1887

Chapter 10 : DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap10-2.gif

Abstract:

This chapter discusses methyl-directed mismatch repair (MMR) mutators in the context of the evolution of bacterial pathogens. It is inevitable that any discussion of bacterial evolution ultimately focuses on mutation rate. Errors introduced by the DNA polymerase are circumvented both by its proofreading function and by the various DNA repair enzymes, primarily the MMR system, which monitor and repair lesions in the DNA. This underscores why DNA repair is essential to any discussion of bacterial evolution. The chemostat studies, as well as two independent reports that detected mutators among hospital isolates of , suggested that mutators could persist in natural populations of bacteria. The authors have proposed that the persistence of mutator alleles in nature is the consequence of selection for new gene functions gained from promiscuous exchange, since the mutators observed are notably MMR phenotypes. The roles that MutS, MutH, MutL, or UvrD deficiency play in the development of antigenic variation and virulence may be even more varied and subtle, due to the multiple ways these mutator phenotypes are expressed and act to affect gene structure.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10

Key Concept Ranking

DNA Polymerase III
0.51282054
DNA Polymerase I
0.51282054
DNA Polymerase III
0.51282054
DNA Polymerase I
0.51282054
DNA Polymerase III
0.51282054
DNA Polymerase I
0.51282054
DNA Polymerase III
0.51282054
0.51282054
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Effect of defective MMR on the time frame for evolutionary change. Defects in the MMR pathway increase mutations from errors in DNA replication and repair and enhance recombination of diverged DNA among and between bacterial species. The increased rates of spontaneous mutation and homeologous recombination observed in MMR-defective strains suggest that MMR mutators may act to cause rapid evolutionary change.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Estimates of fidelity during the course of DNA replication. Bar graphs represent the additive effect of each step that controls the fidelity of DNA replication and show the decrease in error rate, given as error per DNA nucleotide replicated.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Mutator loci in . Mutant loci that increase the spontaneous mutation rate are shown on the outside of the genetic map of . Preferential mutations induced in each mutant strain are given, except for the pleiotropic MMR mutators, which are highlighted in gray. Genetic loci shown inside the map are antibiotic resistance determinants used to screen the mutator phenotype (see text). The circular genetic map is shown with centisome intervals indicated for the 100-minute map and 1,000-kb (K) intervals indicated for the 4,639-kb genome.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phenotypes associated with mutant strains carrying defects in the MMR pathway.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap10
1. Aoyama, K.,, A. M. Haase,, and P. R. Reeves. 1994. Evidence for effect of random genetic drift on G+C content after lateral transfer of fucose pathway genes to Escherichia coli K-12. Mol. Biol. Evol. 11:829838.
2. Ash, C. P. J. 1999. Mutation and adaption from the Great Lakes to the Rocky Mountains. Trends Microbiol. 7:395398.
3. Atwood, K. C.,, L. K. Schneider,, and F. J. Ryan. 1951. Periodic selection of Escherichia coli. Proc. Natl. Acad. Sci. USA 37:146155.
4. Atwood, K. C.,, L. K. Schneider,, and F. J. Ryan. 1951. Selective mechanisms in bacteria. Cold Spring Harbor Symp. Quant. Biol. 16:345355.
5. Bastin, D. A.,, and P. R. Reeves. 1995. Sequence and analysis of the O antigen gene (rfb) cluster of Escherichia coli O111. Gene 164:1723.
6. Bisercic, M.,, J. Y. Feutier,, and P. R. Reeves. 1991. Nucleotide sequence of the gnd gene from nine natural isolates of Escherichia coli: evidence of intragenic recombination as contributing factor in the evolution of the polymorphic gnd locus. J. Bacteriol. 173:38943900.
7. Bucci, C.,, A. Lavitola,, P. Salvatore,, L. Del Giudici,, D. R. Massardo,, C. B. Bruni,, and P. Alifano. 1999. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol. Cell 3:435445.
8. Bzymek, M.,, C. J. Saveson,, V. V. Feschenko,, and S. T. Lovett. 1999. Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases. J. Bacteriol. 181: 477482.
