1887

Chapter 2 : Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap02-2.gif

Abstract:

The small antimicrobial peptides found in phagocytic cells, epithelial cells, and on mucosal surfaces and their mechanisms of antimicrobial killing have been reviewed recently. The chapter summarizes them as background for discussing the numerous strategies that microorganisms use to avoid being killed by them. This is an exciting area of research. Identification of mechanisms for resistance to antimicrobial peptides can provide insight as to how microorganisms interact with the innate immune system to either produce progressive infection or enter into commensal, latency, or carrier states. In the early 1980s, Hans Boman and Robert Lehrer independently isolated and purified the first families of insect cecropins and mammalian defensins, respectively. Larger antimicrobial proteins have been fragmented experimentally into smaller peptides to search for the smallest sequence representing the antimicrobial domain. Many pathogenic organisms are susceptible in vitro to antimicrobial peptides, but in vivo can exist in environments containing the same concentrations of antimicrobial peptides. Rapid penetration of epithelial cells reduces the time of contact between microorganisms and antimicrobial peptides in mucosal secretions. Direct adaptation by gram-negative and gram-positive microorganisms to become resistant in an environment containing antimicrobial peptides is the most characterized strategy. A variety of nonimmune and immune mechanisms have evolved at mucosal surfaces to prevent microbial invasion and damage. Predominant among the nonimmune mechanisms is the presence of a multiple peptide-containing constitutive and inducible antimicrobial barrier in the granules of phagocytes and mucosal fluids.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The lysis of bacterial membranes by antimicrobial peptides. (A) Peptides may competitively displace divalent cations (e.g., magnesium and calcium) from their binding sites on the LPS in the outer leaflet of the outer membrane. (B) This distorts the outer membrane, often resulting in the formation of blebs. (C) The peptide moves into the periplasm and makes contact with the cytoplasmic membrane. (D) The peptide then penetrates the membrane, creating lethal, lytic pores.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

PAO1 incubated with a synthetic cathelicidin. (A) Scanning electron micrograph showing the presence of blebs induced by the interaction of the peptide with the outer envelope. (B) Transmission electron micrograph of a thin section of PAO1. Specific antibody and protein A colloidal gold labeling can be used to demonstrate the rapid penetration of the peptide into the bacterial cell. Note the extensive outer membrane material that has been “scrubbed” from the bacterial cell surface. Panel A courtesy of Hong Peng Jia, Paul McCray, Jr., and Brian Tack, Departments of Pediatrics, and Microbiology, University of Iowa College of Medicine, Iowa City, Iowa.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Transmission electron micrograph of serotype A1 strain 82-25 incubated in zinc saline solution (A) and zinc saline solution containing 0.5 mM anionic peptide (B–D). Note the distended outer envelope (B) and flocculated intracellular constituents (C and D) in cells incubated with anionic peptide. Bars, 0.5 M.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

An LPS molecule containing a long, covalently linked heteropolysaccharide that is subdivided into the core and O-specific chain regions linked to a lipid region, lipid A ( ). The sites altered for increased antimicrobial resistance include the O-specific side chain, phosphate groups attached to the core region, and lipid A. The changes in lipid A include (i) adding aminoarabinose to lipid A phosphate groups, (ii) forming heptaacylated lipid A by adding palmitate, and (iii) replacing myristate on lipid A with 2-OH myristate. Adapted from Luderitz et al. ( ).

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The proposed role of the operon in reducing the net negative cell charge by adding d-alanine to the teichoic acid, thus charge repelling cationic host antimicrobial peptides ( ). A d-alanine-d-alanyl carrier protein ligase () activates d-alanine in the bacterial cytoplasm by hydrolysis of ATP and transfers it to the phosphopantetheine cofactor of the specific d-alanine carrier protein (). The hydrophobic protein then picks up the d-alanine and transfers it across the cytoplasmic membrane. and the presence of a putative -terminal signal peptide then catalyzes the esterification of teichoic acid alditol groups with d-alanine, resulting in the introduction of positive charges into the negatively charged teichoic acids. Adapted from Peschel et al. ( ).

