1887

Chapter 15 : Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap15-2.gif

Abstract:

This chapter discusses the spectrum of infections caused by . Hospital-acquired pneumonias, urinary tract infections, surgical-site infections, and bacteremias are among the nosocomial infections frequently caused by . The major cause of high morbidity and mortality in cystic fibrosis (CF) is chronic respiratory infection with . The lack of nitric oxide synthase (iNOS) production in CF may have two important repercussions. First, the reduced NO levels have been linked to the hyperabsorption of sodium in CF. Second, nitric oxide has also been directly implicated as a bactericidal and bacteristatic agent. The major causes of high morbidity and mortality presently associated with CF are chronic inflammation and the resulting respiratory tissue destruction. The first phase is an insidious infection, with intermittent isolation of from the lungs of the patient with CF. The mucoid phenotype of is rarely seen in infections other than CF, although mucoid strains can be isolated during chronic urinary tract infections, but all mucoid isolates produce chemically similar polymers based on the polyuronic acid exopolysaccharide alginate. The majority of the support for such a role of alginate in allowing to persist in the CF lung comes from in vitro studies that have previously been extensively reviewed. causes life-threatening infections in patients with compromised innate immune defenses, such as burn victims, neutropenic individuals undergoing chemotherapy, and persons with CF.

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15

Key Concept Ranking

Tumor Necrosis Factor alpha
0.43324053
Type III Secretion System
0.42399436
0.43324053
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Inhalation exposure system adapted for use with aerosols. The system (Glas Col) is a whole-body exposure chamber for quantitative infection of animals by inhalation of airborne The system has a nebulizer-Venturi unit in which bacterial suspension is introduced. The suspension is atomized and mixed with filtered room air, and a bacterial cloud is introduced into the exposure chamber kept under negative pressure. A programmable control is used to preheat, nebulize, expose, and control bacterial decay. The exhaust air is filtered through a HEPA filter and passed through an incinerator in the back of the unit. Germicidal U V lamps are used for decontamination of the chamber. The five-compartment cage can accommodate up to 100 mice for simultaneous exposure. The initial deposition in the lungs is exceptionally uniform, and the variation from mouse to mouse is similar to sampling errors usually seen with bacterial plating. The system has been used for single-inhalation exposure to demonstrate reduced pulmonary clearance of mucoid ( ) and for the development of the repeated-respiratory-exposure inflammation model ( ).

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Eight-week-old (at t he inception of the experiment) C57BL/6J ( = 12) (open boxes) and IL-10T ( = 8) (shaded boxes) mice were exposed to once (−1) or 8 (−8) times. Pairwise comparison (Student-Newman-Keuls test) indicated that the histopathology indices relative to unexposed controls were significant ( < 0.005). Histopathology scores were as described in Y u et al. ( ). (Reproduced with permission from Yu et al. [ ].)

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Increased lung pathology in IL-10T mice after repeated exposure to Note perivascular, peribronchial, and intestinal inflammation and increased inflammatory changes in IL-10T (knockout) mice (B) relative to C57BL/6J mice (A). (C) Postmortem appearance of the lung from an IL-10T transgenic mouse (note numerous neutrophils) that succumbed after two exposures to . (Reproduced with modifications from Yu et al. [ ].)

