1887

Chapter 15 : Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap15-2.gif

Abstract:

This chapter discusses the spectrum of infections caused by . Hospital-acquired pneumonias, urinary tract infections, surgical-site infections, and bacteremias are among the nosocomial infections frequently caused by . The major cause of high morbidity and mortality in cystic fibrosis (CF) is chronic respiratory infection with . The lack of nitric oxide synthase (iNOS) production in CF may have two important repercussions. First, the reduced NO levels have been linked to the hyperabsorption of sodium in CF. Second, nitric oxide has also been directly implicated as a bactericidal and bacteristatic agent. The major causes of high morbidity and mortality presently associated with CF are chronic inflammation and the resulting respiratory tissue destruction. The first phase is an insidious infection, with intermittent isolation of from the lungs of the patient with CF. The mucoid phenotype of is rarely seen in infections other than CF, although mucoid strains can be isolated during chronic urinary tract infections, but all mucoid isolates produce chemically similar polymers based on the polyuronic acid exopolysaccharide alginate. The majority of the support for such a role of alginate in allowing to persist in the CF lung comes from in vitro studies that have previously been extensively reviewed. causes life-threatening infections in patients with compromised innate immune defenses, such as burn victims, neutropenic individuals undergoing chemotherapy, and persons with CF.

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15

Key Concept Ranking

Tumor Necrosis Factor alpha
0.43324053
Type III Secretion System
0.42399436
0.43324053
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Inhalation exposure system adapted for use with aerosols. The system (Glas Col) is a whole-body exposure chamber for quantitative infection of animals by inhalation of airborne The system has a nebulizer-Venturi unit in which bacterial suspension is introduced. The suspension is atomized and mixed with filtered room air, and a bacterial cloud is introduced into the exposure chamber kept under negative pressure. A programmable control is used to preheat, nebulize, expose, and control bacterial decay. The exhaust air is filtered through a HEPA filter and passed through an incinerator in the back of the unit. Germicidal U V lamps are used for decontamination of the chamber. The five-compartment cage can accommodate up to 100 mice for simultaneous exposure. The initial deposition in the lungs is exceptionally uniform, and the variation from mouse to mouse is similar to sampling errors usually seen with bacterial plating. The system has been used for single-inhalation exposure to demonstrate reduced pulmonary clearance of mucoid ( ) and for the development of the repeated-respiratory-exposure inflammation model ( ).

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Eight-week-old (at t he inception of the experiment) C57BL/6J ( = 12) (open boxes) and IL-10T ( = 8) (shaded boxes) mice were exposed to once (−1) or 8 (−8) times. Pairwise comparison (Student-Newman-Keuls test) indicated that the histopathology indices relative to unexposed controls were significant ( < 0.005). Histopathology scores were as described in Y u et al. ( ). (Reproduced with permission from Yu et al. [ ].)

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Increased lung pathology in IL-10T mice after repeated exposure to Note perivascular, peribronchial, and intestinal inflammation and increased inflammatory changes in IL-10T (knockout) mice (B) relative to C57BL/6J mice (A). (C) Postmortem appearance of the lung from an IL-10T transgenic mouse (note numerous neutrophils) that succumbed after two exposures to . (Reproduced with modifications from Yu et al. [ ].)

