1887

Chapter 5 : Mathematical Models of Colonization and Persistence in Bacterial Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mathematical Models of Colonization and Persistence in Bacterial Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap05-2.gif

Abstract:

This chapter focuses on mathematical models of colonization and persistent bacterial infections. It reviews the modeling method and the state of the field and then focuses on three key areas where modeling has, and will continue to have, an impact: the ecology of the indigenous microflora and its plasmids, colonization, and host-pathogen interactions with . Mathematical models of host-pathogen dynamics are formulated on the basis of specific assumptions regarding the system's components and their interactions. Models of persistent viral infections, namely, human immunodeficiency virus (HlV)-host models, also have a successful recent history. induces chronic gastric inflammation that results in peptic ulcer disease or gastric cancer in a small set of infected persons. This high ratio of mucus-living to adherent bacteria, although characteristic, is not necessary for colonization, as low concentrations of may be present in the mucus during persistence. Incorporation of the dynamic host response into a model of colonization is critical if one understands the initial features of the interactions between microbe and host, as well as the phenomena that permit persistence to develop. If we consider long-term associations between bacteria and humans a question of bacterial ecology, such as persistent infections or the homeostasis of an indigenous microflora, it becomes more logical to consider mathematical approaches to understanding these associations, as modeling has long been used by ecologists.

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5

Key Concept Ranking

Humoral Immune Response
0.44345853
Immune Systems
0.4243864
Microbial Pathogenesis
0.41437945
Infectious Diseases
0.41296482
Urinary Tract Infections
0.41092277
0.44345853
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Classical complete growth curve for bacteria. (B) Model of exponential growth phase only. (C) Model of exponential and stationary phases of growth.

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Passage of invaders through mouse cecum. The symbols represent experimental data: the circles are the bacteria suspended in the lumen, and the triangles are the adherent population. The curves represent the best-fit estimates generated by the mathematical model for each o f the two experimental populations. (Reprinted from [ ] with permission from publisher.)

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(Top) Prediction by the mathematical model of the fate of an strain that invades the large intestine o f an animal that already harbors an adherent resident strain. (Bottom) Concentration of limiting nutrient in the system. (Reprinted from reference with permission.)

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Modeling of plasmid transfer in the human gut, based on data published by Anderson ( ). The symbols represent Anderson's data; the lines were calculated by the mathematical models based on parameters derived from computer-generated best-fit estimates for mice and from CF cultures of mouse intestinal floras. (Reprinted from reference with permission.)

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Theoretical model describing interactions of with the host, incorporating positive and negative feedback regulation. Effectors released by interact with the mucosa and induce inflammation. Inflammation leads to the release of nutrients that are taken up by , allowing replication and further release o f effectors. The bacteria sense inflammation indicators and down-regulate effector production, while the host also down-regulates the inflammatory response. The interactions within this system are governed by the four parameters τ, , β, and η, which are not presently measurable. Therefore, mathematical modeling can play the unique role of elaborating these host-pathogen interactions. (Adapted from reference .)

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Mathematical model describing the interaction of and host. Mucosal bacteria, (), grow proportionally to nutrient at rate and are cleared continuously by peristalsis at the rate µ. They also migrate to the adherent sites [at rate α(K – ())] and gain in numbers due to migration from the adherent sites (at rate δ). Adherent bacteria, (), follow a similar dynamic, with opposite migration. Nutrients, (), are produced proportionally to effector amounts (at rate β) and are taken up by the adherent and mucosal populations (at rates and , respectively). Effectors are produced by both mucosal and adherent bacteria [at rate τC/τ + N()] and degrade nonspecifically at rate η).

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Simulation o f colonization model showing persistence. The four populations shown are the mucosal bacteria, the adherent bacteria, and the effector and nutrient concentrations. Notice that within a year the populations enter a steady-state in which they will remain indefinitely unless there is some perturbation in the system.

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Model dynamics. (A) Initial transient dynamics and development of persistent colonization. The results are obtained by numerically solving the modified model system. (B) Transient colonization that results from a much larger host response (due to an increase in the host carrying capacity). Note how this larger host response causes a timely elimination o f the bacteria.

