Related Transition Metals in Microbial Metabolism. Harwood Academic Press, Zurich, Switzerland.
35. Macy, J. M.,, K. Nunan,, K. D. Hagen,, D. R. Dixon,, P. J. Harbour,, M. Cahill,, and L. I. Sly. 1996. Chrysiogenes arsenatis, gen nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46: 1153 1157.
36. Macy, J. M.,, and S. Lawson. 1993. Cell yield (Y M) of Thauera selenatis grown anaerobically with acetate plus selenate or nitrate. Arch. Microbiol. 160: 295 298.
37. Macy, J. M.,, S. Rech,, G. Auling,, M. Dorsch,, E. Stackenbrandt,, and L. I. Sly. 1993. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 43: 135 142.
38. Macy, J. M.,, T. A. Michel,, and D. A. Kirsch. 1989. Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol. Lett. 61: 195 198.
39. Madigan, M. T.,, J. M. Martinko,, and J. Parker. 1997. Brock Biology of Microorganisms. Prentice-Hall Inc., Upper Saddle River, N.J.
40. Maest, A. S.,, S. P. Pasilis,, L. G. Miller,, and D. K. Nordstrom,. 1992. Redox geochemistry of arsenic and iron in Mono Lake, California, USA, p. 507 511. In Y. K. Kharaka, and A. S. Maest, (ed.), Water-Rock Interaction. A. A. Balkema, Rotterdam, The Netherlands.
41. Maiers, D. T.,, P. L. Wichlacz,, D. L. Thompson,, and D. F. Bruhn. 1988. Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54: 2591 2593.
42. Masscheleyn, P. H.,, R. D. Delaune,, and W. H. Patrick Jr.. 1990. Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ. Sci. Technol. 24: 91 96.
43. Moore, M. D.,, and S. Kaplan. 1992. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol. 174: 1505 1514.
44. Moore, M. D.,, and S. Kaplan. 1992. Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60: 17 23.
45. Myneni, S. C.,, T. K. Tokunaga,, and G. E. Brown Jr.. 1997. Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science 278: 1106 1109.
46. Nakahara, H.,, T. Ishikawa,, Y. Sarai,, and I. Kondo. 1977. Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature 266: 165 167.
47. Newman, D. K.,, D. Ahmann,, and F. M. M. Morel. 1998. A brief review of dissimlatory arsenate reduction. Geomicrobiol. J. 15: 255 268.
48. Newman, D. K.,, E. K. Kennedy,, J. D. Coates,, D. Ahmann,, D. J. Ellis,, D. R. Lovley,, and F. M. M. Morel. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum. sp. nov. Arch. Microbiol. 165: 380 388.
49. Newman, D. K.,, T. J. Beveridge,, and F. M. Morel. 1997. Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol. 63: 2022 2028.
50. Oden, K. L.,, T. B. Gladysheva,, and B. P. Rosen. 1994. Arsenate reduction mediated by the plasmid-encoded arsC protein is coupled to glutathione. Mol. Microbiol. 12: 301 306.
51. Oremland, R. S., 1994. Biogeochemical transformations of selenium in anoxic environments, p. 389 420. In W. T. Frankenberger, Jr., and S. Benson (ed.), Selenium in the Environment. Marcel Dekker, Inc., New York, N.Y.
52. Oremland, R. S.,, J. Switzer Blum,, C. W. Culbertson,, P. T. Visscher,, L. G. Miller,, P. Dowdle,, and R. S. Oremland. 1994. Isolation, growth, and metabolism of an obligately anaerobic, selenate -respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60: 3011 3019.
53. Oremland, R. S.,, N. A. Steinberg,, T. S. Presser,, and L. G. Miller. 1991. In situ selenate reduction in the agricultural drainage systems of western Nevada. Appl. Environ. Microbiol. 57: 615 617.
54. Oremland, R. S.,, N. A. Steinberg,, A. S. Maest,, L. G. Miller,, and J. T. Hollibaugh. 1990. Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ. Sci. Technol. 24: 1157 1164.
55. Oremland, R. S.,, J. T. Hollibaugh,, A. S. Maest,, T. S. Presser,, L. G. Miller,, and C. W. Culbertson. 1989. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 55: 2333 2343.
56. Peterson, M. L.,, and R. Carpenter. 1983. Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently stratified fjord. Mar. Chem. 12: 295 321.
57. Rech, S. A.,, and J. M. Macy. 1992. The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J. Bacteriol. 174: 7316 7320.
