1887

Chapter 18 : State and Future of Studies on Bacterial Pathogenicity: Impact of New Methods of Studying Bacterial Behavior in Vivo

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

State and Future of Studies on Bacterial Pathogenicity: Impact of New Methods of Studying Bacterial Behavior in Vivo, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap18-2.gif

Abstract:

This chapter summarizes aspects of behavior of bacterial pathogens in vivo to be investigated by both conventional and new methods. The classical method of following the pattern of a developing infection is to take samples of body fluids and tissues during the course of infection and examine them outside the host by in vitro methods. The latter include culture, total and viable counts, and light and electron microscopy of histopathological specimens. New methods for studying bacterial behavior in vivo are discussed in the chapter. Fluorescence-activated cell sorting (FACS) coupled with bacteria labeled by fluorescent markers such as green fluorescent protein (GFP) can be used to identify host cells containing pathogens. Signature-tagged mutagenesis (STM) identifies genes induced in vivo by using the fact that they are needed for virulence. The tags in both inoculum and recovered pools are separately amplified and radiolabeled by PCR. STM is a powerful tool. However, it may not demonstrate all virulence genes. It only detects genes whose mutants are viable in vitro and those that are required for growth and survival in vivo. However, coupling complete genome information on a particular pathogen with results from in vivo expression technology (IVET), differential fluorescence induction (DFI), STM, and other methods of detecting gene expression should allow precise definition of which genes are expressed at different stages in infection and under changing environmental conditions. Most antibacterial drugs are based on interference with some aspect of metabolism, which leads to either death or severe restriction in growth.