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818104.chap15
1. Afessa, B.,, W. Green J,. Chiao,, and W. Frederick. 1998. Pulmonary complications o f HIV infection: autopsy findings. Chest 113: 1225 1229.
2. Al-Awqati, Q.,, J. Barasch,, and D. Landry. 1992. Chloride channels o f intracellular organelles and their potential role in cystic fibrosis. J. Exp. Biol. 172: 245 266.
3. Anwar, H.,, J. L. Strap,, and J. W. Costerton. 1992. Establishment of aging biofilms: possible mechanism ofbacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 36: 1347 1351.
4. Asboe, D.,, V. Gant,, H. M. Aucken,, D. A. Moore,, S. Umasankar,, J. S. Bingham,, M. E. Kaufmann,, and T. L. Pitt. 1998. Persistence of Pseudomonas aeruginosa strains in respiratory infection in AIDS patients. AIDS 12: 1771 1775.
5. Baltch, A.L., 1994. Pseudomonasaeruginosa bacteremia, p. 73 128. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
6. Beck-Sague, C.M.,, S. N. Banerjee,, and W. R. Jatvis,. 1994. E pidemiology and controlof Pseudomonas aeruginosa in US hospitals, p. 51 71. In A.L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
7. Biwersi, J.,, N. Emans,, and A. S. Verkman. 1996. Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc. Natl. Acad. Sci. USA 93: 12484 12489.
8. Blackwood, L. L.,, and J. E. Pennington. 1981. Influence of mucoid coating on clearance of Pseudomonas aeruginosa from lungs. Infect. Immun. 32: 443 448.
9. Bonfield, T. L.,, J. R. Panuska,, M. W. Konstan,, K. A. Hillard,, J. B. Hiilard,, H. Ghnaim,, and M. Berger. 1995. Inflammatory cytokines in cystic fibrosis lungs. Am. J. Respir. Grit. Care Med. 152: 2111 2118.
9a. Boucher, J. C.,, M. J. Schurr,, and V. Deretic. Dual regulation of mucoidy in P. aeruginosa and sigma factor antagonism. Mol. Microbiol., in press.
10. Boucher, J. C.,, H. Yu,, M. H. Mudd, and V. Deretic. 1997. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun. 65: 3838 3846.
11. Bowton, D.L. 1999. Nosocomial pneumoniain the ICU—year 2000 and beyond. Chest 115( Suppl. 3): 28S 33S.
12. Cainzos Fernandez, M. 1998. Skin and softtissue infections caused by Pseudomonasaeruginosa. Rev. Clin. Esp. 198( Suppl. 2): 21 24. (In Spanish.)
13. Cash, H. A.,, D. E. Woods,, B. McCullough,, W. G. Johanson,, and J. A. Bass. 1979. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am. Rev. Resp. Dis. 119: 453 459.
14. CisnerosHerreros, J. M.,, E. Canas Garcia-Otero,, J. Caballero Granado,, and B. Becerril Carral. 1998. Bacteremia, endocarditis and meningitis caused by Pseudomonas aeruginosa. Rev. Clin Esp. 198( Suppl. 2): 25 29. (In Spanish.)
15. Clarke, L. L.,, B. R. Grubb,, J. R. Yankaskas,, C. U. Cotton,, A. McKenzie,, and R. C. Boucher. 1994. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr (—/—) mice. Proc. Natl. Acad. Sci. USA 91: 479 483.
16. Coburn, J.,, and D. M. Gill. 1991. ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect. Immun. 59: 4259 4262.
17. Cole, N.,, S. Bao,, M. Willcox,, and A. J. Husband. 1999. Expression of interleukin-6 in the cornea in response to infection with different strains of Pseudomonas aeruginosa. Infect. Immun. 67: 2497 2502.
18. Cole, N.,, S. Bao,, M. Willcox,, and A. J. Husband. 1999. TNF-alpha production in the cornea in response to Pseudomonas aeruginosa challenge. Immunol. Cell Biol 77: 164 166.
19. Corey, M.,, F. J. McLaughlin,, M. Williams,, and H. Levison. 1988. A comparison of survival, growth, and pulmonary function in patients with cystic fibrosis in Boston and Toronto. J. Clin. Epidemiol 41: 583 591.
20. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