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818104.chap15
1. Afessa, B.,, W. Green J,. Chiao,, and W. Frederick. 1998. Pulmonary complications o f HIV infection: autopsy findings. Chest 113:12251229.
2. Al-Awqati, Q.,, J. Barasch,, and D. Landry. 1992. Chloride channels o f intracellular organelles and their potential role in cystic fibrosis. J. Exp. Biol. 172:245266.
3. Anwar, H.,, J. L. Strap,, and J. W. Costerton. 1992. Establishment of aging biofilms: possible mechanism ofbacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 36:13471351.
4. Asboe, D.,, V. Gant,, H. M. Aucken,, D. A. Moore,, S. Umasankar,, J. S. Bingham,, M. E. Kaufmann,, and T. L. Pitt. 1998. Persistence of Pseudomonas aeruginosa strains in respiratory infection in AIDS patients. AIDS 12:17711775.
5. Baltch, A.L., 1994. Pseudomonasaeruginosa bacteremia, p. 73128. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
6. Beck-Sague, C.M.,, S. N. Banerjee,, and W. R. Jatvis,. 1994. Epidemiology and controlof Pseudomonas aeruginosa in US hospitals, p. 5171. In A.L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
7. Biwersi, J.,, N. Emans,, and A. S. Verkman. 1996. Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc. Natl. Acad. Sci. USA 93:1248412489.
8. Blackwood, L. L.,, and J. E. Pennington. 1981. Influence of mucoid coating on clearance of Pseudomonas aeruginosa from lungs. Infect. Immun. 32:443448.
9. Bonfield, T. L.,, J. R. Panuska,, M. W. Konstan,, K. A. Hillard,, J. B. Hiilard,, H. Ghnaim,, and M. Berger. 1995. Inflammatory cytokines in cystic fibrosis lungs. Am. J. Respir. Grit. Care Med. 152:21112118.
9a. Boucher, J. C.,, M. J. Schurr,, and V. Deretic. Dual regulation of mucoidy in P. aeruginosa and sigma factor antagonism. Mol. Microbiol., in press.
10. Boucher, J. C.,, H. Yu,, M. H. Mudd, and V. Deretic. 1997. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun. 65:38383846.
11. Bowton, D.L. 1999. Nosocomial pneumoniain the ICU—year 2000 and beyond. Chest115(Suppl. 3):28S33S.
12. Cainzos Fernandez, M.1998. Skin and softtissue infections caused by Pseudomonasaeruginosa. Rev. Clin. Esp.198(Suppl. 2):2124. (In Spanish.)
13. Cash, H. A.,, D. E. Woods,, B. McCullough,, W. G. Johanson,, and J. A. Bass. 1979. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am. Rev. Resp. Dis. 119:453459.
14. CisnerosHerreros, J. M.,, E. Canas Garcia-Otero,, J. Caballero Granado,, and B. Becerril Carral.1998. Bacteremia, endocarditis and meningitis caused by Pseudomonas aeruginosa. Rev. Clin Esp. 198(Suppl. 2):2529. (In Spanish.)
15. Clarke, L. L.,, B. R. Grubb,, J. R. Yankaskas,, C. U. Cotton,, A. McKenzie,, and R. C. Boucher. 1994. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr (—/—) mice. Proc. Natl. Acad. Sci. USA 91:479483.
16. Coburn, J.,, and D. M. Gill. 1991. ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect. Immun. 59: 42594262.
17. Cole, N.,, S. Bao,, M. Willcox,, and A. J. Husband. 1999. Expression of interleukin-6 in the cornea in response to infection with different strains of Pseudomonas aeruginosa. Infect. Immun. 67: 24972502.
18. Cole, N.,, S. Bao,, M. Willcox,, and A. J. Husband. 1999. TNF-alpha production in the cornea in response to Pseudomonas aeruginosa challenge. Immunol. Cell Biol 77:164166.
19. Corey, M.,, F. J. McLaughlin,, M. Williams,, and H. Levison. 1988. A comparison of survival, growth, and pulmonary function in patients with cystic fibrosis in Boston and Toronto. J. Clin. Epidemiol 41:583591.
20. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 13181322.