9. Cebula, T. A.,, and J. E. LeClerc. 1997. Hypermutability and homeologous recombination: ingredients for rapid evolution. Bull. Inst. Pasteur 95:97106.
10. Cebula, T. A.,, and J. E. LeClerc. 1997. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly (discussion). Trends Microbiol. 5:428429.
11. Cebula, T. A.,, B. Li,, W. L. Payne,, and J. E. LeClerc. 1998. Mutators among Escherichia coli and Salmonella enterica: adaptation and emergence of bacterial pathogens. Am. Soc. Microbiol. Conference on Small Genomes, abstr. SA-22, p. 16.
12. Cebula, T. A.,, D. D. Levy,, and J. E. Le-Clerc,. 1999. Mutator bacteria and resistance development. In D. Hughes, and D. Andersson (ed.). Antibiotic Resistance and Antibiotic Development. Harwood, Amsterdam, in press.
13. Chao, L.,, and E. C. Cox. 1983. Competition between high and low mutating strains of Escherichia coli. Evolution 37:125134.
14. Cox, E. C. 1973. Mutator gene studies in Escherichia coli: the mutT gene. Genetics (suppl.) 73: 6780.
15. Cox, E. C. 1995. Recombination, mutation and the origin of species. Bioessays 17:747749.
16. Cox, E. C.,, and T. C. Gibson. 1974. Selection for high mutation rates in chemostats. Genetics 77: 169184.
17. Cox, M. M. 1997. Recombinational crossroads: eukaryotic enzymes and the limits of bacterial precedents. Proc. Natl. Acad. Sci. USA 94:1176411766.
18. Craig, R. J.,, J. A. Araj,, and M. G. Marinus. 1984. Induction of damage inducible (SOS) repair in dam mutants of Escherichia coli exposed to 2-aminopurine. Mol. Gen. Genet. 194:539540.
19. Deitsch, K. W.,, E. R. Moxon,, and T. E. Wellems. 1997. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol. Mol. Biol. Rev. 61: 281293.
20. de Visser, J. A. G. M.,, C. W. Zeyl,, P. J. Gerrish,, J. L. Blanchard,, and R. E. Lenski. 1999. Diminishing returns from mutation supply rate in asexual populations. Science 283:404406.
21. Domingo, E.,, and J. J. Holland. 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51:151178.
22. Drake, J. W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88:71607164.
23. Drake, J. W. 1993. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90:41714175.
24. Drake, J. W.,, B. Charlesworth,, D. Charlesworth,, and J. F. Crow. 1998. Rates of spontaneous mutation. Genetics 148:16671686.
25. Dykhuizen, D. E.,, and L. Green. 1991. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173:72577268.
26. Feng, G.,, H. C. Tsui,, and M. E. Winkler. 1996. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K- 12 cells. J. Bacteriol. 178:23882396.
27. Field, D.,, M. O. Magnasco,, E. R. Moxon,, D. Metzgar,, M. M. Tanaka,, C. Wills,, and D. S. Thaler. 1999. Contingency loci, mutator alleles, and their interactions. Synergistic strategies for microbial evolution and adaptation in pathogenesis. Ann. N. Y. Acad. Sci. 870:378382.
28. Garcia-Del Portillo, F.,, M. G. Pucciarelli,, and J. Casadesus. 1999. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl. Acad. Sci. USA 96: 1157811583.
29. Gross, M. D.,, and E. C. Siegel. 1981. Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat. Res. 91:107110.
30. Heithoff, D. M.,, R. L. Sinsheimer,, D. A. Low,, and M. J. Mahan. 1999. An essential role for DNA adenine methylation in bacterial virulence. Science 284:967970.
31. Horst, J. P.,, T. H. Wu,, and M. G. Marinus. 1999. Escherichia coli mutator genes. Trends Microbiol. 7:2936.
32. Iriarte, M.,, I. Stainier,, and G. R. Cornelis. 1995. The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect. Immun. 63:18401847.
33. Jain, R.,, M. C. Rivera,, and J. A. Lake. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96:38013806.
34. Jyssum, K. 1960. Observations on two types of genetic instability in Escherichi coli. Acta Pathol. Microbiol. Scand. 48:113120.
35. Karaolis, D. K.,, R. Lan,, and P. R. Reeves. 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J. Bacteriol. 177:191198.
36. Kehoe, M. A.,, V. Kapur,, A. M. Whatmore,, and J. M. Musser. 1996. Horizontal gene transfer among group A streptococci: implications for pathogenesis and epidemiology. Trends Microbiol. 4:436443.
37. Kibota, T. T.,, and M. Lynch. 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381:694696.
38. Kirchner, C. E. J.,, and M. J. Rudden. 1966. Localization of a mutator gene in Salmonella typhimurium by cotransduction. J. Bacteriol. 92: 14531456.
39. Kolstø, A.-B. 1999. Time for a fresh look at the bacterial chromosome. Trends Microbiol. 7:223226.