21. Cryz, S. J., Jr.,, E. Ftirer,, and R. Germanier. 1983. Simple model for the study of Pseudomonas aeruginosa infections in leukopenic mice. Infect. Immun. 39: 1067 1071.
22. Davidson, D. J.,, J. R. Dorin,, G. McLachlan,, V. Ranaldi,, D. Lamb,, C. Doherty,, J. Govan,, and D. J. Porteous. 1995. Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat. Genet. 9: 351 357.
23. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-tocell signals in the development of a bacterial biofilm. Science 280: 295 298.
24. De Groote, M. A.,, and F. C. Fang. 1995. NOinhibitions: antimicrobial properties of nitric oxide. Clin. Infect. Dis. 21( Suppl. 2): S162 S165.
25. Deretic, V., 1996. Molecular biology ofmucoidy in Pseudomonas aeruginosa, p. 223 244. In J. A. Dodge,, D. J. H. Brock,, and J. H. Widdicombe (ed.), Cystic Fibrosis—Current Topics, vol. 3. John Wiley & Sons Ltd., Chichester, United Kingdom.
26. Deretic, V.,, M. J. Schurr,, J. C. Boucher,, and D. W. Martin. 1994. Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J. Bacteriol. 176: 2773 2780.
27. Di Mango, E.,, A. J. Ratner,, R. Bryan,, S. Tabibi,, and A. Prince. 1998. Activation of N F-KB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J. Clin. Investig. 101: 2598 2605.
28. Dosanjh, A.,, W. Lencer,, D. Brown,, D. A. Ausiello,, and J. L. Stow. 1994. Heterologous expression ofdelta F508 CFTR results in decreased sialylation of membrane glycoconjugates. Am. J. Physiol. 266: C360 C366.
29. Er, H.,, Y. Turkoz,, I. H. Ozerol,, and E. Uzmez. 1998. Effect of nitric oxide synthase inhibition in experimental Pseudomonas keratitis in rabbits. Eur. J. Ophthalmol. 8: 137 141.
30. Finck-Barbancon, V.,, J. Goranson,, L. Zhu,, T. Sawa,, J. P. Wiener-Kronish,, S. M. Fleiszig,, C. Wu,, L. Mende-Mueller,, and D. W. Frank. 1997. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 25: 547 557.
31. FitzSimmons, S. C. 1993. The changing epidemiology of cystic fibrosis. J. Pediatr. 122: 1 9.
32. Frank, D. W. 1997. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol. Microbiol. 26: 621 629.
33. Frank, U.,, F. D. Daschner,, G. Schulgen,, and J. Mills. 1997. Incidence and epidemiology of nosocomial infections in patients infected with human immunodeficiency virus. Clin. Infect. Dis. 25: 318 320.
34. Frithz-Lindsten, E.,, Y. Du,, R. Rosqvist,, and A. Forsberg. 1997 Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol. Microbiol. 25: 1125 1139.
35. Fu, H.,, J. Coburn,, and R. J. Collier. 1993. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA 90: 2320 2324.
36. Gabriel, S. E.,, K. N. Brigman,, B. H. Roller,, R. C. Boucher,, and M. J. Stutts. 1994. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266: 107 109.
37. Gerke, J. R.,, and M. V. Magliocco. 1981. Experimental Pseudomonas aeruginosa infection of the mouse cornea. Infect. Immun. 3: 209 216.
38. Gilljam, H.,, A. Ellin,, and B. Strandvik. 1997. Increased bronchial chloride concentrations in cystic fibrosis. Scand. J. Clin. Lab. Investig. 49: 2588 2595.
39. Goldman, M. J.,, G. M. Anderson,, E. D. Stolzenberg,, U. P. Kari,, M. ZaslofF,, and J. M. Wilson. 1997. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88: 553 560.
40. Gosselin, D.,, M. M. Stevenson,, E. A. Cowley,, U. Griesenbach,, D. H. Eidelman,, M. Boule,, M. F. Tarn,, G. Kent,, E. Skamene,, L. C. Tsui,, and D. Radzioch. 1998. Impaired ability of Cftr knockout mice to control lung infection with Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 157: 1253 1262.
41. Govan, J. R. W.,, and V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539 574.