21. Cryz, S. J., Jr.,, E. Ftirer,, and R. Germanier. 1983. Simple model for the study of Pseudomonas aeruginosa infections in leukopenic mice. Infect. Immun. 39:10671071.
22. Davidson, D. J.,, J. R. Dorin,, G. McLachlan,, V. Ranaldi,, D. Lamb,, C. Doherty,, J. Govan,, and D. J. Porteous. 1995. Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat. Genet. 9:351357.
23. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-tocell signals in the development of a bacterial biofilm. Science 280:295298.
24. De Groote, M. A.,, and F. C. Fang. 1995. NOinhibitions: antimicrobial properties of nitric oxide. Clin. Infect. Dis. 21(Suppl. 2):S162S165.
25. Deretic, V., 1996. Molecular biology ofmucoidy in Pseudomonas aeruginosa, p. 223244. In J. A. Dodge,, D. J. H. Brock,, and J. H. Widdicombe (ed.), Cystic Fibrosis—Current Topics, vol. 3. John Wiley & Sons Ltd., Chichester, United Kingdom.
26. Deretic, V.,, M. J. Schurr,, J. C. Boucher,, and D. W. Martin. 1994. Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J. Bacteriol. 176: 27732780.
27. Di Mango, E.,, A. J. Ratner,, R. Bryan,, S. Tabibi,, and A. Prince. 1998. Activation of N F-KB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J. Clin. Investig. 101:25982605.
28. Dosanjh, A.,, W. Lencer,, D. Brown,, D. A. Ausiello,, and J. L. Stow. 1994. Heterologous expression ofdelta F508 CFTR results in decreased sialylation of membrane glycoconjugates. Am. J. Physiol. 266:C360C366.
29. Er, H.,, Y. Turkoz,, I. H. Ozerol,, and E. Uzmez. 1998. Effect of nitric oxide synthase inhibition in experimental Pseudomonas keratitis in rabbits. Eur. J. Ophthalmol. 8:137141.
30. Finck-Barbancon, V.,, J. Goranson,, L. Zhu,, T. Sawa,, J. P. Wiener-Kronish,, S. M. Fleiszig,, C. Wu,, L. Mende-Mueller,, and D. W. Frank. 1997. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 25:547557.
31. FitzSimmons, S. C. 1993. The changing epidemiology of cystic fibrosis. J. Pediatr. 122:19.
32. Frank, D. W. 1997. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol. Microbiol. 26:621629.
33. Frank, U.,, F. D. Daschner,, G. Schulgen,, and J. Mills. 1997. Incidence and epidemiology of nosocomial infections in patients infected with human immunodeficiency virus. Clin. Infect. Dis. 25:318320.
34. Frithz-Lindsten, E.,, Y. Du,, R. Rosqvist,, and A. Forsberg. 1997Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol. Microbiol. 25:11251139.
35. Fu, H.,, J. Coburn,, and R. J. Collier. 1993. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA 90:23202324.
36. Gabriel, S. E.,, K. N. Brigman,, B. H. Roller,, R. C. Boucher,, and M. J. Stutts. 1994. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266: 107109.
37. Gerke, J. R.,, and M. V. Magliocco. 1981. Experimental Pseudomonas aeruginosa infection of the mouse cornea. Infect. Immun. 3:209216.
38. Gilljam, H.,, A. Ellin,, and B. Strandvik. 1997. Increased bronchial chloride concentrations in cystic fibrosis. Scand. J. Clin. Lab. Investig. 49: 25882595.
39. Goldman, M. J.,, G. M. Anderson,, E. D. Stolzenberg,, U. P. Kari,, M. ZaslofF,, and J. M. Wilson. 1997. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553560.
40. Gosselin, D.,, M. M. Stevenson,, E. A. Cowley,, U. Griesenbach,, D. H. Eidelman,, M. Boule,, M. F. Tarn,, G. Kent,, E. Skamene,, L. C. Tsui,, and D. Radzioch. 1998. Impaired ability of Cftr knockout mice to control lung infection with Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 157:12531262.
41. Govan, J. R. W.,, and V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539574.