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Antimicrobial resistance mechanisms involving the transport of antimicrobial peptides into the cell (via the ATP-binding cassette transporter) or away from the cell (via the RND efflux pump). Both mechanisms require energy and active transport of peptide for antimicrobial resistance. (A) SapABCDF transporter transports toxic peptides into the cytoplasm. SapA contains a signal sequence and has a predicted periplasmic location. SapB and C have predicted hydrophobic regions that correspond to transmembrane domains. SapD and F are similar to several members of the ATP-binding cassette family. The transporter is thought to capture and transport antimicrobial peptides through the target cytoplasmic membrane. The peptide is then thought to be either digested and inactivated by periplasmic peptidases or transported intracellularly to initiate a regulatory cascade that activates other resistance mechanisms. (B) The RND efflux pump used by bacteria to remove toxic, foreign compounds from the cytoplasmic membrane. Peptides cross the membrane and enter into either the periplasm or cytoplasm. Here the materials are collected and transported through an mtrC, D, and E pore spanning both membranes. Adapted from Groisman ( ) and Nikaido ( ).

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap2
1. Ackermann, M. R.,, N. F. Cheville,, and J. E. Gallagher. 1991. Colonization of the pharyngeal tonsil and respiratory tract of the gnotobiotic pig by a toxigenic strain of Pasteurella multocida type D. Vet. Pathol. 28: 267 274.
2. Antonyraj, K. J.,, T. Karunakaran,, and P. A. Raj. 1998. Bactericidal activity and poly-Lproline II conformation of the tandem repeat sequence of human salivary mucin glycoprotein (MG2). Arch. Biochem. Biophys. 356: 197 206.
3. Arima, H.,, H. R. Ibrahim,, T. Kinoshita,, and A. Kato. 1997. Bactericidal action of lysozymes attached with various sizes of hydrophobic peptides to the C-terminal using genetic modification. FEBS Lett. 415: 114 118.
4. Aspedon, A.,, and E. A. Groisman. 1999. Involvement of a protease in antimicrobial peptide resistance in Pseudomonas aeruginosa, abstr. A-67, p. 14. In Proceedings of the 99th General Meeting of the American Society for Microbiology, American Society for Microbiology, Washington, D.C.
5. Baker, S. J.,, J. S. Gunn,, and R. Morona. 1999. The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMAdifferentiated U937 cells, polymyxin B resistance and lipopolysaccharide. Microbiology 145: 367 378.
6. Bals, R.,, X. R. Wang,, M. Zasloff,, and J. M. Wilson. 1998. The peptide antibiotic LL-37/ hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA 95: 9541 9546.
7. Banemann, A.,, H. Deppisch,, and R. Gross. 1998. The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect. Immun. 66: 5607 5612.
8. Bartlett, J. G., 1981. Bacteriological diagnosis of pulmonary infections, p. 707 745. In M. A. Sackner (ed.), Diagnostic Techniques in Pulmonary Disease, vol. 16. Marcel Dekker, Inc., New York, N.Y.
9. Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13: 61 92..
10. Bottari, E. 1990. Zinc(II) complexes with aspartate and glutamate. J. Coord. Chem. 21: 215 224.
11. Brogden, K. A. 1992. Ovine pulmonary surfactant induces killing of Pasteurella haemolytica, Escherichia coli, and Klebsiella pneumoniae by normal serum. Infect. Immun. 60: 5182 5189.
12. Brogden, K. A.,, M. Ackermann,, and K. M. Huttner. 1997. Small, anionic, and chargeneutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob. Agents Chemother. 41: 1615 1617.
13. Brogden, K. A.,, M. R. Ackermann,, P. B. McCray, Jr.,, and K. M. Huttner. 1999. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infect. Immun. 67: 4256 4259.