42. Grasemann, H.,, E. Michler,, M. Wallot,, and F. Ratjen. 1997. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr. Pulmonol. 24: 173 177.
43. Guo, F. H.,, H. R. De Raeve,, T. W. Rice,, D. J. Stuehr,, F. B. Thunnissen,, and S. C. Erzurum. 1995. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc. Natl. Acad. Sci. USA 92: 7809 7813.
44. Haley, R.W.,, and R. H. Shachtman. 1980. The emergence of infection surveillance and control programs in U S hospitals: an assessment, 1976. Am. J. Epidemiol. 111: 574 591.
45. Hall, R. A.,, L. S. Ostedgaard,, R. T. Premont,, J. T. Blitzer,, N. Rahman,, M. J. Welsh,, and R. J. Lefkowitz. 1998. A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na + /H + exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95: 8496 8501.
46. Hatano, K.,, J. B. Goldberg,, and G. B. Pier. 1995. Biologic activities of antibodies to the neutral-polysaccharide component o f the Pseudomonas aeruginosa lipopolysaccharide are blocked by O side chains and mucoid exopolysaccharide (alginate). Infect. Immun. 63: 21 26.
47. Hauer, T.,, M. Lacour,, P. Gastmeier,, G. Schulgen,, M. Schumacher,, H. Ruden,, and F. Daschner. 1996. Nosocomial infections intensive care units. A nation-wide prevalence study. Anaesthesist 45: 1184 1191. (In German.)
48. Hauser, A. R.,, S. Fleiszig,, P. J. Kang,, K. Mostov,, and J. N. Engel. 1998. Defects in type III secretion correlate with internalization o f Pseudomonas aeruginosa by epithelial cells. Infect. Immun. 66: 1413 1420.
49. Hauser, A. R.,, P. J. Kang,, and J. N. Engel. 1998. Pep A, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol. Microbiol. 27: 807 818.
50. Hazlett, L. D.,, D. D. Rosen,, and R. S. Berk. 1977>. Pseudomonas eye infections in cyclophosphamide-treated mice. Investig. Ophthalmol. Vis. Sci. 16: 649.
51. Heeckeren, A.,, R. Walenga,, M. W. Konstan,, T. Bonfield,, P. B. Davis,, and T. Ferkol. 1997. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Investig. 100: 2810 2815.
52. Hobden, J. A.,, S. Masinick-McClellan,, R. P. Barrett,, K. S. Bark,, and L. D. Hazlett. 1999. Pseudomonas aeruginosa keratitis in knockout mice deficient in intercellular adhesion molecule 1. Infect. Immun. 67: 972 975.
53. Imundo, L.,, J. Barasch,, A. Prince,, and Q. Al-Awqati. 1995. Cystic fibrosis epithelial cellshave a receptor for pathogenic bacteria on their apical surface. Proc. Natl.Acad. Sci. USA 92: 3019 3023. (Erratum, 92:11322.)
54. Jackson, G.G., 1994. Infective endocarditis caused by Pseudomonas aeruginosa, p. 129 158. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.V
55. Jensen, E. T.,, A. Kharazmi,, K. Lam,, J. W. Costerton,, and N. Hoiby. 1990. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect. Immun. 58: 2383 2385.
56. Johansen, H. K.,, and N. Hoiby. 1992. Seasonal onset of initial colonisation and chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis in Denmark. Thorax 47: 109 111.
57. Kelley, T. J.,, and M. L. Drumm. 1998. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J. Clin. Investig. 102: 1200 1207.
58. Kent, G.,, R. Iles,, C. E. Bear,, L. J. Huan,, U. Griesenbach,, C. McKerlie,, H. Frndova,, C. Ackerley,, D. Gosselin,, D. Radzioch,, H. O'Brodovich,, L. C. Tsui,, M. Buchwald,, and A. K. Tanswell. 1997. Lung disease in mice with cystic fibrosis. J. Clin. Investig. 100: 3060 3069.
59. Kernacki, K. A.,, D. J. Goebel,, M. S. Poosch,, and L. D. Hazlett. 1998. Early cytokine and chemokine gene expression during Pseudomonas aeruginosa corneal infection in mice. Infect. Immun. 66: 376 379.
