1887

Chapter 20 : Abscesses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Abscesses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap20-2.gif

Abstract:

This chapter examines (i) the predisposing conditions that lead to abscess formation, (ii) the bacteria that predominate in various abscesses and their contribution to abscess formation, and (iii) the host response to the invading organisms and why that response is usually ineffective in eradicating the infection. The formation of intra-abdominal abscesses is used throughout the chapter as a model. Due to the prevalence of intra-abdominal abscesses, much research has been conducted to examine the molecular interactions between the invading microorganisms and the host that lead to abscess formation. The chapter discusses other examples of abscesses such as renal, brain, lung and skin. Intra-abdominal infection is caused by the leakage of gastrointestinal contents laden with bacteria. Following bacterial spillage, the majority of organisms are removed by the diaphragmatic lymphatics. The best-studied system for understanding the molecular interactions between host and microorganism that lead to abscess formation is the induction of intra-abdominal abscesses by the capsular polysaccharide complex (CPC) of . Studies in which the purified capsular polysaccharide from induced abscesses in the absence of viable organisms demonstrated the importance of this virulence factor in abscess formation. The authors propose that abscessogenic bacteria produce the structural components that induce the formation of abscesses because these structures serve an important function in the organisms' normal niche rather than serving solely as a mechanism to enhance their persistence as pathogens.

Citation: Comstock L, Tzianabos A. 2000. Abscesses, p 397-408. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch20

Key Concept Ranking

Tumor Necrosis Factor alpha
0.4780768
Acute Respiratory Distress Syndrome
0.46811685
Upper Respiratory Tract Infections
0.43934128
0.4780768
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Proposed model for the initiation of intra-abdominal-abscess formation by CPC. The CPC binds to the peritoneal mesothelium, allowing bacterial attachment. The CPC also stimulates various immune cells to secrete IL-8 and tumor necrosis factor alpha. These factors have been shown to upregulate the expression of ICAM-1 on the mesothehal cells and recruit and activate PMNs. The upregulation of ICAM-1 allows for enhanced binding of PMNs to the mesothelium. This localization of bacteria and immune cells is necessary for the development of an abscess. PMΦ, peritoneal macrophage.