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Our hypothetical cytokine-mediated immune response network in infection. The progression of disease to either active or latent TB may depend on the balance of the TH1 and TH2 cytokines that are generated during the expression of disease.

Citation: Kirschner D, Freter R. 2000. Mathematical Models of Colonization and Persistence in Bacterial Infections, p 79-100. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818104.chap5
1. Agur, Z. 1989. Clinical trials of zidovudine in HIV infection. Lancet ii: 1400 1401.
2. Anderson, E. S. 1975. Viability of, and transfer of a plasmid from E. coli K12 in the human intestine. Nature 255: 502 504.
3. Anderson, R. M., 1982. Transmission dynamics and control of infectious disease agents, p. 149 176. In R. M. Anderson, and R. M. May (ed.), Population Biology of Infectious Diseases. Springer-Verlag, Berlin, Germany.
4. Anderson, R. M. L.,, and R. M. May. 1987. Transmission dynamics of HIV infection. Nature 326: 137 142.
5. Anderson, R. W. 1996. How adaptive antibodies facilitate the evolution of natural antibodies. Immun. Cell Biol. 74: 286 291.
6. Anderson, R. W.,, M. S. Ascher,, and H. W. Sheppard. 1998. Direct HIV cytopathicity cannot account for C D 4 decline in AIDS in the presence of homeostasis: a worst-case dynamical analysis. J. Acquir. Immune Defic. Syndr. Hum. Retroviral. 17: 245 252.
7. Antia, R.,, J. C. Koella,, and V. Perrott. 1996. Models of the within-host dynamics of persistent mycobacterial infections. Proc. R. Soc. Lond. 1: 57 263.
8. Antia, R.,, B. Levin,, and R. B. May. 1994. Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am. Nat. 144: 457 472.
9. Asachenkov, A.,, G. Marchuk,, R. Mohler,, and S. Zuev. 1994. Disease Dynamics. Birkhauser Boston, Cambridge, Mass.
10. Bailey, N. T. J. 1975. The Mathematical Theory of Infectious Diseases, 2nd ed. Hafner, New York, N.Y.
11. Blaser, M. J.,, and D. E. Kirschner. 1999. Dynamics of Helicobacter pylori colonization of the human stomach in relation to the host immune response. Proc. Natl. Acad. Sci. USA 96: 8359 8364.
12. Blaser, M. J.,, and J. Parsonnet. 1994. Parasitism by the “slow” bacterium H. pylori leads to altered gastric homeostasis and neoplasia. J. Clin. Investig. 94: 4 8.
13. Blower, S. M.,, A. R. McLean,, T. C. Porco,, P. M. Small,, P. C. Hopewell,, M. A. Sanchez,, and A. R. Moss. 1995. The intrinsic transmission dynamics of tuberculosis epidemics. Nat. Med. 1: 815 821.
14. Blower, S. M.,, P. M. Small,, and P. C. Hopewell. 1996. Control strategies for tuberculosis epidemics: new models for old problems. Science 273: 497 500.
15. Canetti, G. 1955. The Tubercle Bacillus in the Pulmonary Lesion in Man. Springer Publishing Co., New York, N.Y.
16. Castillo-Chavez, C.,, and Z. Feng. 1997. To treat or not to treat: the case of tuberculosis. J. Math. Biol. 35: 629 659.
17. Castillo-Chavez, C.,, and Z. Feng. 1998. Global stability of an age-structure model for TB and its applications to optimal vaccination strategies. Math. Biosci. 151: 135 154.
18. Comstock, G. W. 1982. Epidemiology of tuberculosis. Am. Rev. Respir. Dis. 125: 8 16.
19. Crabtree, J. E.,, J. D. Taylor,, and J. L. Wyatt. 1991. Mucosal IgA recognition of Helicobacter pylori 120 kDa protein, peptic ulceration, and gastric pathology. Lancet 338: 332 335.