40. Kroll, J. S.,, K. E. Wilks,, J. L. Farrant,, and P. R. Langford. 1998. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl. Acad. Sci. USA 95:1238112385.
41. Lawrence, J. G.,, and H. Ochman. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44:383397.
42. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95:94139417.
43. Lawrence, J. G.,, and J. R. Roth. 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:18431860.
44. LeClerc, J. E.,, and T. A. Cebula. 1997. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 227:1834. (Response.)
45. LeClerc, J. E.,, B. Li,, W. L. Payne,, and T. A. Cebula. 1999. Promiscuous origin of a chimeric sequence in the Escherichia coli O157:H7 genome. J. Bacteriol. 181:76147617.
46. LeClerc, J. E.,, B. Li,, W. L. Payne,, and T. A. Cebula. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:12081211.
47. LeClerc, J. E.,, W. L. Payne,, E. Kupchella,, and T. A. Cebula. 1998. Detection of mutator subpopulations in Salmonella typhimurium LT2 by reversion of his alleles. Mutat. Res. 400:8997.
48. Leigh, E. G. 1970. Natural selection and mutability. Am. Nat. 104:301305.
49. Leigh, E. G. 1973. The evolution of mutation rates. Genetics 73:118.
50. Levin, B. R.,, M. Lipsitch,, and S. Bonhoeffer. 1999. Population biology, evolution, and infectious disease: convergence and synthesis. Science 283:806809.
51. Levinson, G.,, and G. A. Gutman. 1987. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 15:53235338.
52. Levy, D. D.,, and T. A. Cebula. 1999. Mutagenesis patterns in a tRNA mutation marker gene altered to include repetitive sequence replicated in mutS E. coli. Ann. N. Y. Acad. Sci. 870: 392395.
53. Lundblad, V.,, and N. Kleckner. 1982. Mutants of Escherichia coli K12 which affect excision of transposon Tn10. Basic Life Sci. 20:245258.
54. Lundblad, V.,, and N. Kleckner. 1985. Mismatch repair mutations of Escherichia coli K12 enhance transposon excision. Genetics 109:319.
55. Maas, W. K.,, C. Wang,, T. Lima,, A. Hach,, and D. Lim. 1996. Multicopy single-stranded DNA of Escherichia coli enhances mutation and recombination frequencies by titrating MutS protein. Mol. Microbiol. 19:505509.
56. Magnasco, M. O.,, and D. S. Thaler. 1996. Changing the pace of evolution. Physics Lett. 221: 287292.
57. Mao, E. F.,, L. Lane,, J. Lee,, and J. H. Miller. 1997. Proliferation of mutators in a cell population. J. Bacteriol. 179:417422.
58. Martin, K.,, G. Morlin,, A. Smith,, A. Nordyke,, A. Eisenstark,, and M. Golomb. 1998. The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J. Bacteriol. 180:107118.
59. Matic, I.,, C. Rayssiguier,, and M. Radman. 1995. Gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507515.
60. Matic, I.,, F. Taddei,, and M. Radman. 1996. Genetic barriers among bacteria. Trends Microbiol. 4:6973.
61. Matic, I.,, M. Radman,, F. Taddei,, B. Picard,, C. Doit,, E. Bingen,, E. Denamur,, and J. Elison. 1997. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 227:18331834.
62. Maurelli, A. T.,, R. E. Fernandez,, C. A. Bloch,, C. K. Rode,, and A. Fasano. 1998. ‘‘Black holes’’ and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95:39433948.
63. Médigue, C.,, T. Rouxel,, P. Vigier,, A. Hénaut,, and A. Danchin. 1991. Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222:851856.
64. Milkman, R. 1997. Recombination and population structure in Escherichia coli. Genetics 146: 745750.
65. Miller, J. H.,, A. Suthar,, J. Tai,, A. Yeung,, C. Truong,, and J. L. Stewart. 1999. Direct selection for mutators in Escherichia coli. J. Bacteriol. 181:15761584.
66. Mills, D. M.,, V. Bajaj,, and C. A. Lee. 1995. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K- 12 chromosome. Mol. Microbiol. 15:749759.
67. Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25: 229253.
68. Modrich, P.,, and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65: 101133.
69. Moxon, E. R. 1995. Whole genome sequencing of pathogens: a new era in microbiology. Trends Microbiol. 3:335337.
70. Moxon, E. R.,, and D. S. Thaler. 1997. Microbial genetics. The tinkerer’s evolving toolbox. Nature 387:659662.
71. Moxon, E. R.,, R. B. Rainey,, M. A. Nowak,, and R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4:2433.
72. Nestman, E. R.,, and R. F. Hill. 1973. Population changes in continuously growing mutator cultures of Escherichia coli. Genetics 73(Suppl.):4144.
73. Ninio, J. 1991. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics 129:957962.
74.Pang T. 1998. Genetic dynamics of Salmonella typhi—diversity in clonality. Trends Microbiol. 6: 339342.