Citation: Comstock L, Tzianabos A. 2000. Abscesses, p 397-408. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818104.chap20
1. Ahrenholz, D. H.,, and R. L. Simmons. 1980. Fibrin in peritonitis. I. Beneficial and adverse effects of fibrin in experimental E. coli peritonitis. Surgery 88: 41 47.
2. Bornside, G. H.,, G. W. Cherry,, and M. B. Myers. 1973. Intracolonic oxygen tension and in vivo bactericidal effect of hyperbaric oxygen on rat colonic flora. Aerospace Med. 44: 1282 1286.
3. Botta, G. A.,, C. Eftimiadi,, A. Costa,, M. Tonetti,, T. J. M. van Steenbergen,, and J. de Graaff. 1985. Influence of volatile fatty acids on human granulocyte chemotaxis. FEMS Microbiol. Lett. 27: 69 72.
4. Bryant, R. E., 1982. Effect of the suppurative environment on antibiotic activity, p. 313. In R. K. Root, and M. A. Sande (ed.), Contemporary Issues in Infectious Diseases, vol. 1. Churchill Livingstone, New York, N.Y.
5. Chalkiadakis, G.,, A. Kostakis,, P. E. Karayannacos,, H. Giamarellou,, I. Dontas,, I. Sakellariou,, and G. D. Skalkeas. 1983. The effect of heparin upon fibrinopurulent peritonitis in rats. Surg. Gynecol. Obstet. 157: 257 260.
6. Engler, H. D.,, and F. A. Kapral. 1992. The production of a bactericidal monoglyceride in staphylococcal abscesses. J. Med. Microbiol. 37: 238 244.
7. Foster, T. J.,, and M. Hook. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6: 484 488.
8. Gibson, F. C., III,, A. B. Onderdonk,, D. L. Kasper,, and A. O. Tzianabos. 1998. Cellular mechanism of intra-abdominal abscess formation by Bacteroides fragilis. J. Immunol. 160: 5000 5006.
9. Gibson, F. C., III,, A. O. Tzianabos,, and A. B. Onderdonk. 1996. The capsular polysaccharide complex of Bacteroides fragilis induces cytokine production from human and murine phagocytic cells. Infect. Immun. 64: 1065 1069.
10. Gregory, E. M. 1985. Characterization of the 02 -induced manganese-containing superoxide dismutase from Bacteroides fragilis. Arch. Biochem. Biophys. 238: 83 89.
11. Grigoryev, E. G.,, A. S. Kogan,, S. A. Kolmakov,, E. V. Nechaev,, S. A. Usov,, and T. V. Fadeeva. 1998. Immobihzed proteinases in the treatment of diffuse purulent peritonitis. Int. Surg. 83: 245 249.
12. Gupta, S.,, and P. K. Jain. 1985. Low-dose heparin in experimental peritonitis. Eur. Surg. Res. 17: 167 172.
13. Holdeman, L. V.,, I. J. Good,, and W. E. Moore. 1976. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31: 359 375.
14. Kapral, F. A.,, S. Smith,, and D. Lai. 1992. The esterification of fatty acids by Staphylococcus aureus fatty acid modifying enzyme (FAME) and its inhibition by glycerides. J. Med. Microbiol. 37: 235 237.
15. Levison, M. A. 1992. Percutaneous versus open operative drainage of intra-abdominal abscesses. Infect. Dis. Clin. N. Am. 6: 525 544.
16. Lowe, A. M.,, D. T. Beattie,, and R. L. Deresiewicz. 1998. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol 27: 967 976.
17. Meislin, H.W.,, S. A. Lerner,, M. H. Graves,, M. D. McGehee,, F. E. Kocka,, J. A. Morello,, and P. Rosen. 1977. Cutaneous abscesses: anaerobic and aerobic bacteriology and outpatient management. Ann. Intern. Med. 87: 145 149.
18. Nikolich, M. P.,, G. Hong,, N. B. Shoemaker,, and A. A. Salyers. 1994. Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock. Appl Environ. Microbiol. 60: 3255 3260.
19. Onderdonk, A. B.,, D. L. Kasper,, R. L. Cisneros,, and J. G. Bartlett. 1977. The capsular polysaccharide of Bacteroides fragilis as a virulence factor: comparison of the pathogenic potential of encapsulated and unencapsulated strains. J. Infect. Dis. 136: 82 89.
20. Onderdonk, A. B.,, R. B. Markham,, D. F. Zaleznik,, R. L. Cisneros,, and D. L. Kasper. 1982. Evidence for T cell-dependent immunity to Bacteroides fragilis in an intraabdominal abscess model. J. Clin. Investig. 69: 9 16.
21. Pantosti, A.,, A. O. Tzianabos,, B. G. Reinap,, A. B. Onderdonk,, and D. L. Kasper. 1993. Bacteroidesfragilis strains express multiple capsular polysaccharides. J. Clin. Microbiol 31: 1850 1855.
