1887

Chapter 4 : Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap04-2.gif

Abstract:

This chapter describes three examples of adaptations that are important for bacteria to colonize human hosts. It provides a short preview of coaggregation, osmoadaptation, acid resistance and tolerance. A complex microbial community exists within the human gingival crevice, the space below the gum line between tooth surface and epithelial tissue. A combination of bacterial activities and host inflammatory responses leads to death of tissues around the tooth, destruction of collagen connecting tooth to bone, loss of bone, loss of tooth, and various forms of periodontal disease. A hyperosmotic stress can occur when bacteria are transported by ingestion from a contaminated drinking water source to a site in the human lower bowel or when bacterial cells infecting the urinary tract are exposed to fluctuating urine osmolalities. and cells can become acid tolerant (a term used to indicate that they have an inducible insensitivity to acid). A nonlethal exposure to mild acid conditions will transiently protect these species against lethal, more severe acid exposures. Inflicting damage on host tissues and evading immune surveillance are not only events, but defining properties in the life of a pathogenic bacterium. Equally important are characteristics essential for a pathogen to grow within a host and to access new hosts. Coaggregation, osmoadaptation, and acid tolerance and resistance are not essential for routine growth of bacteria in culture.

Citation: Stanton T. 2000. Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, p 61-76. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch4

Key Concept Ranking

Type IV Secretion Systems
0.41461062
0.41461062
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Coaggregation between oral bacteria species, and . At the top are phase-contrast micrographs of cells taken from tubes containing suspensions. (A) cells. (B) cells. (C) Mixture of and cells. (D) Mixture of cells to which 100 mM lactose (final concentration) has been added. Aggregates of mixed-cell types form (C) when and cell suspensions are combined and are visible both macroscopically (bottom) and microscopically (top). Lactose inhibition of aggregation (D) indicates involvement of that sugar in the receptor-adhesin interactions of the two cell types. Photograph from ( ) and used with the permission of the author.

Citation: Stanton T. 2000. Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, p 61-76. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of physical interactions between selected oral bacteria in plaque. Interactions are based on in vitro coaggregations of (), (), (), (), (), and (). Adhesins are depicted as stemlike appendages with branched ends, and receptors are triangular, rectangular, or semicircular projections from the bacterial surface and tooth pellicle. Adapted from Kolenbrander and London ( ).

Citation: Stanton T. 2000. Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, p 61-76. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Chemical compounds that serve as osmoprotectants for .

Citation: Stanton T. 2000. Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, p 61-76. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Hydrolysis of urea by urease (urea aminohydrolyase, EC 3.5.1.5). Urease hydrolyzes urea to ammonia and carbamate. Carbamate spontaneously converts to NHand carbonic acid. NHequilibrates with water to form ammonium hydroxide, which generates hydroxyls (raises pH). Urease activity is the basis for a noninvasive test for infections. A patient ingests C-labeled urea. If the patient';s stomach is colonized by , the strong ureolytic activity of the bacteria releases CO, which is breathed out and can be measured by radioactivity detectors.

