Chapter 14 : The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap14-2.gif


This chapter reviews the general structure of type III secretion systems in gram-negative bacterial pathogens and the means by which these systems may have arisen and spread. It describes the present state of knowledge regarding the structural details of type III secretion in the system (referred to as Mxi-Spa). By presenting both the common features ascribed to the type III pathway and the specific structural details of one such system, the chapter illustrates how bacterial pathogens may exploit one basic mechanism for adaptation to a broad range of host interactions. Features of each secretion pathway are discussed, and major attributes that are either pathway-specific or conserved are highlighted. The net result of this work is an abundance of new insights into both the evolution of pathogenic bacteria and the mechanisms by which they interact with and manipulate basic cellular processes of a host to promote their survival. While issues regarding type III-dependent protein injection are discussed, it is worth noting that enteropathogenic (EPEC), , , and probably the plant pathogens also inject effector proteins into target host cells. The chapter presents an abridged description of the type III secretion pathway, including details of its evolution and distinguishing characteristics. Future research should be directed toward defining the true architecture of this structure and the means by which it physically transfers virulence proteins.

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) The ∼20 kb Mxi-Spa locus of the virulence plasmid. With the exception of at least IpgD and IpgE (which are predicted to be a secreted effector protein and its chaperone, respectively), the products of these loci are predicted to assemble as the transmembrane Mxi-Spa type III apparatus. The known or putative location of each of these proteins is denoted within the indicated box: , cytoplasmic or peripherally associated with the IM; , mobile secretory elements; , IM-anchored; , spanning the IM and OM; , OM-anchored; S, secreted; P, periplasmic. (B) Model for Ipa secretion through Mxi-Spa. Subunit shading corresponds to the gene shading above. The Ipa proteins are shown as black bullets.

