1887

Chapter 2 : Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap02-2.gif

Abstract:

The small antimicrobial peptides found in phagocytic cells, epithelial cells, and on mucosal surfaces and their mechanisms of antimicrobial killing have been reviewed recently. The chapter summarizes them as background for discussing the numerous strategies that microorganisms use to avoid being killed by them. This is an exciting area of research. Identification of mechanisms for resistance to antimicrobial peptides can provide insight as to how microorganisms interact with the innate immune system to either produce progressive infection or enter into commensal, latency, or carrier states. In the early 1980s, Hans Boman and Robert Lehrer independently isolated and purified the first families of insect cecropins and mammalian defensins, respectively. Larger antimicrobial proteins have been fragmented experimentally into smaller peptides to search for the smallest sequence representing the antimicrobial domain. Many pathogenic organisms are susceptible in vitro to antimicrobial peptides, but in vivo can exist in environments containing the same concentrations of antimicrobial peptides. Rapid penetration of epithelial cells reduces the time of contact between microorganisms and antimicrobial peptides in mucosal secretions. Direct adaptation by gram-negative and gram-positive microorganisms to become resistant in an environment containing antimicrobial peptides is the most characterized strategy. A variety of nonimmune and immune mechanisms have evolved at mucosal surfaces to prevent microbial invasion and damage. Predominant among the nonimmune mechanisms is the presence of a multiple peptide-containing constitutive and inducible antimicrobial barrier in the granules of phagocytes and mucosal fluids.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The lysis of bacterial membranes by antimicrobial peptides. (A) Peptides may competitively displace divalent cations (e.g., magnesium and calcium) from their binding sites on the LPS in the outer leaflet of the outer membrane. (B) This distorts the outer membrane, often resulting in the formation of blebs. (C) The peptide moves into the periplasm and makes contact with the cytoplasmic membrane. (D) The peptide then penetrates the membrane, creating lethal, lytic pores.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

PAO1 incubated with a synthetic cathelicidin. (A) Scanning electron micrograph showing the presence of blebs induced by the interaction of the peptide with the outer envelope. (B) Transmission electron micrograph of a thin section of PAO1. Specific antibody and protein A colloidal gold labeling can be used to demonstrate the rapid penetration of the peptide into the bacterial cell. Note the extensive outer membrane material that has been “scrubbed” from the bacterial cell surface. Panel A courtesy of Hong Peng Jia, Paul McCray, Jr., and Brian Tack, Departments of Pediatrics, and Microbiology, University of Iowa College of Medicine, Iowa City, Iowa.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Transmission electron micrograph of serotype A1 strain 82-25 incubated in zinc saline solution (A) and zinc saline solution containing 0.5 mM anionic peptide (B–D). Note the distended outer envelope (B) and flocculated intracellular constituents (C and D) in cells incubated with anionic peptide. Bars, 0.5 M.

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

An LPS molecule containing a long, covalently linked heteropolysaccharide that is subdivided into the core and O-specific chain regions linked to a lipid region, lipid A ( ). The sites altered for increased antimicrobial resistance include the O-specific side chain, phosphate groups attached to the core region, and lipid A. The changes in lipid A include (i) adding aminoarabinose to lipid A phosphate groups, (ii) forming heptaacylated lipid A by adding palmitate, and (iii) replacing myristate on lipid A with 2-OH myristate. Adapted from Luderitz et al. ( ).

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The proposed role of the operon in reducing the net negative cell charge by adding d-alanine to the teichoic acid, thus charge repelling cationic host antimicrobial peptides ( ). A d-alanine-d-alanyl carrier protein ligase () activates d-alanine in the bacterial cytoplasm by hydrolysis of ATP and transfers it to the phosphopantetheine cofactor of the specific d-alanine carrier protein (). The hydrophobic protein then picks up the d-alanine and transfers it across the cytoplasmic membrane. and the presence of a putative -terminal signal peptide then catalyzes the esterification of teichoic acid alditol groups with d-alanine, resulting in the introduction of positive charges into the negatively charged teichoic acids. Adapted from Peschel et al. ( ).

