1887

Chapter 5 : Relationships Between Community Behavior and Pathogenesis in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Relationships Between Community Behavior and Pathogenesis in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap05-2.gif

Abstract:

can be isolated from soil, water, and the skin of healthy human beings. One of the many goals of this research has been to understand the key factors that allow to make this transition, in order to both combat and prevent infections. Much of this research has involved careful genetic and biochemical characterizations of the virulence factor in question. This chapter reviews some of virulence factors and the roles they are thought to play in pathogenesis. It is known that utilizes acyl-HSL quorum sensing to regulate virulence gene expression. The chapter reviews quorum sensing in this organism with an emphasis on quorum sensing-signal generation. In , quorum sensing has been shown to be involved in coordinating the community behavior required for the formation of these structures. The chapter addresses the role of biofilm formation in pathogenesis and its relationship to quorum sensing. The same study suggested that LasA protease might be vital for pathogenesis. Pyocyanin has also been implicated in impairing host defense mechanisms in chronic infection of the CF lung; however, the actual role pyocyanin plays in pathogenesis remains uncertain. is a formidable opportunistic human pathogen that possesses an arsenal of virulence factors. These factors are important for different aspects of pathogenesis, such as colonization and cytotoxicity.

Citation: Parsek M, Greenberg E. 2000. Relationships Between Community Behavior and Pathogenesis in , p 77-92. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A model of the quorum-sensing regulatory network in . This diagram illustrates the components of the and quorum-sensing systems. Each system has its own autoinducer synthase (LasI and RhlI), transcriptional regulator (LasR and RhlR), and acyl-HSL (3-oxo-dodecanoyl-HSL and butyryl-HSL). The system regulates the system, which in turn regulates , a sigma factor of stationary phase genes. The clear, black, and stippled boxes indicate genes thought regulated by the , , and both systems.

Citation: Parsek M, Greenberg E. 2000. Relationships Between Community Behavior and Pathogenesis in , p 77-92. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Acyl-HSL biosynthesis by RhlI. The substrates for butyryl-HSL synthesis are SAM and butyryl-ACP. The first step in acyl-HSL synthesis is the binding of SAM to RhlI, which is followed by binding of butyryl-ACP. Amide bond formation occurs between SAM and the acyl group of butyryl- ACP, accompanied by the release of ACP. The next step is lactonization of the homoserine lactone ring and subsequent release of butyryl-HSL and finally 5′-methylthioadenosine. A number of SAM analogs have been identified as inhibitors of this reaction. Reprinted from reference 88 with permission. Copyright 1999 National Academy of Sciences, U.S.A.

Citation: Parsek M, Greenberg E. 2000. Relationships Between Community Behavior and Pathogenesis in , p 77-92. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Epifluorescence and scanning confocal photomicrographs of wild-type and a quorum-sensing mutant. The top three panels represent epifluorescence micrographs of the wild-type PAO1, a mutant, and a mutant complemented with exogenously added autoinducer (3-oxododecanoyl-HSL) as indicated. The bottom three panels represent saggital or side views of the biofilms generated with SCLM. The attachment surface is the axis. The bacteria are tagged with the green fluorescent protein. The mutant biofilm is thinner and more densely packed than the wild-type biofilm. Addition of autoinducer to the growth medium complements the mutant phenotype and restores a wild-type biofilm phenotype. Reprinted with permission from reference 22. Copyright 1998 American Association for the Advancement of Science.

