1887

Chapter 11 : Bacterial Toxins in Disease Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bacterial Toxins in Disease Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap11-2.gif

Abstract:

Our current understanding of the mechanism of action of bacterial toxins includes details of their genetic, physical, and enzymatic properties and insight into their translocation across the eukaryotic cell membrane to gain access to intracellular targets. This chapter outlines the molecular aspects of bacterial toxins. Bacterial toxins are classified into several families including exotoxins, pore-forming toxins, membrane-acting toxins, and type-III secreted cytotoxins. The translocated, nascent polypeptide folds into its native conformation and the leader sequence is cleaved by a periplasmic leader peptidase to yield a mature exotoxin. While some bacterial toxins such as the heat-labile enterotoxin of remain localized to the periplasmic space, other bacterial exotoxins, such as cholera toxin and pertussis toxin, are assembled in the periplasm and subsequently transported across the bacterial outer membrane and into the external environment. Relative to bacterial exotoxins, the type-III-secreted cytotoxins are a recently recognized family of bacterial toxins. Bacteria utilize several strategies to modulate eukaryotic cell physiology at the eukaryotic cell membrane. There are several families of membrane-acting toxins, including the pore-forming toxins, the heat-stable enterotoxins, and the superantigens. Considerable progress has been made toward defining the mechanism of action of bacterial toxins and their role in bacterial pathogenesis.

Citation: Barbieri J, Pederson K. 2000. Bacterial Toxins in Disease Production, p 163-174. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch11

Key Concept Ranking

Bacterial Proteins
0.784814
Bacterial Pathogenesis
0.7012479
Bacterial Toxins
0.64041895
0.784814
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

AB organization of bacterial exotoxins. Indicated are the schematized representations of the three recognized organizations of bacterial exotoxins. The shaded area represents the catalytic domain, A, while the clear areas represent the translocation and binding domains, B.

Citation: Barbieri J, Pederson K. 2000. Bacterial Toxins in Disease Production, p 163-174. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Entry of bacterial exotoxins into sensitive eukaryotic cells. Bacterial exotoxins associate with specific receptors on the cell surface or utilize more nonspecific interactions to gain access into the eukaryotic cell by receptor-mediated endocytosis. Some exotoxins (diphtheria toxin and anthrax toxin) gain access into the intracellular environment at the level of the early endosome, while other exotoxins (cholera toxin, heat-labile enterotoxin, exotoxin A of , and shiga toxin) utilize the retrograde transport system of the eukaryotic cell to traffic to the Golgi and/or endoplasmic reticulum, where the translocation process is believed to occur.

Citation: Barbieri J, Pederson K. 2000. Bacterial Toxins in Disease Production, p 163-174. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Entry of type III translocation of cytotoxins and membrane-acting toxins into sensitive eukaryotic cells. During type III translocation of cytotoxins into sensitive cells, bacteria bind to the surface of eukaryotic cells and utilize the type III secretion apparatus to translocate cytotoxins from the bacterial cytosol into the intracellular compartment of the eukaryotic cell. The membrane-active toxins bind directly to the cell surface and disrupt membrane function via the formation of a pore (aerolysin), stimulation of host guanylate cyclase (GC) through a signal transduction mechanism (heat-stable enterotoxin), or direct insertion of the catalytic domain into the eukaryotic cell cytosol (adenylate cyclase).