60. Khan, T. Z.,, J. S. Wagener,, T. Bost,, J. Martinez,, F. J. Accurso,, and D. W. Riches. 1995. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151: 1075 1082.
61. Kielhomer, M.,, R. L. Atmar,, R. J. Hamill,, and D. M. Musher. 1992. Life-threatening Pseudomonas aeruginosa infections in patients with human immunodeficiency virus infection. Clin. Infect. Dis. 14: 403 411.
62. Knowles, M.R.,, J. M. Robinson,, R. E. Wood,, C. A. Pue,, W. M. Mentz,, G. C. Wager,, J. T. Gatzy,, and R. C. Boucher. 1997. Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J. Clin. Investig. 100: 2588 2595. (Erratum, 101:285, 1998.)
63. Kobzik, L.,, D. S. Bredt,, C. J. Lowenstein,, J. Drazen,, B. Gaston,, D. Sugarbaker,, and J. S. Stamler. 1993. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am. J. Respir. Cell. Mol. Biol. 9: 371 377.
64. Koch, C.,, and N. Hoiby. 1993. Pathogenesis of cystic fibrosis. Lancet 341: 1065 1069.
65. Konstan, M. W.,, P. J. Byard,, C. L. Hoppel,, and P. B. Davis. 1995. Effect of high-dose ibuprofen in patients with cystic fibrosis. N. Engl. J . Med. 332: 848 854.
66. Krivan, H. C.,, D. D. Roberts,, and V. Ginsburg. 1988. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta l-4Gal found in some glycolipids. Proc. Natl. Acad. Sci. USA 85: 6157 6161.
67. Kunin, C.M., 1994. Infections of the urinary tract dueto Pseudomonas aeruginosa, p. 237 256. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
68. Kwon, B.,, and L. D. Hazlett. 1997. Association of CD4 + T cell-dependent keratitis with genetic susceptibility to Pseudomonas aeruginosa ocular infection. J. Immunol. 159: 6283 6290.
69. Lam, J.,, R. Chan,, K. Lam,, and J. W. Costerton. 1980. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28: 546 556.
70. Lavery, L.A.,, S. C. Walker,, L. B. Harkless,, and K. Felder-Johnson. 1995. Infected puncturewounds in diabetic and nondiabetic adults. Diabetes Care 18: 1588 1591. (Erratum, 19:549, 1996.)
71. Lukacs, G. L.,, X. B. Chang,, N. Kartner,, O. D. Rotstein,, J. R. Riordan,, and S. Grinstein. 1992. The cystic fibrosis transmembrane regulator is present and functional in endosomes. Role as a determinant of endosomal pH. J. Biol. Chem. 267: 14568 14572.
72. Mahajan-Miklos, S.,, M. W. Tan,, L. G. Rahme,, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa- Caenorhabditis elegans pathogenesis model. Cell 96: 47 56.
73. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686 688.
74. Mahenthiralingam, E.,, M. E. Campbell,, and D. P. Speert. 1994. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun. 62: 596 605.
75. Martin, D. W.,, M. J. Schurr,, M. H. Mudd,, J. R. W. Govan,, B. W. Holloway,, and V. Deretic. 1993. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 90: 8377 8381.
76. Masters, S.C.,, K. J. Pederson,, L. Zhang,, J. T. Barbieri,, and H. Fu. 1999. Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38: 5216 5221.
77. McAvoy, M. J.,, V. Newton,, A. Paull,, J. Morgan,, P. Gacesa,, and N. J. Russell. 1989. Isolation of mucoid strains of Pseudomonas aeruginosa from non-cystic-fibrosis patients and characterisation of the structure of their secreted alginate. J. Med. Microbiol. 28: 183 189.
78. McGuffie, E. M.,, D. W. Frank,, T. S. Vincent,, and J. C. Olson. 1998. Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infect. Immun. 66: 2607 2613.
79. Meng, Q. H.,, D. R. Springall,, A. E. Bishop,, K. Morgan,, T. J. Evans,, S. Habib,, D. C. Gruenert,, K. M. Gyi,, M. E. Hodson,, M. H. Yacoub,, and J. M. Polak. 1998. Lack of inducible nitric oxide synthase in bronchial epithehum: a possible mechanism of susceptibility to infection in cystic fibrosis. J. Pathol. 184: 323 331.