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allaoui, A.,, P. J. Sansonetti,, and C. Parsot. 1992. MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins. J. Bacteriol. 174:76617669.
2. Allaoui, A.,, P. J. Sansonetti,, and C. Parsot. 1993. MxiD: an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins. Mol. Microbiol. 7:5968.
3. Allaoui, A.,, P. J. Sansonetti,, R. Ménard,, S. Barzu,, J. Mounier,, A. Phalipon,, and C. Parsot. 1995. MxiG, a membrane protein required for secretion of Shigella spp. Ipa invasins: involvement in entry into epithelial cells and in intercellular dissemination. Mol. Microbiol. 17:461470.
4. Allaoui, A.,, R. Ménard,, P. J. Sansonetti,, and C. Parsot. 1993. Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect. Immun. 61:17071714.
5. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers,, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
6. Andrews, G. P.,, A. E. Hromockyj,, C. Coker,, and A. T. Maurelli. 1991. Two novel virulence loci, mxiA and mxiB, in Shigella flexneri 2a facilitate excretion of invasion plasmid antigens. Infect. Immun. 59:19972005.
7. Andrews, G. P.,, and A. T. Maurelli. 1992. mxiA of Shigella flexneri 2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium response protein, LcrD, of Yersinia pestis. Infect. Immun. 60:32873295.
8. Bavoil, P. M.,, and R.-C. Hsia. 1998. Type III secretion in Chlamydia : a case of déjà vu? Mol. Microbiol. 28:859862.
9. Beinke, C.,, S. Laarmann,, C. Wachter,, H. Karch,, L. Greune,, and M. A. Schmidt. 1998. Diffusely adhering Escherichia coli strains induce attaching and effacing phenotypes and secrete homologs of Esp proteins. Infect. Immun. 66:528 539.
10. Bitter, W.,, and J. Tommassen. 1999. Ushers and other doorkeepers. Trends Microbiol. 7:46.
11. Bitter, W.,, M. Koster,, M. Latijnhouwers,, H. de Cock,, and J. Tommassen. 1998. Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol. Microbiol. 27:209219.
12. Charkowski, A. O.,, H.-C. Huang,, and A. Collmer. 1997. Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggest that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of gramnegative bacteria. J. Bacteriol. 179:38663874.
13. Collazo, C. M.,, and J. E. Galan. 1996. Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect. Immun. 64:35243531.
14. Cornelis, G. R. 1998. The Yersinia deadly kiss. J. Bacteriol. 180:54955504.
15. Crago, A. M.,, and V. Koronakis. 1998. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol. Microbiol. 30:4756.
16. Daefler, S. 1999. Type III secretion by Salmonella typhimurium does not require contact with a eukaryotic host. Mol. Microbiol. 31:4551.
17. Daefler, S.,, I. Guilvout,, K. R. Hardie,, A. P. Pugsley,, and M. Russel. 1997. The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on pIVf1 function. Mol. Microbiol. 24:465475.
18. Daefler, S.,, and M. Russel. 1998. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol. Microbiol. 28:13671380.
19. De Geyter, C.,, B. Vogt,, Z. Benjelloun- Touimi,, P. J. Sansonetti,, J.-M. Ruysschaert,, C. Parsot,, and V. Cabiaux. 1997. Purification of IpaC, a protein involved in entry of Shigella flexneri into epithelial cells and characterization of its interaction with lipid membranes. FEBS Lett. 400:149154.
20. Demers, B.,, P. J. Sansonetti,, and C. Parsot. 1998. Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins. EMBO J. 17:28942903.
21. Deng, W.-L.,, and H.-C. Huang. 1999. Cellular locations of Pseudomonas syringae pv. syringae HrcC and HrcJ proteins, required for harpin secretion via the type III pathway. J. Bacteriol. 181: 22982301.
22. Dorman, C. J.,, and M. E. Porter. 1998. The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol. Microbiol. 29:677684.
23. Economou, A. 1999. Following the leader: bacterial protein secretion through the Sec pathway. Trends Microbiol. 7:315320.
24. Fekkes, P.,, and A. J. M. Driessen. 1999. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63:161173.
25. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136169.
26. Frithz-Lindsten, E.,, Y. Du,, R. Rosqvist, and Å Forsberg. 1997. Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol. Microbiol. 25:11251139.
27. Galan, J. E. 1998. Interactions of Salmonella with host cells: encounters of the closest kind. Proc. Natl. Acad. Sci. USA 95:1400614008.
28. Galan, J. E.,, and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:13221328.
29. Galyov, E. E.,, M. W. Wood,, R. Rosqvist,, P. B. Mullan,, P. R. Watson,, S. Hedges,, and T. S. Wallis. 1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25: 903912.
30. Ginocchio, C. C.,, and J. E. Galan. 1995. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect. Immun. 63:729732.
31. Ginocchio, C. C,, S. B. Olmsted,, C. L. Wells,, and J. E. Galan. 1994. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76:717724.
32. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:10891097.
33. Hardie, K. R.,, A. Seydel,, I. Guilvout,, and A. P. Pugsley. The secretin-specific, chaperone- like protein of the general secretory pathway: separation of proteolytic protection and piloting functions. Mol. Microbiol. 22:967976.
34. He, S. Y. 1997. Hrp-controlled interkingdom protein transport: learning from flagellar assembly? Trends Microbiol. 5:489495.
35. Hobbs, M.,, and J. S. Mattick. 1993. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage, and protein-secretion: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10:233243.
36. Hsia, R.-C.,, P. L. C. Small,, and P. M. Bavoil. 1993. Characterization of virulence genes of enteroinvasive Escherichia coli by TnphoA mutagenesis: identification of invX, a gene required for entry into HEp-2 cells. J. Bacteriol. 175:48174823.
37. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379433.
38. Kaniga, K.,, D. Trollinger,, and J. E. Galan. Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J. Bacteriol. 177:70787085.
39. Kenny, B.,, and B. B. Finlay. 1995. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc. Natl. Acad. Sci. USA 92:79917995.