14. Brogden, K. A.,, A. J. De Lucca,, J. Bland,, and S. Elliott. 1996. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA 93: 412 416.
15. Brogden, K. A.,, H. D. Lehmkuhl,, and R. C. Cutlip. 1998. Pasteurella haemolytica complicated respiratory infections in sheep and goats. Vet. Res. 29: 233 254.
16. Brogden, K. A.,, J. T. Meehan,, and H. D. Lehmkuhl. 1994. Salmonella arizonae infection and colonisation of the upper respiratory tract of sheep. Vet. Rec. 135: 410 411.
17. Brubaker, R. R. 1991. Factors promoting acute and chronic diseases caused by yersiniae. Clin. Microbiol. Rev. 4: 309 324.
18. Campanelli, D.,, P. A. Detmers,, C. F. Nathan,, and J. E. Gabay. 1990. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. J. Clin. Invest. 85: 904 915.
19. Davis, P. B.,, M. Drumm,, and M. W. Konstan. 1996. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154: 1229 1256.
20. de Haen, C.,, H. Neurath,, and D. C. Teller. 1975. The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J. Mol. Biol. 92: 225 259.
21. DeVoe, I. W. 1982. The meningococcus and mechanisms of pathogenicity. Microbiol. Rev. 46: 162 190.
22. DeVoe, I. W.,, and J. E. Gilchrist. 1973. Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitidis. J. Exp. Med. 138: 1156 1167.
23. Diamond, G.,, M. Zasloff,, H. Eck,, M. Brasseur,, W. Maloy,, and C. Bevins. 1992. A novel antimicrobial peptide from mammalian tracheal mucosa. Chest 101: 47S.
24. Diamond, G.,, M. Zasloff,, H. Eck,, M. Brasseur,, W. L. Maloy,, and C. L. Bevins. 1991. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA 88: 3952 3956.
25. Eisenhauer, P. B.,, S. S. L. Harwig,, and R. I. Lehrer. 1992. Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun. 60: 3556 3565.
26. Ellison, R. T., III,, D. Boose,, and F. M. LaForce. 1985. Isolation of an antibacterial peptide from human lung lavage fluid. J. Infect. Dis. 151: 1123 1129.
27. Elsbach, P.,, J. Weiss,, and O. Levy. 1994. Integration of antimicrobial host defenses: role of the bactericidal/permeability-increasing protein. Trends Microbiol. 2: 324 328.
28. Franken, C.,, C. J. Meijer,, and J. H. Dijkman. 1989. Tissue distribution of antileukoprotease and lysozyme in humans. J. Histochem. Cytochem. 37: 493 498.
29. Frohm Nilsson, M.,, B. Sandstedt,, O. Sorensen,, G. Weber,, N. Borregaard,, and M. Stahle-Backdahl. 1999. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect. Immun. 67: 2561 2566.
30. Gabay, C.,, and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340: 448 454.
31. Gabay, J. E.,, and R. P. Almeida. 1993. Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes: defensins and azurocidin. Curr. Opin. Immunol. 5: 97 102.
32. Galask, R. P.,, and I. S. Snyder. 1968. Bacterial inhibition by amniotic fluid. Am. J. Obstet. Gynecol. 102: 949 955.
33. Ganz, T.,, M. E. Selsted,, and R. I. Lehrer. 1990. Defensins. Eur. J. Haematol. 44: 1 8.
34. Gorbach, S. L. 1986. Bengt E. Gustafsson memorial lecture. Function of the normal human microflora. Scand. J. Infect. Dis. Suppl. 49: 17 30.
35. Gorter, A. D.,, P. P. Eijk,, S. van Wetering,, P. S. Hiemstra,, J. Dankert,, and L. van Alphen. 1998. Stimulation of the adherence of Haemophilus influenzae to human lung epithelial cells by antimicrobial neutrophil defensins. J. Infect. Dis. 178: 1067 1074.
36. Grandjean, V.,, S. Vincent,, L. Martin,, M. Rassoulzadegan,, and F. Cuzin. 1997. Antimicrobial protection of the mouse testis: synthesis of defensins of the cryptdin family. Biol. Repro. 57: 1115 1122.
37. Groisman, E. A. 1994. How bacteria resist killing by host-defense peptides. Trends Microbiol. 2: 444 448.
38. Gunn, J. S.,, K. B. Lim,, J. Krueger,, K. Kim,, L. Guo,, M. Hackett,, and S. I. Miller. 1998. PmrA-PmrB-regulated genes necessary for 4- aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27: 1171 1182.