80. Miskew, D. B.,, M. A. Lorenz,, R. L. Pearson,, and A. M. Pankovich. 1983. Pseudomonas aeruginosa bone and joint infection in drug abusers. J. Bone Joint Surg. Am. 65: 829 832.
81. Morissette, C.,, E. Skamene,, and F. Gervais. 1995. Endobronchial inflammation following Pseudomonas aeruginosa infection in resistant and susceptible strains of mice. Infect. Immun. 63: 1718 1724.
82. Morrison, V. A. 1998. The infectious complications of chronic lymphocytic leukemia. Semin. Oncol. 25: 98 106.
83. Moss, R. B.,, R. C. Bocian,, Y. P. Hsu,, Y. J. Don g,, M. Kemna,, T. Wei,, and P. Gardner. 1996. Reduced IL-10 secretion by CD4+ T lymphocytes expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR). Clin. Exp. Immunol. 106: 374 388.
84. Nichols, W. W.,, S. M. Dorrington,, M. P. Slack,, and H. L. Walmsley. 1988. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob. Agents Chemother. 32: 518 523.
85. Olson, J. C.,, E. M. McGuffie,, and D. W. Frank. 1997. Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect. Immun. 65: 248 256.
86. Orenstein, D. A. 1989. Cystic Fibrosis: A Guide for Patient and Family. Raven Press, New York, N.Y.
87. Pahl, H. L.,, and P. A. Baeuerle. 1995. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBOJ. 14: 2580 2588.
88. Parsek, M. R.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96: 4360 4365.
89. Pedersen, S.S. 1992. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS 100( Suppl. 28): 1 79
90. Pedersen, S.S.,, N. Hoiby,, F. Espersen,, and C. Koch. 1992. Role of alginate ininfection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47: 6 13.
91. Pederson, K.J.,, A. J. Vallis,, K. Aktories,, D . W. Frank,, and J. T. Barbieri. 1999. The amino-terminaldomain of Pseudomonas aeruginosa ExoS disrupts actin filaments viasmall-molecularweight GTP-binding proteins. Mol. Microbiol. 32: 393 401.
92. Pennington, J.E., 1994. Pseudomonasaeruginosa pneumonia and other respiratory tract infections, p. 159 182. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
93. Pier, B. B.,, G. Meluleni,, and E. Neuger. 1992. A murine model of chronic mucosal colonization by Pseudomonas aeruginosa. Infect. Immun. 60: 4768 4776.
94. Pier, G. B. 1999. Evolution of the F508 CFTR mutation: response. Trends Microbiol. 7: 56 58.
95. Pier, G. B.,, M. Grout,, T. Zaidi,, G. Meluleni,, S. S. Mueschenborn,, G. Banting,, R. Ratcliff,, M. J. Evans,, and W. H. Colledge. 1998. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393: 79 82.
96. Pier, G. B.,, M. Grout,, T. S. Zaidi,, J. C. Olsen,, L. G. Johnson,, J. R. Yankaskas,, and J. B. Goldberg. 1996. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271: 64 67.
97. Pruitt, B.A., , Jr.,, A. T. McManus,, S. H. Kim, , and C. W. Goodwin. 1998. Burn wound infections: current status. World J. Surg. 22: 135 145.
98. Rahme, L.G.,, E. J. Stevens,, S. F. Wolfort,, J. Shao,, R. G. Tompkins,, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899 1902.
99. Rahme, L. G.,, M. W. Tan,, L. Le,, S. M. Wong,, R. G. Tompkins,, S. B. Calderwood,, and F. M. Ausubel. 1997. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 94: 13245 13250.
100. Rehm, S. R.,, G. N. Gross,, and A. K. Pierce. 1980. Early bacterial clearance from murine lungs. J. Clin. Investig. 66: 194 199.
101. Rello, J.,, and M. Ricart. 1998. Respiratory tractinfections by Pseudomonas aeruginosa in patients under intubation. Rev. Clin. Esp. 198( Suppl.2): 17 20. (In Spanish.)