Citation: Smith H. 2000. State and Future of Studies on Bacterial Pathogenicity: Impact of New Methods of Studying Bacterial Behavior in Vivo, p 265-282. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818111.chap18
1. Abu-Kwaik, Y.,, and L. L. Pedersen. 1996. The use of differential display- PCR to isolate and characterize a Legionella pneumophila locus induced during intracellular infection of macrophages. Mol. Microbiol. 21:543556.
2. Akins, D. R.,, S. F. Porcella,, T. G. Popova,, D. Shevchenko,, S. I. Buker,, M. Li,, M. V. Norgard,, and J. D. Radolf. 1995. Evidence for in vivo but not in vitro expression of Borrelia burgdorferi outer surface protein F(OspF) homologue. Mol. Microbiol. 18:507520.
3. Aranda, C. M. A.,, J. A. Swanson,, W. P. Loomis,, and S. I. Miller. 1992. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagolysomes. Proc. Natl. Acad. Sci. USA 89:1007910083.
4. Busby, S. J. W.,, M. C. Thomas,, and N. L. Brown. 1998. Molecular Biology NATO ASI Series. Series H Cell Biology, vol. 103. Springer Verlag, Heidelberg, Germany.
5. Camilli, A.,, D. T. Beattie,, and J. J. Mekalanos. 1994. Use of genetic recombination as a reporter of gene expression. Proc. Natl. Acad. Sci. USA 91:26342638.
6. Camilli, A.,, and J. J. Mekalanos. 1995. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18:671683.
7. Chen L. M.,, K. Kaniga,, and J. E. Galan. 1996. Salmonella spp. are cytotoxic for cultured macrophages. Mol. Microbiol. 21:11011115.
8. Chiang, S. L.,, and J. J. Mekalanos. 1998. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27:797805.
9. Collins, D. M. 1996. In search of tuberculosis virulence genes. Trends Microbiol. 4:426430.
10. Conner, C. P.,, D. M. Heithoff,, S. M. Julio,, R. L. Sinsheimer,, and M. J. Mahan. 1998. Different patterns of acquired virulence genes distinguish Salmonella strains. Proc. Natl. Acad. Sci. USA 95:46414645.
11. Contag, C.H.,, P. R. Contag,, J. I. Mullins,, S. D. Spilman,, D. K. Stevenson,, and D. A. Benaron. 1995. Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol. 18:593603.
12. Cormack, B.,, R. H. Valdivia,, and S. Falkow. 1996. FACS optimized mutants of the green fluorescent protein (GFP). Gene 173:3338.
13. Coulter, S. N.,, W. R. Schwan,, E. Y. W. Ng,, M. H. Langhorne,, H. D. Ritchie,, S. Westbrook- Wadman,, W. O. Hufnagle,, K. R. Folger,, A. S. Bayer,, and C. K. Stover. 1998. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol. 30:393404.
14. Cubitt, A. B.,, R. Heim,, S. R. Adams,, A. E. Boyd,, L. A. Gross,, and R. Y. Tsien. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20:448455.
15. De Saizieu, A.,, U. Certa,, J. Warrington,, C. Gray,, W. Keck,, and J. Mous. 1998. Bacterial transcript imagery by hybridization of total RNA to oligonucleotide arrays. Nat. Biotech. 16:4548.
16. Dorman, C. J. 1994. Genetics of Bacterial Virulence. Blackwell Scientific Publications, Oxford, England.
17. Edelstein, P. H.,, M. A. C. Edelstein,, F. Higa,, and S. Falkow. 1999. Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc. Natl. Acad. Sci. USA 96: 81908195.
18. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136169.
19. Garcia-del Portillo, F.,, J. W. Foster,, M. E. Maguire,, and B. B. Finlay. 1992. Characterization of the microenvironment of Salmonella typhimurium containing vacuoles within MDCK epithelial cells. Mol. Microbiol. 6:32893297.
20. Garcia Vescovi, E.,, F. C. Soncini,, and E. A. Groisman. 1994. The role of the PhoP/PhoQ regulon in Salmonella virulence. Res. Microbiol. 145:473480.
21. Goldberg, M. B.,, S. A. Boyko,, and S. B. Calderwood. 1991. Positive transcriptional regulation of an iron-regulated virulence gene in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 88: 11251129.
22. Guangyong, J.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92: 1205512059.
23. Haas, M.,, B. Lindner,, U. Seydel,, and L. Levy. 1993. Comparison of the intrabacterial Na_K_ ratio and multiplication in the mouse foot pad as measures of the proportion of viable Mycobacterium leprae. Int. J. Antimicrobiol. Agents 2: 117128.
24. Heithoff, D. M.,, C. P. Conner,, P. C. Hanna,, S. M. Julio,, U. Henschel,, and M. J. Mahan. 1997. Bacterial infection assessed by in vivo gene expression. Proc. Natl. Acad. Sci. USA 94:934939.
25. Heithoff, D. M.,, C. P. Conner,, U. Hentschel,, F. Govantes,, P. C. Hanna,, and M. J. Mahan. 1999. Coordinate intracellular expression of Salmonella genes induced during infection in vivo. J. Bacteriol. 181:799807.