39. Guo, L.,, K. B. Lim,, J. S. Gunn,, B. Bainbridge,, R. P. Darveau,, M. Hackett,, and S. I. Miller. 1997. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276: 250 253.
40. Guo, L.,, K. B. Lim,, C. M. Poduje,, M. Daniel,, J. S. Gunn,, M. Hackett,, and S. I. Miller. 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95: 189 198.
41. Hancock, R. E. W. 1997. Peptide antibiotics. Lancet 349: 418 422.
42. Harwig, S. S.,, V. N. Kokryakov,, K. M. Swiderek,, G. M. Aleshina,, C. Zhao,, and R. I. Lehrer. 1995. Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 362: 65 69.
43. Hiemstra, P. S.,, R. J. Maassen,, J. Stolk,, R. Heinzel-Wieland,, G. J. Steffens,, and J. H. Dijkman. 1996. Antibacterial activity of antileukoprotease. Infect. Immun. 64: 4520 4524.
44. Holak, T. A.,, A. Engstrom,, P. J. Kraulis,, G. Lindeberg,, H. Bennich,, T. A. Jones,, A. M. Gronenborn,, and G. M. Clore. 1988. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27: 7620 7629.
45. Hristova, K.,, M. E. Selsted,, and S. H. White. 1997. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem. 272: 24224 24233.
46. Huttner, K. M.,, D. J. Brezinski-Caliguri,, M. M. Mahoney,, and G. Diamond. 1998. Antimicrobial peptide expression is developmentally regulated in the ovine gastrointestinal tract. J. Nutr. 128: 297S 299S.
47. Huttner, K. M.,, C. A. Kozak,, and C. L. Bevins. 1997. The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett. 413: 45 49.
48. Iannuzzi, L.,, D. S. Gallagher,, G. P. Di Meo,, G. Diamond,, C. L. Bevins,, and J. E. Womack. 1996. High-resolution FISH mapping of β-defensin genes to river buffalo and sheep chromosomes suggests a chromosome discrepancy in cattle standard karyotypes. Cytogenet. Cell Genet. 75: 10 13.
49. Jakab, G. J. 1982. Viral-bacterial interactions in pulmonary infection. Adv. Vet. Sci. Comp. Med. 26: 155 171.
50. Juretic, D.,, H. C. Chen,, J. H. Brown,, J. L. Morell,, R. W. Hendler,, and H. V. Westerhoff. 1989. Magainin 2 amide and analogues. Antimicrobial activity, membrane depolarization and susceptibility to proteolysis. FEBS Lett. 249: 219 223.
51. Kaser, M. R.,, and G. G. Skouteris. 1997. Inhibition of bacterial growth by synthetic SP-B1- 78 peptides. Peptides 18: 1441 1444.
52. Ketterer, M. R.,, J. Q. Shao,, D. B. Hornick,, B. Buscher,, V. K. Bandi,, and M. A. Apicella. 1999. Infection of primary human bronchial epithelial cells by Haemophilus influenzae: macropinocytosis as a mechanism of airway epithelial cell entry. Infect. Immun. 67: 4161 4170.
53. Kuwata, H.,, T. T. Yip,, C. L. Yip,, M. Tomita,, and T. W. Hutchens. 1998. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem. Biophys. Res. Commun. 245: 764 773.
54. LaForce, F. M.,, and D. S. Boose. 1984. Effect of zinc and phosphate on an antibacterial peptide isolated from lung lavage. Infect. Immun. 45: 692 696.
54a. Leenhouts, J. M.,, P. W. J. van den Wijngaard,, A. I. P. M. de Kroon,, and B. de Kruijff. 1995. Anionic phospholipids can mediate membrane insertion of the anionic part of a bound peptide. FEBS Lett. 370: 189 192.
55. Lehrer, R. I.,, A. Barton,, K. A. Daher,, S. S. Harwig,, T. Ganz,, and M. E. Selsted. 1989. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84: 553 561.
56. Lehrer, R. I.,, and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11: 23 27.
57. Lehrer, R. I.,, T. Ganz,, and M. E. Selsted. 1991. Defensins: endogenous antibiotic peptides of animal cells. Cell 64: 229 230.
58. Littauer, U. Z.,, and M. Sela. 1962. An ultracentrifugal study of the efficiency of some macromolecular inhibitors of ribonuclease. Biochim. Biophys. Acta 61: 609 611.