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Antimicrobial resistance mechanisms involving the transport of antimicrobial peptides into the cell (via the ATP-binding cassette transporter) or away from the cell (via the RND efflux pump). Both mechanisms require energy and active transport of peptide for antimicrobial resistance. (A) SapABCDF transporter transports toxic peptides into the cytoplasm. SapA contains a signal sequence and has a predicted periplasmic location. SapB and C have predicted hydrophobic regions that correspond to transmembrane domains. SapD and F are similar to several members of the ATP-binding cassette family. The transporter is thought to capture and transport antimicrobial peptides through the target cytoplasmic membrane. The peptide is then thought to be either digested and inactivated by periplasmic peptidases or transported intracellularly to initiate a regulatory cascade that activates other resistance mechanisms. (B) The RND efflux pump used by bacteria to remove toxic, foreign compounds from the cytoplasmic membrane. Peptides cross the membrane and enter into either the periplasm or cytoplasm. Here the materials are collected and transported through an mtrC, D, and E pore spanning both membranes. Adapted from Groisman ( ) and Nikaido ( ).

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap2
1. Ackermann, M. R.,, N. F. Cheville,, and J. E. Gallagher. 1991. Colonization of the pharyngeal tonsil and respiratory tract of the gnotobiotic pig by a toxigenic strain of Pasteurella multocida type D. Vet. Pathol. 28:267274.
2. Antonyraj, K. J.,, T. Karunakaran,, and P. A. Raj. 1998. Bactericidal activity and poly-Lproline II conformation of the tandem repeat sequence of human salivary mucin glycoprotein (MG2). Arch. Biochem. Biophys. 356:197206.
3. Arima, H.,, H. R. Ibrahim,, T. Kinoshita,, and A. Kato. 1997. Bactericidal action of lysozymes attached with various sizes of hydrophobic peptides to the C-terminal using genetic modification. FEBS Lett. 415:114118.
4. Aspedon, A.,, and E. A. Groisman. 1999. Involvement of a protease in antimicrobial peptide resistance in Pseudomonas aeruginosa, abstr. A-67, p. 14. In Proceedings of the 99th General Meeting of the American Society for Microbiology, American Society for Microbiology, Washington, D.C.
5. Baker, S. J.,, J. S. Gunn,, and R. Morona. 1999. The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMAdifferentiated U937 cells, polymyxin B resistance and lipopolysaccharide. Microbiology 145:367378.
6. Bals, R.,, X. R. Wang,, M. Zasloff,, and J. M. Wilson. 1998. The peptide antibiotic LL-37/ hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA 95: 95419546.
7. Banemann, A.,, H. Deppisch,, and R. Gross. 1998. The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect. Immun. 66:56075612.
8. Bartlett, J. G., 1981. Bacteriological diagnosis of pulmonary infections, p. 707745. In M. A. Sackner (ed.), Diagnostic Techniques in Pulmonary Disease, vol. 16. Marcel Dekker, Inc., New York, N.Y.
9. Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13:6192..
10. Bottari, E. 1990. Zinc(II) complexes with aspartate and glutamate. J. Coord. Chem. 21:215224.
11. Brogden, K. A. 1992. Ovine pulmonary surfactant induces killing of Pasteurella haemolytica, Escherichia coli, and Klebsiella pneumoniae by normal serum. Infect. Immun. 60:51825189.
12. Brogden, K. A.,, M. Ackermann,, and K. M. Huttner. 1997. Small, anionic, and chargeneutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob. Agents Chemother. 41:16151617.
13. Brogden, K. A.,, M. R. Ackermann,, P. B. McCray, Jr.,, and K. M. Huttner. 1999. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infect. Immun. 67: 42564259.