58. Reimer, K. J., and J. A. J. Thompson. 1988. Arsenic speciation in marine interstitial water. The occurrence of organoarsenicals. Biogeochemistry 6: 211 237.
59. Rittle, K. A.,, J. I. Drever,, and P. J. Colberg. 1995. Precipitation of arsenic during sulfate reduction. Geomicrobiol. J. 13: 1 12.
60. Schröder, I.,, S. Rech,, T. Krafft,, and J. M. Macy. 1997. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272: 23765 23768.
61. Seyler, P.,, and J. M. Martin. 1989. Biogeochemical processes affecting total arsenic and arsenic species distribution in a permanently stratified lake. Environ. Sci. Technol. 23: 1258 1263.
62. Shibata, Y.,, and M. Morita. 1988. A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii. Agric. Biol. Chem. 52: 1087 1089.
63. Shisler, J. L.,, T. G. Senkevich,, M. J. Berry,, and B. Moss. 1998. Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. Science 279: 102 105.
64. Silver, S.,, G. Ji,, S. Broer,, S. Dey,, D. Dou,, and B. P. Rosen. 1993. Orphan enzyme or patriarch of a new tribe: arsenic resistance ATPase of bacterial plasmids. Mol. Microbiol. 8: 637 642.
65. Sposito, G.,, A. Yang,, R. H. Neal,, and A. Mackzum. 1991. Selenate reduction in alluvial soil. Soil Sci. Soc. Am. J. 55: 1597 1602.
66. Steinberg, N. A.,, J. Switzer Blum,, L. Hochstein,, and R. S. Oremland. 1992. Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl. Environ. Microbiol. 58: 426 428.
67. Steinberg, N. A.,, and R. S. Oremland. 1990. Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl. Environ. Microbiol. 56: 3550 3557.
68. Stolz, J. F.,, T. Gugliuzza,, J. Switzer Blum,, R. Oremland,, and F. M. Murillo. 1997. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SES-3. Arch. Microbiol. 167: 1 5.
69. Stolz, J. F.,, D. J. Ellis,, J. Switzer Blum,, D. Ahmann,, D. R. Lovley,, and R. S. Oremland. 1999. Sulfurospirillum barnesii sp. nov., Sulfurospirillum arsenophilus sp. nov., and the Sulfurospirillum clade in the Epsilon Proteobacteria. I nt. J. Syst. Bacteriol. 49: 1177 1180.
69a. Stolz, J. F.,, and R. S. Oremland. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev. 23: 615 627.
70. Switzer Blum, J.,, A. Burns Bindi,, J. Buzzelli,, J. F. Stolz,, and R. S. Oremland. 1998. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens sp. nov.: two haloalkaliphiles from Mono Lake, California, that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171: 19 30.
71. Tokunaga, T. K.,, I. J. Pickering,, and G. E. Brown Jr.. 1996. Selenium transformations in ponded sediments. Soil Sci. Soc. Am. J. 60: 781 790.
72. Tornei, F. A.,, L. L. Barton,, C. L. Lemanski,, T. G. Zocco,, N. H. Fink,, and L. O. Sillerud. 1995. Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J. Ind. Microbiol. 14: 329 336.
73. Tornei, F. A.,, L. L. Barton,, C. L. Lemanski,, and T. G. Zocco. 1992. Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can. J. Bacteriol. 38: 1328 1333.
74. Velinsky, D. J.,, and G. A. Cutter. 1991. Geochemistry of selenium in a coastal salt marsh. Geochim. Cosmochim. Acta 55: 179 191.
75. Zehnder, A. J. B.,, and W. Stumm,. 1988. Geochemistry and biogeochemistry of anaerobic habitats, p. 1 38. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc., New York, N.Y.
76. Zehr, J. P.,, and R. S. Oremland. 1987. Reduction of selenate to selenide by sulfate-respiring bacteria: experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol. 53: 1365 1369.
77. Zhang, Y.,, and J. M. Moore. 1996. Selenium fractionation and speciation in a wetland system. Environ. Sci. Technol. 30: 2613 2619.
78. Zhang, Y.,, and J. M. Moore. 1996. Controls on selenium distribution in wetland sediment, Benton Lake, Montana. Water Air Soil Pollut. 97: 323 340.

Tables

Generic image for table
Table 1

Standard potentials, free energies, and molar growth yields of three species of selenate- and /or arsenate-reducing bacteria

Citation: Oremland R, Stolz J. 2000. Dissimilatory Reduction of Selenate and Arsenate in Nature, p 199-224. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error