59. Luderitz, O.,, M. A. Freudenberg,, C. Galanos,, V. Lehmann,, E. T. Rietschel,, and D. H. Shaw. 1982. Lipopolysaccharides of Gram- Negative Bacteria, vol. 17. Academic Press, Inc., New York, N.Y.
60. Luderitz, O.,, K.-I. Tanamoto,, C. Galanos,, O. Westphal,, U. Zahringer,, E. T. Rietschel,, S. Kusumoto,, and T. Shiba,. 1983. Structural principles of lipopolysaccharides and biological properties of synthetic partial structures, p. 3 17. In L. Anderson, and F. M. Unger (ed.), Bacterial Lipopolysaccharides. American Chemical Society, Washington, D.C.
61. Macias, E. A.,, F. Rana,, J. Blazyk,, and M. C. Modrzakowski. 1990. Bactericidal activity of magainin 2: use of lipopolysaccharide mutants. Can. J. Microbiol. 36: 582 584.
62. Martinez de Tejada, G.,, J. Pizarro-Cerda,, E. Moreno,, and I. Moriyon. 1995. The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect. Immun. 63: 3054 3061.
63. McCray, P. B., Jr.,, and L. Bentley. 1997. Human airway epithelia express a ?-defensin. Am. J. Respir. Cell Mol. Biol. 16: 343 349.
64. McNabb, P. C.,, and T. B. Tomasi. 1981. Host defense mechanisms at mucosal surfaces. Annu. Rev. Microbiol. 35: 477 496.
65. Meehan, J. T.,, K. A. Brogden,, C. Courtney,, R. C. Cutlip,, and H. D. Lehmkuhl. 1992. Chronic proliferative rhinitis associated with Salmonella arizonae in sheep. Vet. Pathol. 29: 556 559.
66. Menache, M. G.,, L. M. Hanna,, E. A. Gross,, S. R. Lou,, S. J. Zinreich,, D. A. Leopold,, A. M. Jarabek,, and F. J. Miler. 1997. Upper respiratory tract surface areas and volumes of laboratory animals and humans: considerations for dosimetry models. J. Toxicol. Environ. Health 50: 475 506.
67. Nicolas, P.,, and A. Mor. 1995. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 49: 277 304.
68. Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178: 5853 5859.
69. Nissen-Meyer, J.,, and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67 77.
70. Odeberg, H.,, and I. Olsson. 1975. Antibacterial activity of cationic proteins from human granulocytes. J. Clin. Invest. 56: 1118 1124.
71. Panyutich, A. V.,, P. S. Hiemstra,, S. van Wetering,, and T. Ganz. 1995. Human neutrophil defensin and serpins form complexes and inactivate each other. Am. J. Respir. Cell Mol. Biol. 12: 351 357.
72. Parker, M.,, A. D. Tucker,, D. Tsernoglou,, and F. Pattus. 1990. Insights into membrane insertion based on studies of colicins. Trends Biochem. Sci. 15: 126 129.
73. Parra-Lopez, C.,, M. T. Baer,, and E. Groisman. 1993. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J. 12: 4053 4062.
74. Pellegrini, A.,, U. Thomas,, N. Bramaz,, P. Hunziker,, and R. von Fellenberg. 1999. Isolation and identification of three bactericidal domains in the bovine alpha-lactalbumin molecule. Biochim. Biophys. Acta 1426: 439 448.
75. Pellegrini, A.,, U. Thomas,, N. Bramaz,, S. Klauser,, P. Hunziker,, and R. von Fellenberg. 1996. Identification and isolation of the bactericidal domains in the proteinase inhibitor aprotinin. Biochem. Biophys. Res. Commun. 222: 559 565.
76. Penn, C. W., 1992. Chronic infections, latency and the carrier state, p. 107 125. In C. E. Hormaeche,, C. W. Penn,, and C. J. Smyth (ed.), Molecular Biology of Bacterial Infection. Cambridge University Press, Dublin.
77. Pereira, H. A.,, I. Erdem,, J. Pohl,, and J. K. Spitznagel. 1993. Synthetic bactericidal peptide based on CAP37: a 37-kDa human neutrophil granule-associated cationic antimicrobial protein chemotactic for monocytes. Proc. Natl. Acad. Sci. USA 90: 4733 4737.
78. Peschel, A.,, M. Otto,, R. W. Jack,, H. Kalbacher,, G. Jung,, and F. Gotz. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274: 8405 8410.
79. Peterson, A. A.,, A. Haug,, and E. J. Mc- Groarty. 1986. Physical properties of short- and long-O-antigen-containing fractions of lipopolysaccharide from Escherichia coli 0111:B4. J. Bacteriol. 165: 116 122.