14. Brogden, K. A.,, A. J. De Lucca,, J. Bland,, and S. Elliott. 1996. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA 93:412416.
15. Brogden, K. A.,, H. D. Lehmkuhl,, and R. C. Cutlip. 1998. Pasteurella haemolytica complicated respiratory infections in sheep and goats. Vet. Res. 29:233254.
16. Brogden, K. A.,, J. T. Meehan,, and H. D. Lehmkuhl. 1994. Salmonella arizonae infection and colonisation of the upper respiratory tract of sheep. Vet. Rec. 135:410411.
17. Brubaker, R. R. 1991. Factors promoting acute and chronic diseases caused by yersiniae. Clin. Microbiol. Rev. 4:309324.
18. Campanelli, D.,, P. A. Detmers,, C. F. Nathan,, and J. E. Gabay. 1990. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. J. Clin. Invest. 85:904915.
19. Davis, P. B.,, M. Drumm,, and M. W. Konstan. 1996. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154:12291256.
20. de Haen, C.,, H. Neurath,, and D. C. Teller. 1975. The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J. Mol. Biol. 92:225259.
21. DeVoe, I. W. 1982. The meningococcus and mechanisms of pathogenicity. Microbiol. Rev. 46: 162190.
22. DeVoe, I. W.,, and J. E. Gilchrist. 1973. Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitidis. J. Exp. Med. 138:11561167.
23. Diamond, G.,, M. Zasloff,, H. Eck,, M. Brasseur,, W. Maloy,, and C. Bevins. 1992. A novel antimicrobial peptide from mammalian tracheal mucosa. Chest 101:47S.
24. Diamond, G.,, M. Zasloff,, H. Eck,, M. Brasseur,, W. L. Maloy,, and C. L. Bevins. 1991. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA 88:39523956.
25. Eisenhauer, P. B.,, S. S. L. Harwig,, and R. I. Lehrer. 1992. Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun. 60: 35563565.
26. Ellison, R. T., III,, D. Boose,, and F. M. LaForce. 1985. Isolation of an antibacterial peptide from human lung lavage fluid. J. Infect. Dis. 151:11231129.
27. Elsbach, P.,, J. Weiss,, and O. Levy. 1994. Integration of antimicrobial host defenses: role of the bactericidal/permeability-increasing protein. Trends Microbiol. 2:324328.
28. Franken, C.,, C. J. Meijer,, and J. H. Dijkman. 1989. Tissue distribution of antileukoprotease and lysozyme in humans. J. Histochem. Cytochem. 37:493498.
29. Frohm Nilsson, M.,, B. Sandstedt,, O. Sorensen,, G. Weber,, N. Borregaard,, and M. Stahle-Backdahl. 1999. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect. Immun. 67:25612566.
30. Gabay, C.,, and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340:448454.
31. Gabay, J. E.,, and R. P. Almeida. 1993. Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes: defensins and azurocidin. Curr. Opin. Immunol. 5:97102.
32. Galask, R. P.,, and I. S. Snyder. 1968. Bacterial inhibition by amniotic fluid. Am. J. Obstet. Gynecol. 102:949955.
33. Ganz, T.,, M. E. Selsted,, and R. I. Lehrer. 1990. Defensins. Eur. J. Haematol. 44:18.
34. Gorbach, S. L. 1986. Bengt E. Gustafsson memorial lecture. Function of the normal human microflora. Scand. J. Infect. Dis. Suppl. 49:1730.
35. Gorter, A. D.,, P. P. Eijk,, S. van Wetering,, P. S. Hiemstra,, J. Dankert,, and L. van Alphen. 1998. Stimulation of the adherence of Haemophilus influenzae to human lung epithelial cells by antimicrobial neutrophil defensins. J. Infect. Dis. 178:10671074.
36. Grandjean, V.,, S. Vincent,, L. Martin,, M. Rassoulzadegan,, and F. Cuzin. 1997. Antimicrobial protection of the mouse testis: synthesis of defensins of the cryptdin family. Biol. Repro. 57:11151122.
37. Groisman, E. A. 1994. How bacteria resist killing by host-defense peptides. Trends Microbiol. 2: 444448.
38. Gunn, J. S.,, K. B. Lim,, J. Krueger,, K. Kim,, L. Guo,, M. Hackett,, and S. I. Miller. 1998. PmrA-PmrB-regulated genes necessary for 4- aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27:11711182.