Citation: Stanton T. 2000. Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, p 61-76. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap4
1. Andrutis, K. A.,, J. G. Fox,, D. B. Schauer,, R. P. Marini,, J. C. Murphy,, L. L. Yan,, and J. V. Solnick. 1995. Inability of an isogenic urease- negative mutant strain of Helicobacter mustelae to colonize the ferret stomach. Infect. Immun. 63: 3722 3725.
2. Bauerfeind, P.,, R. Garner,, B. E. Dunn,, and H. L. Mobley. 1997. Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut 40: 25 30.
3. Blake, M.,, O. D. Rotstein,, M. Llano,, M. J. Girotti,, and G. Reid. 1989. Aggregation by fragilis and non- fragilis Bacteroides strains in vitro. J. Med. Microbiol. 28: 9 14.
4. Bossier, P.,, and W. Verstraete. 1996. Comamonas testosteroni colony phenotype influences exopolysaccharide production and coaggregation with yeast cells. Appl. Environ. Microbiol. 62: 2687 2691.
5. Bradshaw, D. J.,, P. D. Marsh,, G. K. Watson,, and C. Allison. 1998. Role of Fusobacterium nucleatum and coaggregation anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect. Immun. 66: 4729 4732.
6. Breznak, J. A. 1973. Biology of nonpathogenic, host-associated spirochetes. CRC Crit. Rev. Microbiol. 2: 457 489.
7. Breznak, J. A.,, and H. S. Pankratz. 1977. In situ morphology of the gut microbiota of woodeating termites [ Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl. Environ. Microbiol. 33: 406 426.
8. Calamita, G.,, W. R. Bishai,, G. M. Preston,, W. B. Guggino,, and P. Agre. 1995. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J. Biol. Chem. 270: 29063 29066.
9. Cash, R. A.,, S. I. Music,, J. P. Libonati,, M. J. J. Snyder,, R. P. Wenzel,, and R. B. Hornick. 1974. Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J. Infect. Dis. 129: 45 52.
10. Chambers, S. T.,, C. M. Kunin,, D. Miller,, and A. Hamada. 1987. Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J. Bacteriol. 169: 4845 4847.
11. Choi, B. K.,, B. J. Paster,, F. E. Dewhirst,, and U. B. Gobel. 1994. Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect. Immun. 62: 1889 1895.
12. Christensen, B. B.,, C. Sternberg,, J. B. Andersen,, L. Eberl,, S. Moller,, M. Givskov,, and S. Molin. 1998. Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 64: 2247 2255.
13. Clyne, M.,, A. Labigne,, and B. Drumm. 1995. Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infect. Immun. 63: 1669 1673.
14. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin- Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
15. Cotta, M. A.,, and J. B. Russell,. 1997. Digestion of nitrogen in the rumen: a model for metabolism of nitrogen compounds in gastro intestinal environments, p. 380 423. In R. I. Mackie, and B. A. White (ed.), Gastrointestinal Microbiology, vol. I. Gastrointestinal Ecosystems and Fermentations. Chapman & Hall, Ltd., New York.
16. Covacci, A.,, J. L. Telford,, G. Del Giudice,, J. Parsonnet,, and R. Rappuoli. 1999. Helicobacter pylori virulence and genetic geography. Science 284: 1328 1333.
17. Csonka, L. N.,, and W. Epstein,. 1996. Osmoregulation, p. 1210 1223. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
18. Culham, D. E.,, C. Dalgado,, C. L. Gyles,, D. Mamelak,, S. Maclellan,, and J. M. Wood. 1998. Osmoregulatory transporter ProP influences colonization of the urinary tract by Escherichia coli. Microbiology ( UK) 144: 91 102.
19. Dahle, U. R.,, I. Olsen,, L. Tronstad,, and D. A. Caugant. 1995. Population genetic analysis of oral treponemes by multilocus enzyme electrophoresis. Oral Microbiol. Immunol. 10: 265 270.
20. Diez-Gonzalez, F.,, T. R. Callaway,, M. G. Kizoulis,, and J. B. Russell. 1998. Grain feeding and the dissemination of acid-resistant Escherichia coli from cattle. Science 281: 1666 1668.
21. Dinnbier, U.,, E. Limpinsel,, R. Schmid,, and E. P. Bakker. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150: 348 357.