80. Porter, E. M.,, E. van Dam,, E. V. Valore,, and T. Ganz. 1997. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect. Immun. 65: 2396 2401.
81. Quayle, A. J.,, E. M. Porter,, A. A. Nussbaum,, Y. M. Wang,, C. Brabec,, K. P. Yip,, and S. C. Mok. 1998. Gene expression, immunolocalization, and secretion of human defensin- 5 in human female reproductive tract. Am. J. Pathol. 152: 1247 1258.
82. Raj, P. A.,, E. Marcus,, and D. K. Sukumaran. 1998. Structure of human salivary histatin 5 in aqueous and nonaqueous solutions. Biopolymers 45: 51 67.
83. Resnick, N. M.,, W. L. Maloy,, H. R. Guy,, and M. Zasloff. 1991. A novel endopeptidase from Xenopus that recognizes alpha-helical secondary structure. Cell 66: 541 554.
84. Riley, L. K.,, and D. C. Robertson. 1984. Ingestion and intracellular survival of Brucella abortus in human and bovine polymorphonuclear leukocytes. Infect. Immun. 46: 224 230.
85. Roland, K. L.,, C. R. Esther,, and J. K. Spitznagel. 1994. Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies. J. Bacteriol. 176: 3589 3597.
86. Russell, R. R. B. 1976. Free endotoxin—a review. Microbios Lett. 2: 125 135.
87. Sachs, B. P. 1979. Activity and characterization of a low molecular fraction present in human amniotic fluid with broad spectrum antibacterial activity. Br. J. Obstet. Gynecol. 86: 81 86.
88. Schlievert, P.,, W. Johnson,, and R. P. Galask. 1976. Bacterial growth inhibition by amniotic fluid. VI. Evidence for a zinc-peptide antibacterial system. Am. J. Obstet. Gynecol. 125: 906 910.
89. Schlievert, P.,, W. Johnson,, and R. P. Galask. 1976. Isolation of a low-molecular weight antibacterial system from human amniotic fluid. Infect. Immun. 14: 1156 1166.
90. Schnapp, D.,, and A. Harris. 1998. Antibacterial peptides in bronchoalveolar lavage fluid. Am. J. Respir. Cell Mol. Biol. 19: 352 356.
91. Schonwetter, B. S.,, E. D. Stolzenberg,, and M. A. Zasloff. 1995. Epithelial antibiotics induced at sites of inflammation. Science 267: 1645 1648.
92. Sela, M. 1962. Inhibition of ribonuclease by copolymers of glutamic acid and aromatic amino acids. J. Biol. Chem. 237: 418 421.
93. Shafer, W. M.,, L. E. Martin,, and J. K. Spitznagel. 1984. Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate. Infect. Immun. 45: 29 35.
94. Shafer, W. M.,, L. E. Martin,, and J. K. Spitznagel. 1986. Late intraphagosomal hydrogen ion concentration favors the in vitro antimicrobial capacity of a 37-kilodalton cationic granule protein of human neutrophil granulocytes. Infect. Immun. 53: 651 655.
95. Shafer, W. M.,, X. Qu,, A. J. Waring,, and R. I. Lehrer. 1998. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/ nodulation/division efflux pump family. Proc. Natl. Acad. Sci. USA 95: 1829 1833.
96. Shamova, O.,, K. A. Brogden,, C. Zhao,, T. Nguyen,, V. N. Kokryakov,, and R. I. Lehrer. 1999. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect. Immun. 67: 4106 4111.
97. Shoo, M. K.,, A. Wiseman,, E. M. Allan,, R. G. Dalgleish,, H. A. Gibbs,, A. B. Al Hendi,, and I. E. Selman. 1990. Distribution of Pasteurella haemolytica in the respiratory tracts of carrier calves and those subsequently infected experimentally with Dictyocaulus viviparus. Res. Vet. Sci. 48: 383 385.
98. Siden, I.,, and H. G. Boman. 1983. Escherichia coli mutants with an altered sensitivity to cecropin D. J. Bacteriol. 154: 170 176.
99. Skerlavaj, B.,, D. Romeo,, and R. Gennaro. 1990. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect. Immun. 58: 3724 3730.
100. Smith, H. 1995. The revival of interest in mechanisms of bacterial pathogenicity. Biol. Rev. Camb. Philos. Soc. 70: 277 316.