39. Guo, L.,, K. B. Lim,, J. S. Gunn,, B. Bainbridge,, R. P. Darveau,, M. Hackett,, and S. I. Miller. 1997. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276:250253.
40. Guo, L.,, K. B. Lim,, C. M. Poduje,, M. Daniel,, J. S. Gunn,, M. Hackett,, and S. I. Miller. 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95: 189198.
41. Hancock, R. E. W. 1997. Peptide antibiotics. Lancet 349:418422.
42. Harwig, S. S.,, V. N. Kokryakov,, K. M. Swiderek,, G. M. Aleshina,, C. Zhao,, and R. I. Lehrer. 1995. Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 362:6569.
43. Hiemstra, P. S.,, R. J. Maassen,, J. Stolk,, R. Heinzel-Wieland,, G. J. Steffens,, and J. H. Dijkman. 1996. Antibacterial activity of antileukoprotease. Infect. Immun. 64:45204524.
44. Holak, T. A.,, A. Engstrom,, P. J. Kraulis,, G. Lindeberg,, H. Bennich,, T. A. Jones,, A. M. Gronenborn,, and G. M. Clore. 1988. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27:76207629.
45. Hristova, K.,, M. E. Selsted,, and S. H. White. 1997. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem. 272:2422424233.
46. Huttner, K. M.,, D. J. Brezinski-Caliguri,, M. M. Mahoney,, and G. Diamond. 1998. Antimicrobial peptide expression is developmentally regulated in the ovine gastrointestinal tract. J. Nutr. 128:297S299S.
47. Huttner, K. M.,, C. A. Kozak,, and C. L. Bevins. 1997. The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett. 413:4549.
48. Iannuzzi, L.,, D. S. Gallagher,, G. P. Di Meo,, G. Diamond,, C. L. Bevins,, and J. E. Womack. 1996. High-resolution FISH mapping of β-defensin genes to river buffalo and sheep chromosomes suggests a chromosome discrepancy in cattle standard karyotypes. Cytogenet. Cell Genet. 75:1013.
49. Jakab, G. J. 1982. Viral-bacterial interactions in pulmonary infection. Adv. Vet. Sci. Comp. Med. 26:155171.
50. Juretic, D.,, H. C. Chen,, J. H. Brown,, J. L. Morell,, R. W. Hendler,, and H. V. Westerhoff. 1989. Magainin 2 amide and analogues. Antimicrobial activity, membrane depolarization and susceptibility to proteolysis. FEBS Lett. 249: 219223.
51. Kaser, M. R.,, and G. G. Skouteris. 1997. Inhibition of bacterial growth by synthetic SP-B1- 78 peptides. Peptides 18:14411444.
52. Ketterer, M. R.,, J. Q. Shao,, D. B. Hornick,, B. Buscher,, V. K. Bandi,, and M. A. Apicella. 1999. Infection of primary human bronchial epithelial cells by Haemophilus influenzae: macropinocytosis as a mechanism of airway epithelial cell entry. Infect. Immun. 67:41614170.
53. Kuwata, H.,, T. T. Yip,, C. L. Yip,, M. Tomita,, and T. W. Hutchens. 1998. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem. Biophys. Res. Commun. 245:764773.
54. LaForce, F. M.,, and D. S. Boose. 1984. Effect of zinc and phosphate on an antibacterial peptide isolated from lung lavage. Infect. Immun. 45:692696.
54a. Leenhouts, J. M.,, P. W. J. van den Wijngaard,, A. I. P. M. de Kroon,, and B. de Kruijff. 1995. Anionic phospholipids can mediate membrane insertion of the anionic part of a bound peptide. FEBS Lett. 370:189192.
55. Lehrer, R. I.,, A. Barton,, K. A. Daher,, S. S. Harwig,, T. Ganz,, and M. E. Selsted. 1989. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84:553561.
56. Lehrer, R. I.,, and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11:2327.
57. Lehrer, R. I.,, T. Ganz,, and M. E. Selsted. 1991. Defensins: endogenous antibiotic peptides of animal cells. Cell 64:229230.
58. Littauer, U. Z.,, and M. Sela. 1962. An ultracentrifugal study of the efficiency of some macromolecular inhibitors of ribonuclease. Biochim. Biophys. Acta 61:609611.