20. Cussac, V.,, R. L. Ferrero,, and A. Labigne. 1992. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J. Bacteriol. 174: 2466 2473.
21. Dalton, D. K.,, S. Pitts-Meek,, S. Keshav,, I. S. Figari,, A. Bradley,, and T. A. Stewart. 1993. Multiple defects of immune cell function in mice with disrupted inteferon gamma genes. Science 259: 1739 1742.
22. Dooley, C. P.,, P. L. Fitzgibbons,, H. Cohen,, M. Appleman,, M. Bauer,, G. J. Perez-Perez,, and M. J. Blaser. 1989. Prevalence of H. pylori infection and histologic gastritis in asymptomatic persons. N. Engl. J. Med. 321: 1562 1566.
23. Freter, R., 1983. Human intestinal microflora in health and disease, p. 33 54. In D. J. Hentges (ed.), Mechanisms that Control the Microflora in the Large Intestine. Academic Press, Inc., San Diego, Calif.
24. Freter, R., 1984. Factors affecting conjugal plasmid transfer in natural bacterial communities, p. 105 114. In M. J. Klug, and C. A. Reddy (ed.), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.
25. Freter, R.,, H. Brickner,, and S. J. Temme. 1986. An understanding of colonization resistance of the mammalian large intestine requires mathematical analysis. Microecol Ther. 16: 147 155.
26. Freter, R.,, R. R. Freter,, and H. Brickner. 1983. Experimental and mathematical models of Escherichia coli plasmid transfer in vitro and in vivo. Infect. Immun. 39: 60 84.
27. Gordon, D. M.,, and M. A. Riley. 1992. A theoretical and experimental analysis of bacterial growth in the bladder. Mol. Microbiol. 6: 555 562.
28. Hahn, H.,, and S. H. E. Kaufrnann. 1981. Role of cell-mediated immunity in bacterial infections. Rev. Infect. Dis. 3: 1221 1250.
29. Hentschel, E.,, G. Brandstatter,, B. Dragoisics,, A. M. Hirschl,, H. Nemec,, K. Schutze,, M. Taufer,, and H. Wurzer. 1993. Effect of ranitidine and amoxicillin plus metronidazole on the eradication of H. pylori and the recurrence of duodenal ulcer. N. Engl J. Med. 328: 308 312.
30. Hessey, S. J.,, J. Spencer,, J. Wyatt,, G. Sobola,, B. J. Rathbone,, A. T. Axon,, and M. F. Dixon. 1990. Bacterial adhesion and disease activity in H. pylori associated chronic gastritis. Gut 31: 134 138.
31. Hethcote, H. W.,, and J. A. Yorke. 1984. Gonorrhea: Transmission, Dynamics and Control. Springer-Verlag, Berlin, Germany.
32. Ho, D. D.,, A. U. Neumann,, A. S. Perelson,, W. Chen,, J. M. Leonard,, and M. Markowitz. 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV1 infection. Nature 373: 123 126.
33. Ihamaki, T.,, M. Kekki,, P. Sipponen,, and M. Siurala. 1985. The sequelae and course of chronic gastritis during a 3 0-to 34-year bioptic followup study. Scand. J. Gastroenterol 20: 485 491.
34. Jorgensen, M.,, P. Daskalopoulos,, G. Warburton,, V. Mitchell,, and S. L. Hazell. 1996. Multiple strain colonization and metronidazole resistance in helicobacter pylori-infected patients: identification from sequential and multiple biopsy specimens. J. Infect. Dis. 174: 631 635.
35. Jouanguy, E.,, F. Altare,, S. Lamhamedi,, P. Revy,, J. F. Emile,, M. Newport,, M. Levin,, S. Blanche,, E. Sebourn,, and A. Fischer. 1961. Interferon gamma receptor deficiency in an infant with fatal Bacille Calmette-Guerin infection. N. Engl. J. Med. 335: 1956 1961.
36. Karnes, W. E. Jr.,, I. Samloff,, M. Siurala,, M. Kekki,, P. Sipponen,, S. W. Kim,, J. H. Walsh,, and J. L. Casanova. 1991. Positive serum antibody and negative tissue staining for H. pylori in subjects with atrophic body gastritis. Gastroenterology 101: 167 174.