75. Petit, M. A.,, J. Dimpfl,, M. Radman,, and H. Echols. 1991. Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. Genetics 129:327332.
76. Pupo, G. M.,, D. K. Karaolis,, R. Lan,, and P. R. Reeves. 1997. Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect. Immun. 65:26852692.
77. Radman, M.,, I. Matic,, and F. Taddei. 1999. Evolution of evolvability. Ann. N. Y. Acad. Sci. 870:146155.
78. Rainey, P. B. 1999. The economics of mutation. Curr. Biol. 9:R371R373.
79. Raposa, S.,, and M. S. Fox. 1987. Some features of base pair mismatch and heterology repair in Escherichia coli. Genetics 117:381390.
80. Rayssiguier, C.,, D. S. Thaler,, and M. Radman. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396401.
81. Reeves, P. R. 1992. Variation in O-antigens, niche-specific selection and bacterial populations. FEMS Microbiol. Lett. 79:509516.
82. Roca, A. I.,, and M. M. Cox. 1997. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56:129223.
83. Rosenberg, S. M.,, C. Thulin,, and R. S. Harris. 1998. Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics 148:15591566.
84. Sanderson, K. E.,, A. Hessel,, and B. A. D. Stocker,. 1987. Strains of Salmonella typhimurium and other Salmonella species used in genetic analysis, p. 24962503. In F. C. Neidhardt,, J. L. Ingraham,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
85. Schaaper, R. M. 1993. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J. Biol. Chem. 268: 2376223765.
86. Schaaper, R. M.,, and R. L. Dunn. 1991. Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129:317326.
87. Siegel, E. C.,, and F. Kamel. 1974. Reversion of frameshift mutations by mutator genes in Escherichia coli. J. Bacteriol. 117:9941001.
88. Sniegowski, P. D.,, P. J. Gerrish,, and R. E. Lenski. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703705.
89. Sokurenko, E. V.,, D. L. Hasty,, and D. E. Dykhuizen. 1999. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 7:191195.
90. Taddei, F.,, I. Matic,, B. Godelle,, and M. Radman. 1997. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly. Trends Microbiol. 5:427428.
91. Taddei, F.,, M. Radman,, J. Maynard- Smith,, B. Toupance,, P. H. Gouyon,, and B. Godelle. 1997. Role of mutator alleles in adaptive evolution. Nature 387:700702.
92. Tenaillon, O.,, B. Toupance,, H. Le Nagard,, F. Taddei,, and B. Godelle. 1999. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152:485493.
93. Tröbner, W.,, and R. Piechoki. 1984. Selection against hypermutability in Escherichia coli during long term evolution. Mol. Gen. Genet. 198:177178.
94. Tsui, H. C.,, G. Feng,, and M. E. Winkler. 1997. Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J. Bacteriol. 179:74767487.
95. Tsui, H. C.,, G. Zhao,, G. Feng,, H. C. Leung,, and M. E. Winkler. 1994. The mutL repair gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol. Microbiol. 11:189202.
96. van Belkum, A.,, S. Scherer,, L. van Alphen,, and H. Verbrugh. 1998. Short-sequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62:275293.
97. Van Valen, L. 1973. A new evolutionary law. Evol. Theory 1:130.
98. Vulic, M.,, F. Dionisio,, F. Taddei,, and M. Radman. 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94:97639767.
99. Vulic, M.,, R. E. Lenski,, and M. Radman. 1999. Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc. Natl. Acad. Sci. USA 96:73487351.
100. Worth, L., Jr.,, T. Bader,, J. Yang,, and S. Clark. 1998. Role of MutS ATPase activity in MutS,L-dependent block of in vitro strand transfer. J. Biol. Chem. 273:2317623182.
101. Worth, L.,, S. Clark,, M. Radman,, and P. Modrich. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Natl. Acad. Sci. USA 91:32383241.
102. Yildiz, F. H.,, and G. K. Schoolnik. 1998. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 180:773784.
103. Zahrt, T. C.,, and S. Maloy. 1997. Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc. Natl. Acad. Sci. USA 94:97869791.
104. Zahrt, T. C.,, G. C. Mora,, and S. Maloy. 1994. Inactivation of mismatch repair overcomes the barrier to transduction between Salmonella typhimurium and Salmonella typhi. J. Bacteriol. 176:15271529.
105. Zhang, Q.,, and K. S. Wise. 1997. Localized reversible frameshift mutation in an adhesin gene confers a phase-variable adherence phenotype in mycoplasma. Mol. Microbiol. 25:859869.

Tables

Generic image for table
TABLE 1

Number of total, deleterious, lethal, and favorable mutations per genome, gene, and base pair replication

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error