22. Drasar, B. S.,, M. Shiner,, and G. M. Mc- Leod. 1969. Studies on the intestinal flora. I. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterology 56: 71 79.
23. Dunn, B. E.,, G. P. Campbell,, G. I. Perez- Perez,, and M. J. Blaser. 1990. Purification and characterization of urease from Helicobacter pylori. J. Biol. Chem. 265: 9464 9469.
24. Dunn, B. E.,, C. C. Sung,, N. S. Taylor,, and J. G. Fox. 1991. Purification and characterization of Helicobacter mustelae urease. Infect. Immun. 59: 3343 3345.
25. Dunn, B. E.,, N. B. Vakil,, B. G. Schneider,, M. M. Miller,, J. B. Zitzer,, T. Peutz,, and S. H. Phadnis. 1997. Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect. Immun. 65: 1181 1188.
26. Eaton, K. A.,, C. L. Brooks,, D. R. Morgan,, and S. Krakowka. 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59: 2470 2475.
27. Eaton, K. A.,, and S. Krakowka. 1994. Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect. Immun. 62: 3604 3607.
28. Evans, D. J., Jr.,, D. G. Evans,, S. S. Kirkpatrick,, and D. Y. Graham. 1991. Characterization of the Helicobacter pylori urease and purification of its subunits. Microb. Pathog. 10: 15 26.
29. Fenno, J. C.,, and B. C. Mcbride. 1998. Virulence factors of oral treponemes. Anaerobe 4: 1 17.
30. Ferrero, R. L.,, and A. Lee. 1991. The importance of urease in acid protection for the gastric-colonising bacteria Helicobacter pylori and Helicobacter felis sp. nov. Microb. Ecol. Health Dis. 4: 121 134.
31. Foster, J. W.,, and M. Moreno. 1999. Inducible acid tolerance mechanisms in enteric bacteria, p. 55 69. In Bacterial Responses to pH. Novartis Foundation Symposium 221. Wiley, Chichester.
32. Galan, J. E.,, and R. D. Curtiss. 1990. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect. Immun. 58: 1879 1885.
33. Galinski, E. A.,, and H. G. Trüper. 1994. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol. Rev. 15: 95 108.
34. Giannella, R. A.,, S. A. Broitman,, and N. Zamcheck. 1972. Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13: 251 256.
35. Goodwin, C. S.,, J. A. Armstrong,, and B. J. Marshall. 1986. Campylobacter pyloridis, gastritis, and peptic ulceration. J. Clin. Pathol. 39: 353 365.
36. Grenier, D. 1996. Antagonistic effect of oral bacteria towards Treponema denticola. J. Clin. Microbiol. 34: 1249 1252.
37. Grenier, D. 1992. Demonstration of a bimodal coaggregation reaction between Porphyromonas gingivalis and Treponema denticola. Oral Microbiol. Immunol. 7: 280 284.
38. Grenier, D.,, and D. Mayrand. 1986. Nutritional relationships between oral bacteria. Infect. Immun. 53: 616 620.
39. Haffajee, A. D.,, M. A. Cugini,, A. Tanner,, R. P. Pollack,, C. Smith,, R. L. Kent, Jr.,, and S. S. Socransky. 1998. Subgingival microbiota in healthy, well-maintained elder and periodontitis subjects. J. Clin. Periodontol. 25: 346 353.
40. Haffajee, A. D.,, and S. S. Socransky. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontal. 2000 5: 78 111.
41. Hall, H. K.,, K. L. Karem,, and J. W. Foster. 1995. Molecular responses of microbes to environmental pH stress. Adv. Microb. Physiol. 37: 229 272.
42. Hawtin, P. R.,, A. R. Stacey,, and D. G. Newell. 1990. Investigation of the structure and localization of the urease of Helicobacter pylori using monoclonal antibodies. J. Gen. Microbiol. 136: 1995 2000.
43. Hovde, C. J.,, P. R. Austin,, K. A. Cloud,, C. J. Williams,, and C. W. Hunt. 1999. Effect of cattle diet on Escherichia coli O157:H7 acid resistance. Appl. Environ. Microbiol. 65: 3233 3235.
44. Jordan, K. N.,, L. Oxford,, and C. P. O’Byrne. 1999. Survival of low-pH stress by Escherichia coli O157:H7: correlation between alterations in the cell envelope and increased acid tolerance. Appl. Environ. Microbiol. 65: 3048 3055.
45. Kempf, B.,, and E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170: 319 330.