37. Karttunen, R. 1991. Blood lymphocyte proliferation, cytokine secretion and appearance of T cells with activation surface markers in cultures with Helicobacter pylori: comparison of the responses of subjects with and without antibodies to H. pylori. Clin. Exp. Immunol. 83: 396 400.
38. Kirschner, D. 1999. Dynamics of co-infection with M. tuberculosis and HIV-1. Theor. Popul. Biol. 55: 94 109.
39. Kirschner, D.,, and M. J. Blaser. 1995. The dynamics of H. pylori infection of the human stomach. J. Theor. Biol 176: 281 290.
40. Kirschner, D.,, S. Lenhart,, and S. Serbin. 1997. Optimizing chemotherapy of HIV infection: scheduling, amounts and initiation of treatment. J. Math. Biol 35: 775 792.
41. Kirschner, D.,, R. Mehr,, and A. Perelson. 1998. The role of the thymus in pediatric HIV-1 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 18: 95 108.
42. Kirschner, D.,, and A. Perelson. 1995. A model for the immune system response to HIV: AZT treatment studies. Math. Popul. Dyn. 1: 296 310.
43. Kirschner, D.,, and G. F. Webb. 1996. A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58: 367 390.
44. Kirschner, D.,, and G. F. Webb. 1997. A mathematical model of combined drug therapy of HIV infection. J. Theor. Med. 1: 25 34.
45. Kirschner, D.,, and G. F. Webb. 1997. Qualitative differences in HIV chemotherapy between resistance and remission outcomes. Emerg. Infect. Dis. 3: 273 283.
46. Kirschner, D.,, and G. F. Webb. 1997. Understanding drug resistance in the monotherapy treatment of HIV infection. Bull. Math. Biol. 59: 763 785.
47. Levin, B. R.,, and V. A. Rice. 1980. The kinetics of transfer of nonconjugative plasmids by mobilizing conjugative factors. Genet. Res. 35: 241 259.
48. Levin, B. R.,, F. M. Stewart,, and V. A. Rice. 1979. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2: 247 260.
49. Lipkin, M.,, B. Sherlock,, and B. Bell. 1963. Cell proliferation kinetics in the gastrointestinal tract of man. Gastroenterology 46: 721 735.
50. Lipsitch, M.,, and B. R. Levin. 1997. The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41: 363 370.
51. Lipsitch, M.,, and B. R. Levin. 1998. Population dynamics of tuberculosis treatment. Int. J. Tuberc. Lung Dis. 2: 187 199.
52. Mai, U. E.,, G. Perez-Perez,, J. B. Allen,, S. M. Wahl,, M. J. Blaser,, and P. D. Smith. 1992. Surface proteins from H. pylori exhibit chemotactic activity for human leukocytes and are present in gastric mucosa. J. Exp. Med. 175: 517 525.
53. McDonough, K. A.,, Y. Kress,, and B. R. Bloom. 1993. Pathogenesis of tuberculosis: interaction of M. tuberculosis with macrophages. Infect. Immun. 61: 2763 2773.
54. McLean, A.,, and M. Nowak. 1991. Interactions between HIV and other pathogens. J. Theor. Biol. 155: 69 86.
55. Merrill, S. J., 1987. AIDS: background and the dynamics of the decline of immunocompetence, p. 59 75. In A. S. Perelson (ed.), Theoretical Immunology. Part 2. Springer-Verlag, Berlin, Germany.
56. Mosmann, T. R. H.,, H. Cherwinski,, and M. W. Bond. 1986. Two types of murine T cell clones. I. Definition according to profiles of lymphokine activity and secreted proteins. J. Immunol. 136: 2348 2357.
57. Muotiala, A.,, I. M. Helander,, L. Pyhala,, T. U. Kosunen,, and A. P. Moran. 1992. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun. 60: 1714 1716.