42. Grasemann, H.,, E. Michler,, M. Wallot,, and F. Ratjen. 1997. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr. Pulmonol. 24:173177.
43. Guo, F. H.,, H. R. De Raeve,, T. W. Rice,, D. J. Stuehr,, F. B. Thunnissen,, and S. C. Erzurum. 1995. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc. Natl. Acad. Sci. USA 92:78097813.
44. Haley, R.W.,, and R. H. Shachtman. 1980. The emergence of infection surveillance and control programs in U S hospitals: an assessment, 1976. Am. J. Epidemiol. 111:574591.
45. Hall, R. A.,, L. S. Ostedgaard,, R. T. Premont,, J. T. Blitzer,, N. Rahman,, M. J. Welsh,, and R. J. Lefkowitz. 1998. A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na + /H + exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95: 84968501.
46. Hatano, K.,, J. B. Goldberg,, and G. B. Pier. 1995. Biologic activities of antibodies to the neutral-polysaccharide component o f the Pseudomonas aeruginosa lipopolysaccharide are blocked by O side chains and mucoid exopolysaccharide (alginate). Infect. Immun. 63:2126.
47. Hauer, T.,, M. Lacour,, P. Gastmeier,, G. Schulgen,, M. Schumacher,, H. Ruden,, and F. Daschner. 1996. Nosocomial infections intensive care units. A nation-wide prevalence study. Anaesthesist 45:11841191. (In German.)
48. Hauser, A. R.,, S. Fleiszig,, P. J. Kang,, K. Mostov,, and J. N. Engel. 1998. Defects in type III secretion correlate with internalization o f Pseudomonas aeruginosa by epithelial cells. Infect. Immun. 66:14131420.
49. Hauser, A. R.,, P. J. Kang,, and J. N. Engel. 1998. Pep A, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol. Microbiol. 27:807818.
50. Hazlett, L. D.,, D. D. Rosen,, and R. S. Berk. 1977>. Pseudomonas eye infections in cyclophosphamide-treated mice. Investig. Ophthalmol. Vis. Sci. 16:649.
51. Heeckeren, A.,, R. Walenga,, M. W. Konstan,, T. Bonfield,, P. B. Davis,, and T. Ferkol. 1997. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Investig. 100: 28102815.
52. Hobden, J. A.,, S. Masinick-McClellan,, R. P. Barrett,, K. S. Bark,, and L. D. Hazlett. 1999. Pseudomonas aeruginosa keratitis in knockout mice deficient in intercellular adhesion molecule 1. Infect. Immun. 67:972975.
53. Imundo, L.,, J. Barasch,, A. Prince,, and Q. Al-Awqati. 1995. Cystic fibrosis epithelial cellshave a receptor for pathogenic bacteria on their apical surface. Proc. Natl.Acad. Sci. USA 92:30193023. (Erratum, 92:11322.)
54. Jackson, G.G., 1994. Infective endocarditis caused by Pseudomonas aeruginosa, p. 129158. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.V
55. Jensen, E. T.,, A. Kharazmi,, K. Lam,, J. W. Costerton,, and N. Hoiby. 1990. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect. Immun. 58: 23832385.
56. Johansen, H. K.,, and N. Hoiby. 1992. Seasonal onset of initial colonisation and chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis in Denmark. Thorax 47:109111.
57. Kelley, T. J.,, and M. L. Drumm. 1998. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J. Clin. Investig. 102:12001207.
58. Kent, G.,, R. Iles,, C. E. Bear,, L. J. Huan,, U. Griesenbach,, C. McKerlie,, H. Frndova,, C. Ackerley,, D. Gosselin,, D. Radzioch,, H. O'Brodovich,, L. C. Tsui,, M. Buchwald,, and A. K. Tanswell. 1997. Lung disease in mice with cystic fibrosis. J. Clin. Investig. 100:30603069.
59. Kernacki, K. A.,, D. J. Goebel,, M. S. Poosch,, and L. D. Hazlett. 1998. Early cytokine and chemokine gene expression during Pseudomonas aeruginosa corneal infection in mice. Infect. Immun. 66:376379.