40. Kenny, B.,, R. DeVinney,, M. Stein,, D. J. Reinscheid,, E. A. Frey,, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511520.
41. Knutton, S.,, I. Rosenshine,, M. J. Pallen,, I. Nisan,, B. C. Neves,, C. Bain,, C. Wolff,, G. Dougan,, and G. Frankel. 1998. A novel EspAassociated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17:21662176.
42. Koster, M.,, W. Bitter,, H. de Cock,, A. Allaoui,, G. R. Cornelis,, and J. Tommassen. 1997. The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol. 26:789797.
43. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S.-I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602605.
44. Lehnherr, H.,, A.-M. Hansen,, and T. Ilyina. 1998. Penetration of the bacterial cell wall: a family of lytic transglycosylases in bacteriophages and conjugative plasmids. Mol. Microbiol. 30:453457.
45. Lory, S. 1998. Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Curr. Opin. Microbiol. 1:2735.
46. Lupas, A.,, M. Van Dyke,, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252:11621164.
47. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnenberg,, and J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92:16641668.
48. Mecsas, J.,, and E. J. Strauss. 1996. Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. Emerg. Infect. Dis. 2:271288.
49. Ménard, R.,, M.-C. Prévost,, P. Gounon,, P. J. Sansonetti,, and C. Dehio. 1996. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl. Acad. Sci. USA 93:12541258.
50. Ménard, R.,, P. J. Sansonetti,, and C. Parsot. 1994. The secretion of the Shigella flexneri Ipa invasins is induced by the epithelial cell and controlled by IpaB and IpaD. EMBO J. 13:52935302.
51. Ménard, R.,, P. J. Sansonetti,, C. Parsot,, and T. Vasselon. 1994. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79:515525.
52. Michiels, T.,, P. Wattiau,, R. Brasseur,, J. M. Ruysschaert,, and G. Cornelis. 1990. Secretion of Yop proteins by yersiniae. Infect. Immun. 58: 28402849.
53. Nouwen, N.,, N. Ranson,, H. Saibil,, B. Wolpensinger,, A. Engel,, A. Ghaze,, and A. P. Pugsley. 1999. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl. Acad. Sci. USA 96:81738177.
54. Pallen, M. J.,, G. Dougan,, and G. Frankel. Coiled-coil domains in proteins secreted by type III secretion systems. Mol. Microbiol. 25:423425.
55. Parsot, C.,, R. Ménard,, P. Gounon,, and P. J. Sansonetti. 1995. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol. Microbiol. 16:291300.
56. Payne, P. L.,, and S. C. Straley. 1998. YscO of Yersinia pestis is a mobile core component of the Yop secretion system. J. Bacteriol. 180:38823890.
57. Payne, P. L.,, and S. C. Straley. 1999. YscP of Yersinia pestis is a secreted component of the Yop secretion system. J. Bacteriol. 181:28522862.
58. Pope, L. M.,, K. E. Reed,, and S. M. Payne. 1995. Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect. Immun. 63: 36423648.
59. Pugsley, A. P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57:50108.
60. Roine, E.,, W. Wei,, J. Yuan,, E.-L. Nurmiaho- Lassila,, N. Kalkkinen,, M. Romantschuk,, and S.-Y. He. 1997. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 94:34593464.
61. Rosqvist, R.,, K.-E. Magnusson,, and H. Wolf-Watz. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13: 964972.
62. Salmond, G. P.,, and P. J. Reeves. 1993. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem. Sci. 18:712.
63. Sasakawa, C.,, K. Komatsu,, T. Tobe,, T. Suzuki,, and M. Yoshikawa. 1993. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a. J. Bacteriol. 175:23342346.
64. Schuch, R.,, and A. T. Maurelli. 1999. The Mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lipoprotein, MxiM, for invasin translocation. Infect. Immun. 67:19821991.
65. Schuch, R.,, R. C. Sandlin,, and A. T. Maurelli. 1999. A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Mol. Microbiol. 34:675689.
66. Shevchik, V. E.,, J. Robert-Baudouy,, and G. Condemine. 1997. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J. 16:30073016.
67. Skrzypek, E.,, C. Cowan,, and S. C. Straley. Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol. 30:10511065.
68. Stephens, C.,, and L. Shapiro. 1996. Bacterial pathogenesis: delivering the payload. Curr. Biol. 6:927930.
69. Thanabalu, T.,, E. Koronakis,, C. Hughes,, and V. Koronakis. 1998. Substrate-induced assembly of a contiguous channel for protein export from E. coli : reversible bridging of an innermembrane translocase to an outer membrane pore. EMBO J. 17:64876496.
70. Tran VanNhieu, G.,, E. Caron,, A. Hall,, and P. J. Sansonetti. 1999. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18:32493262.
71. Ueno, T.,, K. Oosawa,, and S.-I. Aizawa. 1994. Domain structures of the MS ring component protein (FliF) of the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 236:546555.
72. Van derDoes, C.,, T. den Blaauwen,, J. G. de Wit,, E. H. Manting,, N. A. Groot,, P. Fekkes,, and A. J. M. Driessen. 1996. SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Mol. Microbiol. 22:619629.
73. Van Gijsegem, F.,, S. Genin,, and C. Boucher. 1993. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol. 1:175180.
74. Watarai, M.,, T. Tobe,, M. Yoshikawa,, and C. Sasakawa. 1995. Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J. 14: 24612470.
75. Williams, A. W.,, S. Yamaguchi,, F. Togashi,, S.-I. Aizawa,, I. Kawagishi,, and R. M. Macnab. 1996. Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J. Bacteriol. 178:29602970.
76. Winstanley, C.,, B. A. Hales,, and C. A. Hart. 1999. Evidence for the presence in Burkholderia pseudomallei of a type III secretion systemassociated gene cluster. J. Med. Microbiol. 48:649656.


Generic image for table

Type III virulence protein secretion systems

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14
Generic image for table

Products of the Mxi-Spa locus of

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error