46. Kesavalu, L.,, S. C. Holt,, and J. L. Ebersole. 1998. Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol. Immunol. 13: 373 377.
47. Kigure, T.,, A. Saito,, K. Seida,, S. Yamada,, K. Ishihara,, and K. Okuda. 1995. Distribution of Porphyromonas gingivalis and Treponema denticola in human subgingival plaque at different periodontal pocket depths examined by immunohistochemical methods. J. Periodontal Res. 30: 332 341.
48. Kim, H.,, C. Park,, W. I. Jang,, K. H. Lee,, S. O. Kwon,, S. S. Robey-Cafferty,, J. Y. Ro,, and Y. B. Lee. 1990. The gastric juice urea and ammonia levels in patients with Campylobacter pylori. Am. J. Clin. Pathol. 94: 187 191.
49. Koch, A. L. 1998. How did bacteria come to be? Adv. Microb. Physiol. 40: 353 399.
50. Kolenbrander, P. E. 1989. Surface recognition among oral bacteria: multigeneric coaggregations and their mediators. CRC Crit. Rev. Microbiol. 17: 137 159.
51. Kolenbrander, P. E.,, R. N. Andersen,, and L. V. Moore. 1989. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect. Immun. 57: 3194 3203.
52. Kolenbrander, P. E.,, and J. London. 1993. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175: 3247 3252.
53. Kolenbrander, P. E.,, and J. London. 1992. Ecological significance of coaggregation among oral bacteria. Adv. Microb. Ecol. 12: 183 217.
54. Kolenbrander, P. E.,, K. D. Parrish,, R. N. Andersen,, and E. P. Greenberg. 1995. Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infect. Immun. 63: 4584 4588.
55. Lancy, P., Jr.,, B. Appelbaum,, S. C. Holt,, and B. Rosan. 1980. Quantitative in vitro assay for ‘‘corncob’’ formation. Infect. Immun. 29: 663 670.
56. Lee, A.,, J. Fox,, and S. Hazell. 1993. Pathogenicity of Helicobacter pylori: a perspective. Infect. Immun. 61: 1601 1610.
57. Lee, C. K.,, K. Soike,, J. Hill,, K. Georgakopoulos,, T. Tibbitts,, J. Ingrassia,, H. Gray,, J. Boden,, H. Kleanthous,, P. Giannasca,, T. Ermak,, R. Weltzin,, J. Blanchard,, and T. P. Monath. 1999. Immunization with recombinant Helicobacter pylori urease decreases colonization levels following experimental infection of rhesus monkeys. Vaccine 17: 1493 1505.
58. Lin, J.,, I. S. Lee,, J. Frey,, J. L. Slonczewski,, and J. W. Foster. 1995. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 177: 4097 4104.
59. Lin, J.,, M. P. Smith,, K. C. Chapin,, H. S. Baik,, G. N. Bennett,, and J. W. Foster. 1996. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 62: 3094 3100.
60. Loewen, P. C.,, and R. Hengge-Aronis. 1994. The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu. Rev. Microbiol. 48: 53 80.
61. Marshall, B. J.,, L. J. Barrett,, C. Prakash,, R. W. McCallum,, and R. L. Guerrant. 1990. Urea protects Helicobacter ( Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 99: 697 702.
62. Martin, D. D.,, R. A. Ciulla,, and M. F. Roberts. 1999. Osmoadaptation in archaea. Appl. Environ. Microbiol. 65: 1815 1825.
63. McBride, B. C.,, and J. S. van der Hoeven. 1981. Role of interbacterial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella alcalescens. Infect. Immun. 33: 467 472.
64. Mera, S. L. 1995. Peptic ulcers and gastric cancer. Br. J. Biomed. Sci. 52: 271 281.
65. Mikx, F. H.,, and J. S. van der Hoeven. 1975. Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Arch. Oral Biol. 20: 407 410.
66. Mobley, H. L.,, M. J. Cortesia,, L. E. Rosenthal,, and B. D. Jones. 1988. Characterization of urease from Campylobacter pylori. J. Clin. Microbiol. 26: 831 836.
67. Mobley, H. L. T.,, L.-T. Hu,, and P. A. Foxall. 1991. Helicobacter pylori urease: properties and role in pathogenesis. Scand. J. Gastroenterol. S 187: 39 46.
68. Moter, A.,, C. Hoenig,, B. K. Choi,, B. Riep,, and U. B. Gobel. 1998. Molecular epidemiology of oral treponemes associated with periodontal disease. J. Clin. Microbiol. 36: 1399 1403.