60. Khan, T. Z.,, J. S. Wagener,, T. Bost,, J. Martinez,, F. J. Accurso,, and D. W. Riches. 1995. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151: 10751082.
61. Kielhomer, M.,, R. L. Atmar,, R. J. Hamill,, and D. M. Musher. 1992. Life-threatening Pseudomonas aeruginosa infections in patients with human immunodeficiency virus infection. Clin. Infect. Dis. 14:403411.
62. Knowles, M.R.,, J. M. Robinson,, R. E. Wood,, C. A. Pue,, W. M. Mentz,, G. C. Wager,, J. T. Gatzy,, and R. C. Boucher. 1997. Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J. Clin. Investig. 100: 25882595. (Erratum, 101:285, 1998.)
63. Kobzik, L.,, D. S. Bredt,, C. J. Lowenstein,, J. Drazen,, B. Gaston,, D. Sugarbaker,, and J. S. Stamler. 1993. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am. J. Respir. Cell. Mol. Biol. 9:371377.
64. Koch, C.,, and N. Hoiby. 1993. Pathogenesis of cystic fibrosis. Lancet 341:10651069.
65. Konstan, M. W.,, P. J. Byard,, C. L. Hoppel,, and P. B. Davis. 1995. Effect of high-dose ibuprofen in patients with cystic fibrosis. N. Engl. J . Med. 332:848854.
66. Krivan, H. C.,, D. D. Roberts,, and V. Ginsburg. 1988. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta l-4Gal found in some glycolipids. Proc. Natl. Acad. Sci. USA 85:61576161.
67. Kunin, C.M., 1994. Infections of the urinary tract dueto Pseudomonas aeruginosa, p. 237256. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
68. Kwon, B.,, and L. D. Hazlett. 1997. Association of CD4 + T cell-dependent keratitis with genetic susceptibility to Pseudomonas aeruginosa ocular infection. J. Immunol. 159:62836290.
69. Lam, J.,, R. Chan,, K. Lam,, and J. W. Costerton. 1980. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28:546556.
70. Lavery, L.A.,, S. C. Walker,, L. B. Harkless,, and K. Felder-Johnson. 1995. Infected puncturewounds in diabetic and nondiabetic adults. Diabetes Care 18:15881591. (Erratum, 19:549, 1996.)
71. Lukacs, G. L.,, X. B. Chang,, N. Kartner,, O. D. Rotstein,, J. R. Riordan,, and S. Grinstein. 1992. The cystic fibrosis transmembrane regulator is present and functional in endosomes. Role as a determinant of endosomal pH. J. Biol. Chem. 267: 1456814572.
72. Mahajan-Miklos, S.,, M. W. Tan,, L. G. Rahme,, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa- Caenorhabditis elegans pathogenesis model. Cell 96:4756.
73. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686688.
74. Mahenthiralingam, E.,, M. E. Campbell,, and D. P. Speert. 1994. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun. 62:596605.
75. Martin, D. W.,, M. J. Schurr,, M. H. Mudd,, J. R. W. Govan,, B. W. Holloway,, and V. Deretic. 1993. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 90: 83778381.
76. Masters, S.C.,, K. J. Pederson,, L. Zhang,, J. T. Barbieri,, and H. Fu. 1999. Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38:52165221.
77. McAvoy, M. J.,, V. Newton,, A. Paull,, J. Morgan,, P. Gacesa,, and N. J. Russell. 1989. Isolation of mucoid strains of Pseudomonas aeruginosa from non-cystic-fibrosis patients and characterisation of the structure of their secreted alginate. J. Med. Microbiol. 28:183189.
78. McGuffie, E. M.,, D. W. Frank,, T. S. Vincent,, and J. C. Olson. 1998. Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infect. Immun. 66:26072613.
79. Meng, Q. H.,, D. R. Springall,, A. E. Bishop,, K. Morgan,, T. J. Evans,, S. Habib,, D. C. Gruenert,, K. M. Gyi,, M. E. Hodson,, M. H. Yacoub,, and J. M. Polak. 1998. Lack of inducible nitric oxide synthase in bronchial epithehum: a possible mechanism of susceptibility to infection in cystic fibrosis. J. Pathol. 184:323331.