59. Luderitz, O.,, M. A. Freudenberg,, C. Galanos,, V. Lehmann,, E. T. Rietschel,, and D. H. Shaw. 1982. Lipopolysaccharides of Gram- Negative Bacteria, vol. 17. Academic Press, Inc., New York, N.Y.
60. Luderitz, O.,, K.-I. Tanamoto,, C. Galanos,, O. Westphal,, U. Zahringer,, E. T. Rietschel,, S. Kusumoto,, and T. Shiba,. 1983. Structural principles of lipopolysaccharides and biological properties of synthetic partial structures, p. 317. In L. Anderson, and F. M. Unger (ed.), Bacterial Lipopolysaccharides. American Chemical Society, Washington, D.C.
61. Macias, E. A.,, F. Rana,, J. Blazyk,, and M. C. Modrzakowski. 1990. Bactericidal activity of magainin 2: use of lipopolysaccharide mutants. Can. J. Microbiol. 36:582584.
62. Martinez de Tejada, G.,, J. Pizarro-Cerda,, E. Moreno,, and I. Moriyon. 1995. The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect. Immun. 63:30543061.
63. McCray, P. B., Jr.,, and L. Bentley. 1997. Human airway epithelia express a ?-defensin. Am. J. Respir. Cell Mol. Biol. 16:343349.
64. McNabb, P. C.,, and T. B. Tomasi. 1981. Host defense mechanisms at mucosal surfaces. Annu. Rev. Microbiol. 35:477496.
65. Meehan, J. T.,, K. A. Brogden,, C. Courtney,, R. C. Cutlip,, and H. D. Lehmkuhl. 1992. Chronic proliferative rhinitis associated with Salmonella arizonae in sheep. Vet. Pathol. 29:556559.
66. Menache, M. G.,, L. M. Hanna,, E. A. Gross,, S. R. Lou,, S. J. Zinreich,, D. A. Leopold,, A. M. Jarabek,, and F. J. Miler. 1997. Upper respiratory tract surface areas and volumes of laboratory animals and humans: considerations for dosimetry models. J. Toxicol. Environ. Health 50: 475506.
67. Nicolas, P.,, and A. Mor. 1995. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 49:277304.
68. Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178:58535859.
69. Nissen-Meyer, J.,, and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167:6777.
70. Odeberg, H.,, and I. Olsson. 1975. Antibacterial activity of cationic proteins from human granulocytes. J. Clin. Invest. 56:11181124.
71. Panyutich, A. V.,, P. S. Hiemstra,, S. van Wetering,, and T. Ganz. 1995. Human neutrophil defensin and serpins form complexes and inactivate each other. Am. J. Respir. Cell Mol. Biol. 12:351357.
72. Parker, M.,, A. D. Tucker,, D. Tsernoglou,, and F. Pattus. 1990. Insights into membrane insertion based on studies of colicins. Trends Biochem. Sci. 15:126129.
73. Parra-Lopez, C.,, M. T. Baer,, and E. Groisman. 1993. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J. 12:40534062.
74. Pellegrini, A.,, U. Thomas,, N. Bramaz,, P. Hunziker,, and R. von Fellenberg. 1999. Isolation and identification of three bactericidal domains in the bovine alpha-lactalbumin molecule. Biochim. Biophys. Acta 1426:439448.
75. Pellegrini, A.,, U. Thomas,, N. Bramaz,, S. Klauser,, P. Hunziker,, and R. von Fellenberg. 1996. Identification and isolation of the bactericidal domains in the proteinase inhibitor aprotinin. Biochem. Biophys. Res. Commun. 222: 559565.
76. Penn, C. W., 1992. Chronic infections, latency and the carrier state, p. 107125. In C. E. Hormaeche,, C. W. Penn,, and C. J. Smyth (ed.), Molecular Biology of Bacterial Infection. Cambridge University Press, Dublin.
77. Pereira, H. A.,, I. Erdem,, J. Pohl,, and J. K. Spitznagel. 1993. Synthetic bactericidal peptide based on CAP37: a 37-kDa human neutrophil granule-associated cationic antimicrobial protein chemotactic for monocytes. Proc. Natl. Acad. Sci. USA 90:47334737.
78. Peschel, A.,, M. Otto,, R. W. Jack,, H. Kalbacher,, G. Jung,, and F. Gotz. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274: 84058410.
79. Peterson, A. A.,, A. Haug,, and E. J. Mc- Groarty. 1986. Physical properties of short- and long-O-antigen-containing fractions of lipopolysaccharide from Escherichia coli 0111:B4. J. Bacteriol. 165:116122.