Citation: Barbieri J, Pederson K. 2000. Bacterial Toxins in Disease Production, p 163-174. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap11
1. Burnette, W. N. 1994. AB5 ADP-ribosylating toxins: comparative anatomy and physiology. Structure 2: 151 158.
2. Carroll, S. F.,, J. A. McCloskey,, P. F. Crain,, N. J. Oppenheimer,, T. M. Marschner,, and R. J. Collier. 1985. Photoaffinity labeling of diphtheria toxin fragment A with NAD: structure of the photoproduct at position 148. Proc. Natl. Acad. Sci. USA 82: 7237 7241.
3. Choe, S.,, M. J. Bennett,, G. Fujii,, P. M. Curmi,, K. A. Kantardjieff,, R. J. Collier,, and D. Eisenberg. 1992. The crystal structure of diphtheria toxin. Nature 357: 216 222.
4. Collier, R. J. 1975. Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39: 54 85.
5. Cornelis, G. R.,, and H. Wolf-Watz. 1997. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23: 861 867.
6. Duong, F.,, J. Eichler,, A. Price,, M. R. Leonard,, and W. Wickner. 1997. Biogenesis of the gram-negative bacterial envelope. Cell 91: 567 573.
7. Fields, B. A.,, E. L. Malchiodi,, H. Li,, X. Ysern,, C. V. Stauffacher,, P. M. Schlievert,, K. Karjalainen,, and R. A. Mariuzza. 1996. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen [see comments]. Nature 384: 188 192.
8. Finkelstein, A. 1990. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin. J. Physiol. 84: 188 190.
9. Fiorentini, C.,, A. Fabbri,, G. Flatau,, G. Donelli,, P. Matarrese,, E. Lemichez,, L. Falzano,, and P. Boquet. 1997. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J. Biol. Chem. 272: 19532 19537.
10. Frank, D. W. 1997. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol. Microbiol. 26: 621 629.
11. Gouaux, E. 1998. Alpha-Hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins. J. Struct. Biol. 121: 110 122.
12. Grandas, F. 1995. Clinical application of botulinum toxin. Neurologia 10: 224 233.
13. Guerrant, R. L.,, J. M. Hughes,, B. Chang,, D. C. Robertson,, and F. Murad. 1980. Activation of intestinal guanylate cyclase by heatstable enterotoxin of Escherichia coli: studies of tissue specificity, potential receptors, and intermediates. J. Infect. Dis. 142: 220 228.
14. Hazeki, K.,, T. Seya,, O. Hazeki,, and M. Ui. 1994. Involvement of the pertussis toxin-sensitive GTP-binding protein in regulation of expression and function of granulocyte complement receptor type 1 and type 3. Mol. Immunol. 31: 511 518.
15. Kounnas, M. Z.,, R. E. Morris,, M. R. Thompson,, D. J. FitzGerald,, D. K. Strickland,, and C. B. Saelinger. 1992. The alpha 2- macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J. Biol. Chem. 267: 12420 12423.
16. Ladant, D.,, and A. Ullmann. 1999. Adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7: 172 176.
17. Leppla, S. H. 1984. Bacillus anthracis calmodulin- dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells. Adv. Cyclic Nucl. Prot. Phosphor. Res. 17: 189 198.
18. Leppla, S. H. 1988. Production and purification of anthrax toxin. Methods Enzymol. 165: 103 116.
19. Menestrina, G.,, C. Moser,, S. Pellet,, and R. Welch. 1994. Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology 87: 249 267.
20. Middlebrook, J. L.,, and R. B. Dorland. 1977. Response of cultured mammalian cells to the exotoxins of Pseudomonas aeruginosa and Corynebacterium diphtheriae: differential cytotoxicity. Can. J. Microbiol. 23: 183 189.
21. Naglich, J. G.,, J. E. Metherall,, D. W. Russell,, and L. Eidels. 1992. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69: 1051 1061.
22. Nickel, W.,, B. Brugger,, and F. T. Wieland. 1998. Protein and lipid sorting between the endoplasmic reticulum and the Golgi complex. Semin. Cell Dev. Biol. 9: 493 501.
23. Orcl, L.,, D. J. Palmer,, M. Amherdt,, and J. E. Rothman. 1993. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364: 732 734.
24. Owens, J. R.,, L. T. Frame,, M. Ui,, and D. M. Cooper. 1985. Cholera toxin ADPribosylates the islet-activating protein substrate in adipocyte membranes and alters its function. J. Biol. Chem. 260: 15946 15952.
25. Pai, L. H.,, and I. Pastan. 1998. Clinical trials with Pseudomonas exotoxin immunotoxins. Curr. Top. Microbiol. Immunol. 234: 83 96.
26. Pappenheimer, A. M., Jr. 1993. The story of a toxic protein, 1888-1992. Protein Sci. 2: 292 298.
27. Parker, M. W.,, J. T. Buckley,, J. P. Postma,, A. D. Tucker,, K. Leonard,, F. Pattus,, and D. Tsernoglou. 1994. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367: 292 295.
28. Pizza, M.,, A. Covacci,, A. Bartoloni,, M. Perugini,, L. Nencioni,, M. T. De Magistris,, L. Villa,, D. Nucci,, R. Manetti,, M. Bugnoli, et al. 1989. Mutants of pertussis toxin suitable for vaccine development. Science 246: 497 500.
29. Sandvig, K.,, and B. van Deurs. 1996. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76: 949 966.
30. Schiavo, G.,, F. Benfenati,, B. Poulain,, O. Rossetto,, P. Polverino de Laureto,, B. R. DasGupta,, and C. Montecucco. 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin [see comments]. Nature 359: 832 835.
31. Schmidt, G.,, P. Sehr,, M. Wilm,, J. Selzer,, M. Mann,, and K. Aktories. 1997. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387: 725 729.
32. Seppala, I.,, H. Sarvas,, O. Makela,, P. Mattila,, J. Eskola,, and H. Kayhty. 1988. Human antibody responses to two conjugate vaccines of Haemophilus influenzae type B saccharides and diphtheria toxin. Scand. J. Immunol. 28: 471 479.
33. Sixma, T. K.,, K. H. Kalk,, B. A. van Zanten,, Z. Dauter,, J. Kingma,, B. Witholt,, and W. G. Hol. 1993. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol. 230: 890 918.
34. Sixma, T. K.,, S. E. Pronk,, K. H. Kalk,, E. S. Wartna,, B. A. van Zanten,, B. Witholt,, and W. G. Hol. 1991. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli [see comments]. Nature 351: 371 377.
35. White, A.,, X. Ding,, J. C. vanderSpek,, J. R. Murphy,, and D. Ringe. 1998. Structure of the metal-ion-activated diphtheria toxin repressor/ tox operator complex. Nature 394: 502 506.
36. Yahr, T. L.,, A. J. Vallis,, M. K. Hancock,, J. T. Barbieri,, and D. W. Frank. 1998. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. USA 95: 13899 13904.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error