80. Miskew, D. B.,, M. A. Lorenz,, R. L. Pearson,, and A. M. Pankovich. 1983. Pseudomonas aeruginosa bone and joint infection in drug abusers. J. Bone Joint Surg. Am. 65:829832.
81. Morissette, C.,, E. Skamene,, and F. Gervais. 1995. Endobronchial inflammation following Pseudomonas aeruginosa infection in resistant and susceptible strains of mice. Infect. Immun. 63: 17181724.
82. Morrison, V. A. 1998. The infectious complications of chronic lymphocytic leukemia. Semin. Oncol. 25:98106.
83. Moss, R. B.,, R. C. Bocian,, Y. P. Hsu,, Y. J. Don g,, M. Kemna,, T. Wei,, and P. Gardner. 1996. Reduced IL-10 secretion by CD4+ T lymphocytes expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR). Clin. Exp. Immunol. 106:374388.
84. Nichols, W. W.,, S. M. Dorrington,, M. P. Slack,, and H. L. Walmsley. 1988. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob. Agents Chemother. 32:518523.
85. Olson, J. C.,, E. M. McGuffie,, and D. W. Frank. 1997. Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect. Immun. 65:248256.
86. Orenstein, D. A. 1989. Cystic Fibrosis: A Guide for Patient and Family. Raven Press, New York, N.Y.
87. Pahl, H. L.,, and P. A. Baeuerle. 1995. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBOJ. 14:25802588.
88. Parsek, M. R.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96: 43604365.
89. Pedersen, S.S. 1992. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS 100(Suppl. 28): 179
90. Pedersen, S.S.,, N. Hoiby,, F. Espersen,, and C. Koch. 1992. Role of alginate ininfection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47:613.
91. Pederson, K.J.,, A. J. Vallis,, K. Aktories,, D . W. Frank,, and J. T. Barbieri. 1999. The amino-terminaldomain of Pseudomonas aeruginosa ExoS disrupts actin filaments viasmall-molecularweight GTP-binding proteins. Mol. Microbiol. 32: 393401.
92. Pennington, J.E., 1994. Pseudomonasaeruginosa pneumonia and other respiratory tract infections, p. 159182. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Infections and Treatment. Marcel Dekker, New York, N.Y.
93. Pier, B. B.,, G. Meluleni,, and E. Neuger. 1992. A murine model of chronic mucosal colonization by Pseudomonas aeruginosa. Infect. Immun. 60:47684776.
94. Pier, G. B. 1999. Evolution of the F508 CFTR mutation: response. Trends Microbiol. 7:5658.
95. Pier, G. B.,, M. Grout,, T. Zaidi,, G. Meluleni,, S. S. Mueschenborn,, G. Banting,, R. Ratcliff,, M. J. Evans,, and W. H. Colledge. 1998. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393:7982.
96. Pier, G. B.,, M. Grout,, T. S. Zaidi,, J. C. Olsen,, L. G. Johnson,, J. R. Yankaskas,, and J. B. Goldberg. 1996. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271:6467.
97. Pruitt, B.A., , Jr.,, A. T. McManus,, S. H. Kim, , and C. W. Goodwin. 1998. Burn wound infections: current status. World J. Surg. 22:135145.
98. Rahme, L.G.,, E. J. Stevens,, S. F. Wolfort,, J. Shao,, R. G. Tompkins,, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 18991902.
99. Rahme, L. G.,, M. W. Tan,, L. Le,, S. M. Wong,, R. G. Tompkins,, S. B. Calderwood,, and F. M. Ausubel. 1997. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 94: 1324513250.
100. Rehm, S. R.,, G. N. Gross,, and A. K. Pierce. 1980. Early bacterial clearance from murine lungs. J. Clin. Investig. 66:194199.
101. Rello, J.,, and M. Ricart. 1998. Respiratory tractinfections by Pseudomonas aeruginosa in patients under intubation. Rev. Clin. Esp. 198(Suppl.2):1720. (In Spanish.)