26. Heithoff, D. M.,, C. P. Conner,, and M. J. Mahan. 1997. Dissecting the pathology of a pathogen during infection. Trends Microbiol. 5: 509513.
27. Heithoff, D. M.,, R. L. Sinsheimer,, D. A. Low,, and M. J. Mahan. 1999. An essential role for DNA adenine methylation in bacterial virulence. Science 284:967970.
28. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton,, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
29. Hensel, M.,, J. E. Shea,, S. R. Waterman,, R. Mundy,, T. Nikolaus,, G. Banks,, A. Vazquez- Torres,, C. Gleeson,, F. C. Fang,, and D. W. Holden. 1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30:163174.
30. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379433.
31. Jacobi, C. A.,, A. Roggenkamp,, A. Rakin,, R. Zumbihi,, L. Leitritz,, and J. Heesemann. 1998. In vitro and in vivo expression studies of yopE from Yersinia enterocolitica using the g fp reporter gene. Mol. Microbiol. 30:865882.
32. Lawrence, J. G.,, and J. A. Roth. 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:18431860.
33. Lentner, C. 1981. Geigy Scientific Tables, vol. 1. Units of Measurement, Body Fluids, Composition of the Body, Nutrition. Ciba Geigy, Basel, Switzerland.
34. Lentner, C. 1984. Geigy Scientific Tables, vol. 3. Physical Chemistry, Composition of the Blood, Haematology, Sonatometric Data. Ciba Geigy, Basel, Switzerland.
35. Lockhardt, D. J.,, H. Dong,, M. C. Byrn,, M. T. Follettie,, M. W. Gallo,, M. S. Chie,, M. Mittmann,, C. Wang,, M. Kobayashi,, H. Horton,, and E. L. Brown. 1996. Expression monitoring by hybridisation to high density oligonucleotide arrays. Nature Biotech. 14:16751680.
36. Lowe, A. M.,, D. T. Beattie,, and R. C. Deresiewicz. 1998. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol. Microbiol. 27:967976.
37. Mahan, M. J.,, J. M. Slauch,, P. C. Hanna,, A. Camilli,, J. W. Tobias,, M. K. Waldor,, and J. J. Mekalanos. 1994. Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect. Agents Dis. 2:263268.
38. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in the host tissues. Science 259:686688.
39. Mahan, M. J.,, J. W. Tobias,, J. M. Slauch,, P. C. Hanna,, R. J. Collier,, and J. J. Mekalanos. 1995. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc. Natl. Acad. Sci. USA 92: 669673.
40. Mei, J. M.,, F. Nourbakhsh,, C. W. Ford,, and D. W. Holden. 1997. Identification of Staphylococcus aureus genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26:399407.
41. Michels, P. C.,, Y. L. Khmelnitsky,, J. S. Dordick,, and D. S. Clark. 1998. Combinatorial biocatalysis: a natural approach to drug discovery. TIBTECH 16:210215.
42. Morgan, A. J. 1985. X-ray Microanalysis: Electron Microscopy for Biologists. Oxford University Press, Oxford, England.
43. Pascopella, L.,, F. M. Collins,, J. M. Martin,, M. H. Lee,, G. F. Hatfull,, C. K. Stover,, B. R. Bloom,, and W. R. Jacobs. 1994. Use of in vivo complementation in Mycobacterium tuberculosis to identify a genome fragment associated with virulence. Infect. Immun. 62:13131319.
44. Passador, L.,, and B. H. Iglewski,. 1995. Quorum sensing and virulence gene regulation in Pseudomonas aeruginosa, p. 6578. In J. A. Roth,, C. A. Bolin,, K. A. Brogden,, F. C. Minion,, and M. J. Wannemuehler (ed.), Virulence Mechanisms of Bacterial Pathogens, 2nd ed. ASM Press, Washington, D. C.
45. Pawley, J. B. 1995. Handbook of Biological Confocal Microscopy. Plenum Press. New York, N.Y.
46. Perin, F.,, D. Laurence,, I. Savary,, S. Bernard,, and A. Le Pape. 1997. Radioactive technetium- 99m labelling of Salmonella abortusovis for assessment of bacterial dissemination in sheep by in vivo imaging. Vet. Microbiol. 51:171180.
47. Petterson, J.,, R. Nordfelth,, E. Dubinina,, T. Bergman,, M. Gustafsson,, K. E. Magnusson,, and H. Wolf-Watz. 1996. Modulation of virulence factor expression by pathogen target cell contact. Science 273:12311233.
48. Plum, G.,, and J. E. Clark-Curtiss. 1994. Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect. Immun. 62:476483.
49. Pollack, C.,, S. C. Straley,, and M. S. Klempner. 1986. Probing the phagolysosome environment of human phagocytes with a Ca2+ responsive operon fusion in Yersinia pestis. Nature (London) 332:834836.
50. Rainey, P. B.,, D. M. Heithoff,, and M. J. Mahan. 1997. Single step conjugation cloning of bacterial gene fusions involved in microbe-host interactions. Mol. Gen. Genet. 256:8487.
51. Ramsay, G. 1998. DNA chips: State-of-the-art. Nat. Biotech. 16:4044.
52. Rest, F. W. D. Quantitative Fluorescence Microscopy. Cambridge University Press, Cambridge, England.