Citation: Parsek M, Greenberg E. 2000. Relationships Between Community Behavior and Pathogenesis in , p 77-92. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap5
1. Albus, A. M.,, E. C. Pesci,, L. J. Runyen- Janecky,, S. E. West,, and B. H. Iglewski. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179:39283935.
2. Alm, R.,, A. Bodero,, P. Free,, and J. Mattick. 1996. Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 178:4653.
3. Alm, R.,, and J. Mattick. 1997. Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 192:8998.
4. Arino, S.,, R. Marchal,, and J. P. Vandecasteele. 1998. Involvement of a rhamnolipidproducing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J. Appl. Microbiol. 84:769776.
5. Arora, S. K.,, B. W. Ritchings,, E. C. Almira,, S. Lory,, and R. Ramphal. 1998. The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect. Immun. 66:10001007.
6. Bever, R. A.,, and B. H. Iglewski. 1988. Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J. Bacteriol. 170:43094314.
7. Braun, P.,, A. de Groot,, W. Bitter,, and J. Tommassen. 1998. Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa. J. Bacteriol. 180:34673469.
8. Brint, J. M.,, and D. E. Ohman. 1995. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177:71557163.
9. Britigan, B. E.,, M. A. Railsback,, and C. D. Cox. 1999. The Pseudomonas aeruginosa secretory product pyocyanin inactivates alpha1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease. Infect. Immun. 67:12071212.
10. Burchard, R. P. 1981. Gliding motility in prokaryotes: ultrastructure, physiology, and genetics. Annu. Rev. Microbiol. 35:497529.
11. Campos-Garcia, J.,, A. D. Caro,, R. Najera,, R. M. Miller-Maier,, R. A. Al-Tahhan,, and G. Soberon-Chavez. 1998. The Pseudomonas aeruginosa rhlG gene encodes an NADPHdependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J. Bacteriol. 180:44424451.
12. Chapon-Herve, V.,, M. Akrim,, A. Latifi,, P. Williams,, A. Lazdunski,, and M. Bally. 1997. Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa. Mol. Microbiol. 24:11691178.
13. Comolli, J. C.,, A. R. Hauser,, L. Waite,, C. B. Whitchurch,, J. S. Mattick,, and J. N. Engel. 1999. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect. Immun. 67:36253630.
14. Comolli, J. C.,, L. L. Waite,, K. E. Mostov,, and J. N. Engel. 1999. Pili binding to asialo- GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect. Immun. 67:32073214.
15. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin- Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711745.
16. Costerton, J. W.,, P. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
17. Cunliffe, H. E.,, T. R. Merriman,, and I. L. Lamont. 1995. Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J. Bacteriol. 177:27442750.
18. D’Agnolo, G.,, I. S. Rosenfeld,, and P. R. Vagelos. 1973. β-Ketoacyl-acyl carrier protein synthase. Characterization of the acyl-enzyme intermediate. Biochim. Biophys. Acta 326:155166.
19. Darzins, A. 1994. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol. Microbiol. 11:137153.
20. Darzins, A. 1993. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. Mol. Microbiol. 175:59345944.
21. Davies, D. G.,, and G. G. Geesey. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol. 61:860867.
22. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-tocell signals in the development of a bacterial biofilm. Science 280:295298.
23. DeBeer, D.,, P. Stoodley,, and Z. Lewandowski. 1994. Liquid flow in heterogenous biofilms. Biotech. Bioeng. 44:636641.
24. de Kievit, T.,, P. C. Seed,, J. Nezezon,, L. Passador,, and B. H. Iglewski. 1999. RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J. Bacteriol. 181:21752184.
25. Denning, G. M.,, L. A. Wollenweber,, M. A. Railsback,, C. D. Cox,, L. L. Stoll,, and B. E. Britigan. 1998. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect. Immun. 66:57775784.
26. Dunlap, P. V.,, and E. P. Greenberg. 1988. Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-LuxR protein regulatory circuit. J. Bacteriol. 170:40404046.
27. Dunny, G. M.,, and B. A. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527564.