69. Mouton, C.,, H. Reynolds,, and R. J. Genco. 1977. Combined micromanipulation, culture, and immunofluorescent techniques for isolation of the coccal organisms comprising the ‘‘corn cob’’ configuration of human dental plaque. J. Biol. Buccale. 5: 321 332.
70. Mouton, C.,, H. S. Reynolds,, E. A. Gasiecki,, and R. J. Genco. 1979. In vitro adhesion of tufted oral streptococci to Bacterionema matruchotii. Curr. Microbiol. 3: 181 186.
71. Myers, G. A.,, T. H. Ermak,, K. Georgakopoulos,, T. Tibbitts,, J. Ingrassia,, H. Gray,, H. Kleanthous,, C. K. Lee,, and T. P. Monath. 1999. Oral immunization with recombinant Helicobacter pylori urease confers long-lasting immunity against Helicobacter felis infection. Vaccine 17: 1394 1403.
72. Nakamura, H.,, H. Yoshiyama,, H. Takeuchi,, T. Mizote,, K. Okita,, and T. Nakazawa. 1998. Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment. Infect. Immun. 66: 4832 4837.
73. National Institutes of Health Consensus Conference. 1994. Helicobacter pylori in peptic ulcer disease. JAMA 272: 6569.
74. Nilius, A. M.,, S. C. Spencer,, and L. G. Simonson. 1993. Stimulation of in vitro growth of Treponema denticola by extracellular growth factors produced by Porphyromonas gingivalis. J. Dent. Res. 72: 1027 1031.
75. O’Driscoll, B.,, C. G. M. Gahan,, and C. Hill. 1996. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 62: 1693 1698.
76. Oliveira, A. A. P.,, L. M. Farias,, J. R. Nicoli,, J. E. Costa,, and M. A. R. Carvalho. 1998. Bacteriocin production by Fusobacterium isolates recovered from the oral cavity of human subjects with and without periodontal disease and of marmosets. Res. Microbiol. 149: 585 594.
77. Parsonnet, J.,, G. D. Friedman,, D. P. Vandersteen,, Y. Chang,, J. H. Vogelman,, N. Orentreich,, and R. K. Sibley. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325: 1127 1131.
78. Paster, B. J.,, F. E. Dewhirst,, B. C. Coleman,, C. N. Lau,, and R. L. Ericson. 1998. Phylogenetic analysis of cultivable oral treponemes from the Smibert collection. Int. J. Syst. Bacteriol. 48: 713 722.
79. Peddie, B. A.,, J. Wong-She,, K. Randall,, M. Lever,, and S. T. Chambers. 1998. Osmoprotective properties and accumulation of betaine analogues by Staphylococcus aureus. FEMS Microbiol. Lett. 160: 25 30.
80. Perez-Perez, G. I.,, A. Z. Olivares,, T. L. Cover,, and M. J. Blaser. 1992. Characteristics of Helicobacter pylori variants selected for urease deficiency. Infect. Immun. 60: 3658 3663.
81. Phadnis, S. H.,, M. H. Parlow,, M. Levy,, D. Ilver,, C. M. Caulkins,, J. B. Connors,, and B. E. Dunn. 1996. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64: 905 912.
82. Quigley, E. M.,, and L. A. Turnberg. 1987. pH of the microclimate lining human gastric and duodenal mucosa in vivo. Studies in control subjects and in duodenal ulcer patients. Gastroenterology 92: 1876 1884.
83. Record, M. T., Jr.,, E. S. Courtenay,, D. S. Cayley,, and H. J. Guttman. 1998. Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 23: 143 148.
84. Record, M. T., Jr.,, E. S. Courtenay,, S. Cayley,, and H. J. Guttman. 1998. Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem. Sci. 23: 190 194.
85. Reid, G.,, A. W. Bruce,, M. Llano,, J. A. McGroarty,, and M. Blake. 1990. Bacterial aggregation in sepsis. Curr. Microbiol. 20: 185 190.
86. Reid, G.,, J. A. McGroarty,, R. Angotti,, and R. L. Cook. 1988. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 34: 344 351.
87. Riviere, G. R.,, T. A. DeRouen,, S. L. Kay,, S. P. Avera,, V. K. Stouffer,, and N. R. Hawkins. 1997. Association of oral spirochetes from sites of periodontal health with development of periodontitis. J. Periodontol. 68: 1210 1214.
88. Saiman, L.,, G. Cacalano,, and A. Prince. 1990. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa. Infect. Immun. 58: 2578 2584.
89. Scott, D. R.,, D. Weeks,, C. Hong,, S. Postius,, K. Melchers,, and G. Sachs. 1998. The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114: 58 70.