53. Richter-Dahlfors, A.,, A. M. J. Buchan,, and B. B. Finlay. 1997. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186:569580.
54. Robson, N. D.,, A. R. J. Cox,, S. J. M. McGowan,, B. W. Bycroft,, and G. P. C. Salmond. 1997. Bacterial N-acyl-homoserinelactone- dependent signalling and its potential biotechnological applications. TIBTECH 15: 458464.
55. Schena, M.,, D. Shalon,, R. Heller,, A. Chai,, P. O. Brown,, and R. W. Davis. 1996. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93:1061410619.
56. Schwan, W. R.,, S. N. Coulter,, E. Y. W. Ng,, M. H. Langhorne,, H. D. Ritchie,, L. L. Brody,, S. Westbrock-Wadman,, A. S. Bayer,, K. R. Folger,, and C. K. Stover. 1998. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect. Immun. 66:567572.
57. Seydel, U.,, M. Haas,, E. T. Rietschel,, and B. Lindner. 1992. Laser probe mass spectrometry of individual bacteria organisms and of isolated bacterial compounds; a tool in microbiology. J. Microbiol Methods 15:167181.
58. Shea, J. E.,, M. Hensel,, C. Gleeson,, and D. W. Holden. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93:25932597.
59. Skorupski, K.,, and R. K. Taylor. 1997. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol. Microbiol. 25: 10031009.
60. Smith, H., 1988. The state and future of studies on bacterial pathogenicity, p. 365382. In J. A. Roth (ed.), Virulence Mechanisms of Bacterial Pathogens. American Society for Microbiology, Washington, D.C.
61. Smith, H. 1990. Pathogenicity and the microbe in vivo. J. Gen. Microbiol. 136:377393.
62. Smith, H. 1995. The revival of interest in mechanisms of bacterial pathogenicity. Biol. Rev. 70: 277316.
63. Smith, H., 1995. The state and future of studies on bacterial pathogenicity, p. 335359. In J. A. Roth,, C. A. Bolin,, K. A. Brogden,, F. C. Minion,, and M. J. Wannemuehler (ed.), Virulence Mechanisms of Bacterial Pathogens, 2nd ed. ASM Press, Washington, D.C.
64. Smith, H. 1996. What happens in vivo to bacterial pathogens? Ann. N. Y. Acad. Sci. 797:7792.
65. Spencer, A. J.,, M. P. Osbourne,, S. J. Haddon,, J. Collins,, W. G. Starkey,, D. C. A. Candy,, and J. Stephen. 1990. Xray microanalysis of rotavirus-infected mouse intestine: a new concept of diarrhoeal secretion. J. Pediatr. Gastroenterol. Nutr. 10:516529.
66. Strauss, E. J.,, and S. Falkow. 1997. Microbial pathogenesis, genomes and beyond. Science 276: 701712.
67. Suk, K.,, S. Das,, W. Sun,, B. Jwang,, S. W. Barthold,, R. A. Flavell,, and E. Fikrig. 1995. Borrelia burgdorferi genes selectively expressing in the infected host. Proc. Natl. Acad. Sci. USA 92: 42694273.
68. Tang, C.,, and D. W. Holden. 1999. Pathogen virulence genes-implications for vaccines and drug therapy. Brit. Med. Bull. 55:387400.
69. Valdivia, R. H.,, and S. Falkow. 1997. Fluorescence- based isolation of bacterial genes expressed within host cells. Science 277:20072011.
70. Valdivia, R. H.,, and S. Falkow. 1997. Probing bacterial gene expression within host cells. Trends Microbiol. 5:360363.
71. Wallich, R.,, C. Brenner,, M. D. Kramer,, and M. M. Simon. 1995. Molecular cloning and immunological characterization of a novel linear plasmid-encoded gene pG of Borrelia burgdorferi expressed only in vivo. Infect. Immun. 63:33273335.
72. Wang, J.,, S. Lory,, R. Ramphal,, and S. Jin. 1996. Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol. Microbiol. 22:10051012.
73. Wang, J.,, A. Mushegian,, S. Lory,, and S. Jin. 1996. Large scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA 93:1043410439.
74. Weinberg, E. D., 1995. Acquisition of iron and other nutrients in vivo, p. 7993. In J. A. Roth,, C. A. Bolin,, R. A. Brogden,, F. C. Minion,, and M. J. Wannemuehler (ed.), Virulence Mechanisms of Bacterial Pathogens, 2nd ed. ASM Press, Washington, D.C.
75. Winson, M. K.,, M. Cormara,, A. Latifi,, M. Foglino,, S. R. Chhabra,, M. Daykin,, M. Bally,, V. Chapon,, G. P. C. Salmond,, B. W. Bycroft,, A. Lazdunski,, G. S. A. B. Stewart,, and P. Williams. 1995. Multiple N-acyl-Lhomoserinelactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:94279431.
76. Young, G. M.,, and V. L. Miller. 1997. Identification of novel chromosome loci affecting Yersinia entercolitica pathogenesis. Mol. Microbiol. 25: 319328.

Tables

Generic image for table
TABLE 1

New methods for studying bacterial behavior in vivo

Citation: Smith H. 2000. State and Future of Studies on Bacterial Pathogenicity: Impact of New Methods of Studying Bacterial Behavior in Vivo, p 265-282. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error