80. Porter, E. M.,, E. van Dam,, E. V. Valore,, and T. Ganz. 1997. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect. Immun. 65:23962401.
81. Quayle, A. J.,, E. M. Porter,, A. A. Nussbaum,, Y. M. Wang,, C. Brabec,, K. P. Yip,, and S. C. Mok. 1998. Gene expression, immunolocalization, and secretion of human defensin- 5 in human female reproductive tract. Am. J. Pathol. 152:12471258.
82. Raj, P. A.,, E. Marcus,, and D. K. Sukumaran. 1998. Structure of human salivary histatin 5 in aqueous and nonaqueous solutions. Biopolymers 45:5167.
83. Resnick, N. M.,, W. L. Maloy,, H. R. Guy,, and M. Zasloff. 1991. A novel endopeptidase from Xenopus that recognizes alpha-helical secondary structure. Cell 66:541554.
84. Riley, L. K.,, and D. C. Robertson. 1984. Ingestion and intracellular survival of Brucella abortus in human and bovine polymorphonuclear leukocytes. Infect. Immun. 46:224230.
85. Roland, K. L.,, C. R. Esther,, and J. K. Spitznagel. 1994. Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies. J. Bacteriol. 176:35893597.
86. Russell, R. R. B. 1976. Free endotoxin—a review. Microbios Lett. 2:125135.
87. Sachs, B. P. 1979. Activity and characterization of a low molecular fraction present in human amniotic fluid with broad spectrum antibacterial activity. Br. J. Obstet. Gynecol. 86:8186.
88. Schlievert, P.,, W. Johnson,, and R. P. Galask. 1976. Bacterial growth inhibition by amniotic fluid. VI. Evidence for a zinc-peptide antibacterial system. Am. J. Obstet. Gynecol. 125: 906910.
89. Schlievert, P.,, W. Johnson,, and R. P. Galask. 1976. Isolation of a low-molecular weight antibacterial system from human amniotic fluid. Infect. Immun. 14:11561166.
90. Schnapp, D.,, and A. Harris. 1998. Antibacterial peptides in bronchoalveolar lavage fluid. Am. J. Respir. Cell Mol. Biol. 19:352356.
91. Schonwetter, B. S.,, E. D. Stolzenberg,, and M. A. Zasloff. 1995. Epithelial antibiotics induced at sites of inflammation. Science 267:16451648.
92. Sela, M. 1962. Inhibition of ribonuclease by copolymers of glutamic acid and aromatic amino acids. J. Biol. Chem. 237:418421.
93. Shafer, W. M.,, L. E. Martin,, and J. K. Spitznagel. 1984. Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate. Infect. Immun. 45:2935.
94. Shafer, W. M.,, L. E. Martin,, and J. K. Spitznagel. 1986. Late intraphagosomal hydrogen ion concentration favors the in vitro antimicrobial capacity of a 37-kilodalton cationic granule protein of human neutrophil granulocytes. Infect. Immun. 53:651655.
95. Shafer, W. M.,, X. Qu,, A. J. Waring,, and R. I. Lehrer. 1998. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/ nodulation/division efflux pump family. Proc. Natl. Acad. Sci. USA 95:18291833.
96. Shamova, O.,, K. A. Brogden,, C. Zhao,, T. Nguyen,, V. N. Kokryakov,, and R. I. Lehrer. 1999. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect. Immun. 67:41064111.
97. Shoo, M. K.,, A. Wiseman,, E. M. Allan,, R. G. Dalgleish,, H. A. Gibbs,, A. B. Al Hendi,, and I. E. Selman. 1990. Distribution of Pasteurella haemolytica in the respiratory tracts of carrier calves and those subsequently infected experimentally with Dictyocaulus viviparus. Res. Vet. Sci. 48:383385.
98. Siden, I.,, and H. G. Boman. 1983. Escherichia coli mutants with an altered sensitivity to cecropin D. J. Bacteriol. 154:170176.
99. Skerlavaj, B.,, D. Romeo,, and R. Gennaro. 1990. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect. Immun. 58:37243730.
100. Smith, H. 1995. The revival of interest in mechanisms of bacterial pathogenicity. Biol. Rev. Camb. Philos. Soc. 70:277316.