90. Simonson, L. G.,, K. T. McMahon,, D. W. Childers,, and H. E. Morton. 1992. Bacterial synergy of Treponema denticola and Porphyromonas gingivalis in a multinational population. Oral Microbiol. Immunol. 7: 111 112.
91. Solnick, J. V.,, C. Josenhans,, S. Suerbaum,, L. S. Tompkins,, and A. Labigne. 1995. Construction and characterization of an isogenic urease-negative mutant of Helicobacter mustelae. Infect. Immun. 63: 3718 3721.
92. Stock, J. B.,, B. Rauch,, and S. Roseman. 1977. Periplasmic space in Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 252: 7850 7861.
93. Strom, A. R.,, and I. Kaasen. 1993. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol. Microbiol. 8: 205 210.
94. ter Steeg, P. F.,, and J. S. van der Hoeven. 1990. Growth stimulation of Treponema denticola by periodontal microorganisms. Antonie Leeuwenhoek 57: 63 70.
95. Tsuda, M.,, M. Karita,, M. G. Morshed,, K. Okita,, and T. Nakazawa. 1994. A ureasenegative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect. Immun. 62: 3586 3589.
96. Vandevoorde, L.,, H. Christiaens,, and W. Verstraete. 1992. Prevalence of coaggregation reactions among chicken lactobacilli. J. Appl. Bacteriol. 72: 214 219.
97. Vanet, A.,, and A. Labigne. 1998. Evidence for specific secretion rather than autolysis in the release of some Helicobacter pylori proteins. Infect. Immun. 66: 1023 1027.
98. Weerkamp, A. H., 1985. Coaggregation of Streptococcus salivarius with gram-negative oral bacteria: mechanism and ecological significance, p. 177 183. In S. E. Mergenhagen (ed.), Molecular Basis of Oral Microbial Adhesion. ASM Press, Washington, D.C.
99. Whatmore, A. M.,, and R. H. Reed. 1990. Determination of turgor pressure in Bacillus subtilis: a possible risk for K+ in turgor regulation. J. Gen. Microbiol. 136: 2521 2526.
100. Whittaker, C. J.,, C. M. Klier,, and P. E. Kolenbrander. 1996. Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50: 513 553.
101. Wood, J. M. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63: 230 262.
102. Wrong, O. M.,, C. J. Edmonds,, and V. S. Chadwick. 1981. The Large Intestine: Its Role in Mammalian Nutrition and Homeostasis. John Wiley and Sons, New York, N.Y.
103. Yan, D.,, T. P. Ikeda,, A. E. Shauger,, and S. Kustu. 1996. Glutamate is required to maintain the steady-state potassium pool in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93: 6527 6531.
104. Yancey, P. H., 1994. Compatible and counteracting solutes, p. 81 109. In K. Strange (ed.), Cellular and Molecular Physiology of Cell Volume Regulation. CRC Press, Inc., Boca Raton, Fla.
105. Yao, E. S.,, R. J. Lamont,, S. P. Leu,, and A. Weinberg. 1996. Interbacterial binding among strains of pathogenic and commensal oral bacterial species. Oral Microbiol. Immunol. 11: 35 41.
106. Yeomans, N. D.,, R. W. Brimblecombe,, J. Elder,, R. V. Heatley,, J. J. Misiewicz,, T. C. Northfield,, and A. Pottage. 1995. Effects of acid suppression on microbial flora of upper gut. Dig. Dis. Sci. 40: 81S 95S.
107. Young, K. A.,, R. P. Allaker,, J. M. Hardie,, and R. A. Whiley. 1996. Interactions between Eikenella corrodens and ‘ Streptococcus milleri-group’ organisms: possible mechanisms of pathogenicity in mixed infections. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 69: 371 373.

Tables

Generic image for table
TABLE 1

Possible coaggregation-mediated interactions and outcomes

Citation: Stanton T. 2000. Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, p 61-76. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch4
Generic image for table
TABLE 2

proteins directly involved in the accumulation of osmoprotectants

Citation: Stanton T. 2000. Ecological Aspects of Host Colonization: Coaggregation, Osmoadaptation, and Acid Tolerance or Resistance, p 61-76. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error