102. Richards, M. J.,, J. R. Edwards,, D. H. Culver,, and R. P. Gaynes. 1999. Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics 103:e39.
103. Rodriguez Arrondo, F.,, M. A. von Wichmann,, J. Arrizabalaga,, J. A. Iribarren,, G. Garmendia,, and P. Idigoras. 1998. Pulmonary cavitation lesions in patients infected with the human immunodeficiency virus: an analysis of a series of 78 cases. Med. Clin. (Bare). 111:725730. (In Spanish.)
104. Saiman, L.,, and A. Prince. 1993. Pseudomonasaeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosisepithelial cells. J. Clin. Investig. 92:18751880.
105. Sawa, T.,, T. L. Yahr,, M. Ohara,, K. Kurahashi,, M. A. Gropper,, J. P. Wiener-Rronish,, and D. W. Frank. 1999. Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat. Med. 5:392398.
106. Seksek, O.,, J. Biwersi,, and A. S. Verkman. 1996. Evidence against defective trans-Golgi acidification in cystic fibrosis. J. Biol. Chem. 271: 1554215548.
107. Siegman-Igra, Y.,, R. Ravona,, H. Primerman,, and M. Giladi. 1998. Pseudomonas aeruginosa bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int. J. Inject. Dis. 2:211215.
108. Smith, J.J.,, S. M. Travis,, E. P. Greenberg,, and M. J. Welsh. 1996. Cystic fibrosis airwayepithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229236. (Erratum, 87:following 355.)
109. Smith, R. P., 1994. Skin and soft tissue infections due to Pseudomonas aeruginosa, p. 326370. In A. L. Baltch, and R. P. Smith (ed.), Pseudomonas aeruginosa. Injections and Treatment. Marcel Dekker, New York, N.Y.
110. Snouwaert, J. N.,, K. K. Brigman,, A. M. Latour,, N. N. Malouf,, R. C. Boucher,, O. Smithies,, and B. H. Roller. 1992. An animal model for cystic fibrosis made by gene targeting. Science 257:10831088.
111. Sordelli, D. O.,, V. E. Garcia,, C. M. Cerequetti,, P. A. Fontan,, and A. M. Hooke. 1992. Intranasal immunization with temperature sensitive mutants protects granulocytopenic mice from lethal pulmonary challenge with Pseudomonas aeruginosa. Curr. Microbiol. 24:914.
112. Southern, P. M.,, A. R. Pierce,, and J. P. Sanford. 1968. Exposure chamber for 66 mice suitable for use with Henderson aerosol apparatus. Appl. Microbiol. 16:540542.
113. Spencer, R. C. 1996. Predominant pathogens found in the European Prevalence of Infection in Intensive Care Study. Eur. J. Clin. Microbiol. Inject. Dis. 15:281285.
114. Starke, J. R.,, M. S. Edwards,, C. Langston,, and C. J. Baker. 1987. A mouse model of chronic pulmonary infection with Pseudomonas aeruginosa and Pseudomonas cepacia. Pediatr. Res. 22:698702.
115. Stieritz, D. D.,, and I. A. Holander. 1975. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J. Inject. Dis. 131: 688691.
116. Stutts, M. J.,, C. M. Canessa,, J. C. Olsen,, M. Hamrick,, J. A. Cohn,, B. C. Rossier,, and R. C. Boucher. 1995. CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847850.
117. Tan, M. W.,, S. Mahajan-Miklos,, and F. M. Ausubel. 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96:71520.
118. Tang, H.,, M. Rays,, and A. Prince. 1995. Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Inject. Immun. 63:12781285.
119. Tierney, M. R.,, and A. S. Baker. 1995. Infections of the head and neck in diabetes mellitus. Inject. Dis. Clin. N. Am. 9:195216.
120. Toews, G. B.,, G. N. Gross,, and A. R. Pierce. 1979. The relationship of inoculum size to lung bacterial clearance and phagocytic cell response in mice. Am. Rev. Resp. Dis. 120: 559566.
121. VidalMarsal, F.,, and J. Mensa Pueyo. 1998. Pseudomonas aeruginosa as a pathogen in patientswith human immunodeficiency virus infection. Rev. Clin. Esp. 198(Suppl. 2):3743. (In Spanish.)