102. Richards, M. J.,, J. R. Edwards,, D. H. Culver,, and R. P. Gaynes. 1999. Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics 103: e39.
103. Rodriguez Arrondo, F.,, M. A. von Wichmann,, J. Arrizabalaga,, J. A. Iribarren,, G. Garmendia,, and P. Idigoras. 1998. Pulmonary cavitation lesions in patients infected with the human immunodeficiency virus: an analysis of a series of 78 cases. Med. Clin. (Bare). 111: 725 730. (In Spanish.)
104. Saiman, L.,, and A. Prince. 1993. Pseudomonasaeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosisepithelial cells. J. Clin. Investig. 92: 1875 1880.
105. Sawa, T.,, T. L. Yahr,, M. Ohara,, K. Kurahashi,, M. A. Gropper,, J. P. Wiener-Rronish,, and D. W. Frank. 1999. Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat. Med. 5: 392 398.
106. Seksek, O.,, J. Biwersi,, and A. S. Verkman. 1996. Evidence against defective trans-Golgi acidification in cystic fibrosis. J. Biol. Chem. 271: 15542 15548.
107. Siegman-Igra, Y.,, R. Ravona,, H. Primerman,, and M. Giladi. 1998. Pseudomonas aeruginosa bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int. J. Inject. Dis. 2: 211 215.
108. Smith, J.J.,, S. M. Travis,, E. P. Greenberg,, and M. J. Welsh. 1996. Cystic fibrosis airwayepithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85: 229 236. (Erratum, 87:following 355.)
109. Smith, R. P., 1994. Skin and soft tissue infections due to Pseudomonas aeruginosa, p. 326 370. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Injections and Treatment. Marcel Dekker, New York, N.Y.
110. Snouwaert, J. N.,, K. K. Brigman,, A. M. Latour,, N. N. Malouf,, R. C. Boucher,, O. Smithies,, and B. H. Roller. 1992. An animal model for cystic fibrosis made by gene targeting. Science 257: 1083 1088.
111. Sordelli, D. O.,, V. E. Garcia,, C. M. Cerequetti,, P. A. Fontan,, and A. M. Hooke. 1992. Intranasal immunization with temperature sensitive mutants protects granulocytopenic mice from lethal pulmonary challenge with Pseudomonas aeruginosa. Curr. Microbiol. 24: 9 14.
112. Southern, P. M.,, A. R. Pierce,, and J. P. Sanford. 1968. Exposure chamber for 66 mice suitable for use with Henderson aerosol apparatus. Appl. Microbiol. 16: 540 542.
113. Spencer, R. C. 1996. Predominant pathogens found in the European Prevalence of Infection in Intensive Care Study. Eur. J. Clin. Microbiol. Inject. Dis. 15: 281 285.
114. Starke, J. R.,, M. S. Edwards,, C. Langston,, and C. J. Baker. 1987. A mouse model of chronic pulmonary infection with Pseudomonas aeruginosa and Pseudomonas cepacia. Pediatr. Res. 22: 698 702.
115. Stieritz, D. D.,, and I. A. Holander. 1975. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J. Inject. Dis. 131: 688 691.
116. Stutts, M. J.,, C. M. Canessa,, J. C. Olsen,, M. Hamrick,, J. A. Cohn,, B. C. Rossier,, and R. C. Boucher. 1995. CFTR as a cAMP-dependent regulator of sodium channels. Science 269: 847 850.
117. Tan, M. W.,, S. Mahajan-Miklos,, and F. M. Ausubel. 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96: 715 20.
118. Tang, H.,, M. Rays,, and A. Prince. 1995. Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Inject. Immun. 63: 1278 1285.
119. Tierney, M. R.,, and A. S. Baker. 1995. Infections of the head and neck in diabetes mellitus. Inject. Dis. Clin. N. Am. 9: 195 216.
120. Toews, G. B.,, G. N. Gross,, and A. R. Pierce. 1979. The relationship of inoculum size to lung bacterial clearance and phagocytic cell response in mice. Am. Rev. Resp. Dis. 120: 559 566.