22. Pirlo, P.,, A. Arzese,, A. Cavallero,, and G. A. Botta,. 1988. I nhibitory effect of shortchain fatty acids produced by anaerobic bacteria on the phagocytosis of Staphylococcusaureus by human granulocytes, p. 223 234. In J. M. Hardie, and S. P. Borriello (ed.), Anaerobes Today. John Wiley & Sons, Inc., New York, N.Y.
23. Rocha, E. R.,, T. Selby,, J. P. Coleman,, and C. J. Smith. 1996. The oxidative stress response in an anaerobe, Bacteroides fragilis. J. Bacteriol 178: 6895 6903.
24. Rocha, E. R.,, and C.J. Smith. 1995. Biochemical and genetic analysis of a catalase from the anaerobic bacterium Bacteroides fragilis. J. Bacteriol 177: 3111 3119.
25. Rotstein, O. D.,, and J. Kao. 1988. Prevention of intra-abdominal abscesses by fibrinolysis using recombinant tissue plasminogen activator. J. Infect. Dis. 158: 766 772.
26. Rotstein, O. D.,, T. L. Pruett,, and V. D. Fiegel. 1985. Succinic acid, a metabolic byproduct of Bacteroides species, inhibits polymorphonuclear leukocyte functions. Infect. Immun. 48: 402 408.
27. Rotstein, O. D.,, T. Vittorini,, J. Kao,, M. I. McBurney,, P. E. Nasmith,, and S. Grinstein. 1989. A soluble Bacteroides by-product impairs phagocytic killing of Escherichia coli by neutrophils. Infect. Immun. 57: 745 753.
28. Salyers, A.A.,, and N. B. Shoemaker. 1996. Resistance genetransfer in anaerobes: new insights, new problems. Clin. Infect.Dis. 23( Suppl. 1): S36 S43.
29. Sawyer, R. G.,, M. D. Spengler,, R. B. Adams,, and T. L. Pruett. 1991. The peritoneal environment during infection. The effect of monomicrobial and polymicrobial bacteria on p 02 and pH. Ann. Surg. 213: 253 260.
30. Seydoux, C.,, and P. Francioli. 1992. Bacterial brain abscesses: factors influencing mortality and sequelae. Clin. Infect. Dis. 15: 394 401.
31. Shapiro, M. E.,, D. L. Kasper,, D. F. Zaleznik,, S. Spriggs,, A. B. Onderdonk,, and R. W. Finberg. 1986. Cellular control of abscess formation: role of T cells in the regulation of abscesses formed in response to Bacteroides fragilis. J. Immunol. 137: 341 346.
32. Shoemaker, N. B.,, G. R. Wang,, and A. A. Salyers. 1992. Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen. Appl. Environ. Microbiol 58: 1313 1320.
33. Shryock, T. R.,, and F. A. Kapral. 1992. The production of bactericidal fatty acids from glycerides in staphylococcal abscesses. J. Med. Microbiol 36: 288 292.
34. Sun, Y.,, C. H. Williams,, R. M. Hardaway,, and J. Shen. 1997. The effect of heparinization on intra-abdominal infection and acute pulmonary failure. Int. Surg. 82: 367 370.
35. Tzianabos, A. O.,, F. C. Gibson III,, R. L. Cisneros,, and D. L. Kasper. 1998. Protection against experimental intraabdominal sepsis by two polysaccharide immunomodulators. J. Infect. Dis. 178: 200 206.
36. Tzianabos, A. O.,, D. L. Kasper,, R. L. Cisneros,, R. S. Smith,, and A. B. Onderdonk. 1995. Polysaccharide-mediated protection against abscess formation in experimental intraabdominal sepsis. J. Clin. Investig. 96: 2727 2731.
37. Tzianabos, A. O.,, A. B. Onderdonk,, B. Rosner,, R. L. Cisneros,, and D. L. Kasper. 1993. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262: 416 419.
38. Tzianabos, A. O.,, A. B. Onderdonk,, D. F. Zaleznik,, R. S. Smith,, and D. L. Kasper. 1994. Structural characteristics of polysaccharides that induce protection against intra-abdominal abscess formation. Infect. Immun. 62: 4881 4886.
39. Tzianabos, A.O.,, A. Pantosti,, H. Baumann,, J. R. Brisson,, H. J. Jennings,, and D. L. Kasper. 1992. The capsular polysaccharide of Bacteroides fragilis comprises two ionically linked polysaccharides. J. Biol. Chem. 267: 18230 8235.
40. vanGoor, H.,, J. S. deGraaf,, J. Grond,, W. J. Sluiter,, J. van der Meer,, V. J. Bom,, and R. P. Bleichrodt. 1994. Fibrinolytic activity in the abdominal cavity of rats with faecal peritonitis. Br.J. Surg. 81: 1046 1049.
41. van Goor, H.,, J. S. de Graaf,, K. Kooi,, W. J . Sluiter,, V. J. Bom,, J. vander Meer,, and R. P. Bleichrodt. 1994. Effect o f recombinant tissue plasminogen activator on intra-abdominal abscess formation in rats with generalized peritonitis. J. Am. Coll. Surg. 179: 407 411.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error