122. Wang, F. D.,, Y. Y. Chen,, and C. Y. Liu. 1998. Prevalence of nosocomial respiratory tract infections in the surgical intensive care units of a medical center. Chung Hua I Hsueh Tsa Chih (Taipei). 61:589595.
123. Wang, H. G.,, N. Pathan,, I. M. Ethell,, S. Rrajewski,, Y. Yamaguchi,, F. Shibasaki,, F. McReon,, T. Bobo,, T. F. Franke,, and J. C. Reed. 1999. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339343.
124. Wang, J.,, A. Mushegian,, S. Lory,, and S. Jin. 1996. Large-scale isolation o f candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA 93: 1043410439.
125. Welsh, M.J.,, L.-C. Tsui,, T. F. Boat,, and A. L. Beaudet,. 1995. Cystic fibrosis, p. 37993876. In C. R. Scriver,, A. L. Beaudet,, W. S. Sly,, and D. Valle (ed.), The Metabolic and Molecular Basis of Inherited Disease, vol. III. McGraw-Hill, Inc., New York, N.Y.
126. Wilson, R.,, and R. B. Dowling. 1998. Lung infections. 3. Pseudomonas aeruginosa and other related species. Thorax 53:213219.
127. Witt, D. J.,, D. E. Craven,, and W. R. McCabe. 1987. Bacterial infections in adult patients with the acquired immune deficiency syndrome (AIDS) and AIDS-related complex. Am. J. Med. 82:900906.
128. Woods, D.E.,, and M. L. Vasil,. 1994. Pathogenesis of Pseudomonas aeruginosa infections, p. 2150. In A.L. Baltch, and R.P. Smith (ed.), Pseudomonas aeruginosa.Infections and Treatment. Marcel Dekker, New York, N.Y.
129. Wretlind, B.,, and T. Kronevi. 1977. Experimental infections with protease-deficient mutants of Pseudomonas aeruginosa in mice. J. Med. Microbiol. 11:145154.
130. Yahr, T. L. , J. T. Barbieri,, and D. W. Frank. 1996. Genetic relationship between the 53-and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J. Bacteriol. 178:14121419.
131. Yahr, T. L.,, A. J. Vallis,, M. K. Hancock,, J. T. Barbieri,, and D. W. Frank. 1998. Exo Y, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. USA 95:1389913904.
132. Yu, H. J., C. Boucher,, and V. Deretic. 1998. Molecular analysis of Pseudomonas aeruginosa virulence. Methods Microbiol. 27:383393.
133. Yu, H.,, M. Hanes,, C. E. Chrisp,, J. C. Boucher,, and V. Deretic. 1998. Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of respiratory challenge. Infect. Immun. 66:280288.
133a. Yu, H.,, S. Z. Nasr,, and V. Deretic. 2000. Innate lung defenses and compromised Pseudomonas aeruginosa clearance in the malnourished mouse model of respiratory infections in cystic fibrosis. Infect. Immun. 68:21422147.
134. Zaidi, T. S.,, J. Lyczak,, M. Preston,, and G. B. Pier. 1999. Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. Infect. Immun. 67: 14811492.
135. Zhou, L.,, C. R. Dey,, S. E. Wert,, M. D. DuVall,, R. A. Frizzell,, and J. A. Whitsett. 1994. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science 266:17051708.
136. Zloty, P.,, and M. W. Belin,. 1994. Ocular infections causedby Pseudomonas aeruginosa, p. 371400. In A.L. Baltch, and R.P. Smith (ed.), Pseudomonas aeruginosa.Infections and Treatment. Marcel Dekker, New York, N.Y.

Tables

Generic image for table
TABLE 1

Pseudomonas aeruginosa infections

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Generic image for table
TABLE 2

Murine models in use for analysis of virulence

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15
Generic image for table
TABLE 3

Decreased clearance of mucoid from the murine lung

Citation: Deretic V. 2000. Infections, p 305-326. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error