121. VidalMarsal, F.,, and J. Mensa Pueyo. 1998. Pseudomonas aeruginosa as a pathogen in patientswith human immunodeficiency virus infection. Rev. Clin. Esp. 198( Suppl. 2): 37 43. (In Spanish.)
122. Wang, F. D.,, Y. Y. Chen,, and C. Y. Liu. 1998. Prevalence of nosocomial respiratory tract infections in the surgical intensive care units of a medical center. Chung Hua I Hsueh Tsa Chih (Taipei). 61: 589 595.
123. Wang, H. G.,, N. Pathan,, I. M. Ethell,, S. Rrajewski,, Y. Yamaguchi,, F. Shibasaki,, F. McReon,, T. Bobo,, T. F. Franke,, and J. C. Reed. 1999. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284: 339 343.
124. Wang, J.,, A. Mushegian,, S. Lory,, and S. Jin. 1996. Large-scale isolation o f candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA 93: 10434 10439.
125. Welsh, M.J.,, L.-C. Tsui,, T. F. Boat,, and A. L. Beaudet,. 1995. Cystic fibrosis, p. 3799 3876. In C. R. Scriver,, A. L. Beaudet,, W. S. Sly,, and D. Valle (ed.), The Metabolic and Molecular Basis of Inherited Disease, vol. III. McGraw-Hill, Inc., New York, N.Y.
126. Wilson, R.,, and R. B. Dowling. 1998. Lung infections. 3. Pseudomonas aeruginosa and other related species. Thorax 53: 213 219.
127. Witt, D. J.,, D. E. Craven,, and W. R. McCabe. 1987. Bacterial infections in adult patients with the acquired immune deficiency syndrome (AIDS) and AIDS-related complex. Am. J. Med. 82: 900 906.
128. Woods, D.E.,, and M. L. Vasil,. 1994. Pathogenesis of Pseudomonas aeruginosa infections, p. 21 50. In A.L. Baltch, and R.P. Smith (ed.), Pseudomonas aeruginosa.Infections and Treatment. Marcel Dekker, New York, N.Y.
129. Wretlind, B.,, and T. Kronevi. 1977. Experimental infections with protease-deficient mutants of Pseudomonas aeruginosa in mice. J. Med. Microbiol. 11: 145 154.
130. Yahr, T. L. , J. T. Barbieri,, and D. W. Frank. 1996. Genetic relationship between the 53-and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J. Bacteriol. 178: 1412 1419.
131. Yahr, T. L.,, A. J. Vallis,, M. K. Hancock,, J. T. Barbieri,, and D. W. Frank. 1998. Exo Y, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. USA 95: 13899 13904.
132. Yu, H. J., C. Boucher,, and V. Deretic. 1998. Molecular analysis of Pseudomonas aeruginosa virulence. Methods Microbiol. 27: 383 393.
133. Yu, H.,, M. Hanes,, C. E. Chrisp,, J. C. Boucher,, and V. Deretic. 1998. Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of respiratory challenge. Infect. Immun. 66: 280 288.
133a. Yu, H.,, S. Z. Nasr,, and V. Deretic. 2000. Innate lung defenses and compromised Pseudomonas aeruginosa clearance in the malnourished mouse model of respiratory infections in cystic fibrosis. Infect. Immun. 68: 2142 2147.
134. Zaidi, T. S.,, J. Lyczak,, M. Preston,, and G. B. Pier. 1999. Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. Infect. Immun. 67: 1481 1492.
135. Zhou, L.,, C. R. Dey,, S. E. Wert,, M. D. DuVall,, R. A. Frizzell,, and J. A. Whitsett. 1994. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science 266: 1705 1708.
136. Zloty, P.,, and M. W. Belin,. 1994. Ocular infections causedby Pseudomonas aeruginosa, p. 371 400. In A.L. Baltch, and R.P. Smith (ed.), Pseudomonas aeruginosa.Infections and Treatment. Marcel Dekker, New York, N.Y.

Tables

Generic image for table
TABLE 1

Pseudomonas aeruginosa infections

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Generic image for table
TABLE 2

Murine models in use for analysis of virulence

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Generic image for table
TABLE 3

Decreased clearance of mucoid from the murine lung

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error