101. Smith, H., 1995. The state and future of studies on bacterial pathogenicity, p. 335 357. In J. A. Roth,, C. A. Bolin,, K. A. Brogden,, F. C. Minion,, and M. J. Wannemuehler (ed.), Virulence Mechanisms of Bacterial Pathogens, 2nd ed. ASM Press, Washington, D.C.
102. Smith, J. J.,, S. M. Travis,, E. P. Greenberg,, and M. J. Welsh. 1996. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85: 229 236.
103. Steiner, H. 1982. Secondary structure of the cecropins; antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett. 137: 283 287.
104. Stolzenberg, E. D.,, G. M. Anderson,, M. R. Ackermann,, R. H. Whitlock,, and M. Zasloff. 1997. Epithelial antibiotic induced in states of disease. Proc. Natl. Acad. Sci. USA 94: 8686 8690.
105. Thorne, K. J.,, R. C. Oliver,, and A. J. Barrett. 1976. Lysis and killing of bacteria by lysosomal proteinases. Infect. Immun. 14: 555 563.
106. Tomita, M.,, H. Wakabayashi,, and W. Bellamy. 1994. Antimicrobial peptides of lactoferrin. Adv. Exp. Med. Biol. 357: 209 218.
107. Turner, J.,, Y. Cho,, N. N. Dinh,, A. J. Waring,, and R. I. Lehrer. 1998. Activities of LL- 37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42: 2206 2214.
108. van der Goot, F. G.,, N. Didat,, F. Pattus,, W. Dowhan,, and L. Letellier. 1993. Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. Eur. J. Biochem. 213: 217 221.
109. Vandendriessche, L. 1956. Inhibitors of ribonuclease activity. Arch. Biochem. Biophys. 65: 347 353.
110. Visser, L. G.,, P. S. Hiemstra,, M. T. Van Den Barselaar,, P. A. Ballieux,, and R. Van Furth. 1996. Role of yadA in resistance to killing of Yersinia enterocolitica by antimicrobial polypeptides of human granulocytes. Infect. Immun. 64: 1653 1658.
111. Wasiluk, K. R.,, K. M. Skubitz,, and B. H. Gray. 1991. Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa. Infect. Immun. 59: 4193 4200.
112. Weiser, J. N. 1999. Adaptation of respiratory tract pathogens to innate and acquired immunity. Pediatr. Pulmon. 19( Suppl.): 126 127.
113. Weiser, J. N.,, J. B. Goldberg,, N. Pan,, L. Wilson,, and M. Virji. 1998. The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infect. Immun. 66: 4263 4267.
114. Weiser, J. N.,, N. Pan,, K. L. McGowan,, D. Musher,, A. Martin,, and J. Richards. 1998. Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J. Exp. Med. 187: 631 640.
115. Weiser, J. N.,, M. Shchepetov,, and S. T. Chong. 1997. Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect. Immun. 65: 943 950.
116. Wiebe, B. M.,, and H. Laursen. 1995. Human lung volume, alveolar surface area, and capillary length. Microsc. Res. Tech. 32: 255 262.
117. Wu, E. R.,, R. Daniel,, and A. Bateman. 1998. RK-2: a novel rabbit kidney defensin and its implications for renal host defense. Peptides 19: 793 799.
118. Yarnall, M.,, and L. B. Corbeil. 1989. Antibody response to Haemophilus somnus Fc receptor. J. Clin. Microbiol. 27: 111 117.
119. Zanetti, M.,, G. Del Sal,, P. Storici,, C. Schneider,, and D. Romeo. 1993. The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J. Biol. Chem. 268: 522 526.
120. Zanetti, M.,, R. Gennaro,, and D. Romeo. 1995. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374: 1 5.

Tables

Generic image for table
TABLE 1

Antimicrobial proteins in neutrophil granules

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Generic image for table
TABLE 2

Antimicrobial proteins in mucosal fluids

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Generic image for table
TABLE 3

Structural classes of cationic peptides

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Generic image for table
TABLE 4

Mechanisms of bacterial evasion of host-derived antimicrobial peptides on mucosal surfaces

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error