101. Smith, H., 1995. The state and future of studies on bacterial pathogenicity, p. 335357. In J. A. Roth,, C. A. Bolin,, K. A. Brogden,, F. C. Minion,, and M. J. Wannemuehler (ed.), Virulence Mechanisms of Bacterial Pathogens, 2nd ed. ASM Press, Washington, D.C.
102. Smith, J. J.,, S. M. Travis,, E. P. Greenberg,, and M. J. Welsh. 1996. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229236.
103. Steiner, H. 1982. Secondary structure of the cecropins; antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett. 137:283287.
104. Stolzenberg, E. D.,, G. M. Anderson,, M. R. Ackermann,, R. H. Whitlock,, and M. Zasloff. 1997. Epithelial antibiotic induced in states of disease. Proc. Natl. Acad. Sci. USA 94:86868690.
105. Thorne, K. J.,, R. C. Oliver,, and A. J. Barrett. 1976. Lysis and killing of bacteria by lysosomal proteinases. Infect. Immun. 14:555563.
106. Tomita, M.,, H. Wakabayashi,, and W. Bellamy. 1994. Antimicrobial peptides of lactoferrin. Adv. Exp. Med. Biol. 357:209218.
107. Turner, J.,, Y. Cho,, N. N. Dinh,, A. J. Waring,, and R. I. Lehrer. 1998. Activities of LL- 37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42:22062214.
108. van der Goot, F. G.,, N. Didat,, F. Pattus,, W. Dowhan,, and L. Letellier. 1993. Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. Eur. J. Biochem. 213:217221.
109. Vandendriessche, L. 1956. Inhibitors of ribonuclease activity. Arch. Biochem. Biophys. 65: 347353.
110. Visser, L. G.,, P. S. Hiemstra,, M. T. Van Den Barselaar,, P. A. Ballieux,, and R. Van Furth. 1996. Role of yadA in resistance to killing of Yersinia enterocolitica by antimicrobial polypeptides of human granulocytes. Infect. Immun. 64:16531658.
111. Wasiluk, K. R.,, K. M. Skubitz,, and B. H. Gray. 1991. Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa. Infect. Immun. 59:41934200.
112. Weiser, J. N. 1999. Adaptation of respiratory tract pathogens to innate and acquired immunity. Pediatr. Pulmon. 19(Suppl.):126127.
113. Weiser, J. N.,, J. B. Goldberg,, N. Pan,, L. Wilson,, and M. Virji. 1998. The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infect. Immun. 66:42634267.
114. Weiser, J. N.,, N. Pan,, K. L. McGowan,, D. Musher,, A. Martin,, and J. Richards. 1998. Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J. Exp. Med. 187:631640.
115. Weiser, J. N.,, M. Shchepetov,, and S. T. Chong. 1997. Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect. Immun. 65:943950.
116. Wiebe, B. M.,, and H. Laursen. 1995. Human lung volume, alveolar surface area, and capillary length. Microsc. Res. Tech. 32:255262.
117. Wu, E. R.,, R. Daniel,, and A. Bateman. 1998. RK-2: a novel rabbit kidney defensin and its implications for renal host defense. Peptides 19:793799.
118. Yarnall, M.,, and L. B. Corbeil. 1989. Antibody response to Haemophilus somnus Fc receptor. J. Clin. Microbiol. 27:111117.
119. Zanetti, M.,, G. Del Sal,, P. Storici,, C. Schneider,, and D. Romeo. 1993. The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J. Biol. Chem. 268:522526.
120. Zanetti, M.,, R. Gennaro,, and D. Romeo. 1995. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374:15.

Tables

Generic image for table
TABLE 1

Antimicrobial proteins in neutrophil granules

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Generic image for table
TABLE 2

Antimicrobial proteins in mucosal fluids

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Generic image for table
TABLE 3

Structural classes of cationic peptides

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2
Generic image for table
TABLE 4

Mechanisms of bacterial evasion of host-derived antimicrobial peptides on mucosal surfaces

Citation: Brogden K. 2000. Bacterial Evasion of Host-Derived Antimicrobial Peptides on Mucosal Surfaces, p 19-40. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error