58. Murray, J. D. 1980. Mathematical Biology. Springer-Verlag, Berlin, Germany.
59. Myrvik, Q. N.,, E. S. Leake,, and M. J. Wright. 1984. Disruption of phagosomal membranes of normal alveolar macrophages by the H37 Rv strain of M. tuberculosis. Am. Rev. Respir. Dis. 129: 322 328.
60. Nahmias, A. J.,, W. S. Clark,, A. P. Kourtis,, F. K. Lee,, G. Cotsonis,, C. Ibegbu,, D. Thea,, P. Palumbo,, P. Vink,, R. J. Simonds,, and S. R. Nesheim. 1998. Thymic dysfunction and time of infection predict mortality in HIV-infected infants. J. Infect. Dis. 178: 680 685.
61. Newport, M. J.,, C. M. Huxley,, S. Huston,, C. M. Hawrylowicz,, B. A. Ostra,, R. Williamson,, and M. Levin. 1996. A mutation in the interferon gamma receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335: 1941 1949.
62. Nowak, J. A.,, B. Forouzandeh,, and J. A. Nowak. 1997. Estimates of H. pylori densities in the gastric mucus layer by PCR, histological examination and CLOtest. Anat. Pathol. 108: 284 288.
63. Nowak, M. A.,, and C. R. M. Bangham. 1996. Population dynamics of immune responses to persistent viruses. Science 272: 74 79.
64. Nowak, M. A.,, R. M. May,, and R. M. Anderson. 1990. The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS 4: 1095 1103.
65. Orme, I. M. 1998. The immunopathogenesis of tuberculosis: a new working hypothesis. Trends Microbiol. 6: 94 97.
66. Parrish, N. M.,, J. D. Dick,, and W. R. Bishai. 1998. Mechanisms of latency in M. tuberculosis. Trends Microbiol. 6: 107 112.
67. Perelson, A.,, D. Kirschner,, and R. De Boer. 1993. The dynamics of HIV infection of CD 4 + T-cells. J. Math. Biosci. 114: 81 125.
68. Perelson, A. S.,, A. U. Neumann,, M. Markowitz,, J. M. Leonard,, and D. D. H o. 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell life span and viral generation time. Science 271: 1582 1586.
69. Roos, M. T.,, F. Miedema,, M. Koot,, M. Tersmette,, W. P. Schaasberg,, R. A. Coutinho,, and P. T. Schellekens. 1995. T cell function in vitro is an independent progression marker for AIDS in human immunodeficiency virus-infected asymptomatic subjects. J. Infect. Dis. 171: 531 536.
70. Sharma, S. A.,, G. G. Miller,, G. Perez-Perez,, R. S. Gupta,, and M. J. Blaser. 1994. Humoral and cellular immune recognition of H. pylori proteins are not concordant. Clin. Exp. Immunol. 97: 126 130.
71. Styblo, K. 1986. Respiratory medicine. Adv. Respir. Med. 1: 77 108.
72. Suzuki, M.,, S. Miura,, M. Suematsu,, D. Fukumura,, I. Kurose,, H. Suzuki,, A. Kai,, Y. Kudoh,, M. Osashi,, and M. Tsuchiya. Helicobacter pylori-associated ammonia production enhances neutrophil-dependent gastric mucosal cell injury. Am. J. Physiol. 263: G719.
73. Thomsen, L. L.,, J. B. Gavin,, and C. T. Jones. 1990. Relation of H. pylori to the human gastric mucosa in chronic gastritis of the antrum. Gut 31: 1230.
74. vanderEnde, A.,, E. A. Rauws,, M. Feller,, C. J. J. Mulder,, G. N. J. Tytgat,, and J. Dankert. 1996. Heterogeneous Helicobacter pylori isolates from members of a family with a history of peptic ulcer disease. Gastroenterology 111: 638 647.
75. Wei, X.,, S. K. Ghosh,, M. E. Taylor,, V. A. Johnson,, E. A. Emini,, P. Deutsh,, J. D. Lifsoh,, S. Bonhoeffer,, M. A. Nowak,, B. H. Hahn, et al. 1995. Viral dynamics in HIV virus 1 infection. Nature 373: 117 122.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error