28. Eberhard, A.,, A. L. Burlingame,, C. Eberhard,, G. L. Kenyon,, K. H. Nealson,, and N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:24442449.
29. Eberhard, A.,, T. Longin,, C. A. Widrig,, and S. J. Stanick. 1991. Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch. Microbiol. 155:294297.
30. Egland, K. A.,, and E. P. Greenberg. 1999. Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol. Microbiol. 31:11971204.
31. Elliot, B. W.,, and C. Cohen. 1986. Isolation and characterization of a lysine-specific protease from Pseudomonas aeruginosa. J. Biol. Chem. 261: 1125911265.
32. Engebrecht, J.,, K. H. Nealson,, and M. Silverman. 1983. Bacterial bioluminescence: isolation and genetic analysis of the functions from Vibrio fischeri. Cell 32:773781.
33. Engebrecht, J.,, and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81:41544158.
34. Evans, K.,, L. Passador,, R. Srikumar,, E. Tsang,, J. Nezezou,, and K. Poole. 1998. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 180:54435447.
35. Farinha, M. A.,, B. D. Conway,, L. M. Glasier,, N.W. Ellert,, R.T. Irvin,, R. Sherburne,, and W. Paranchych. 1994. Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect. Immun. 62:41184123.
36. Feldman, M.,, R. Bryan,, S. Rajan,, L. Scheffler,, S. Brunnert,, H. Tang,, and A. Prince. 1998. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66:4351.
37. Fleiszig, S. M. J.,, J. P. Wiener-Kronish,, H. Miyazaki,, V. Vallas,, K. E. Mostov,, D. Kanada,, T. Sawa,, T. S. Yen,, and D. W. Frank. 1997. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect. Immun. 65:579586.
38. Frank, D. W. 1997. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol. Microbiol. 26:621629.
39. Galloway, D. R. 1991. Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol. Microbiol. 5:23152321.
40. Gambello, M. J.,, and B. H. Iglewski. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173:30003009.
41. Gambello, M. J.,, S. Kaye,, and B. H. Iglewski. 1993. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect. Immun. 61:11801184.
42. Garwin, J. L.,, A. L. Klages,, and J. J. E. Cronan. 1980. Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J. Biol. Chem. 255:32633265.
43. Gilligan, P. H. 1991. Microbiology of airway disease in patients with cystic fibrosis. Microbiol. Rev. 4:3551.
44. Gilbert, P.,, J. Das,, and I. Foley. 1997. Biofilm susceptibility to antimicrobials. Adv. Dent. Res. 11:160167.
45. Glessner, A.,, R. S. Smith,, B. H. Iglewski,, and J. B. Robinson. 1999. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J. Bacteriol. 181:16231629.
46. Govan, J. R. W.,, and V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539574.
47. Hahn, H. P. 1997. The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa—a review. Gene 192:99108.
48. Hanzelka, B. L.,, and E. P. Greenberg. 1995. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducerbinding domain. J. Bacteriol. 177:815817.
49. Hanzelka, B. L.,, and E. P. Greenberg. 1996. Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J. Bacteriol. 178:52915294.
50. Hanzelka, B. L.,, A. M. Stevens,, M. R. Parsek,, and E. P. Greenberg. 1997. Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase. J. Bacteriol. 179:48824887.
51. Hassett, D. J.,, P. A. Sokol,, M. L. Howell,, J. F. Ma,, H. T. Schweizer,, U. Ochsner,, and M. L. Vasil. 1996. Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J. Bacteriol. 178:39964003.
52. Heck, L. W.,, P. G. Alarcon,, R. M. Kulhavy,, K. Morihara,, M. W. Russell,, and J. F. Mestecky. 1990. Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J. Immunol. 144:22532257.
53. Hong, Y. Q.,, and B. Ghebrehiwet. 1992. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin. Immunol. Immunopathol. 62:133138.
54. Howe, T. R.,, and B. H. Iglewski. 1984. Isolation and characterization of alkaline proteasedeficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model. Infect. Immun. 43:10581063.
55. Huisman, G. W.,, and R. Kolter. 1994. Sensing starvation: a homoserine lactone dependent signalling pathway in Escherichia coli. Science 265:537539.
56. Iglewski, B. H.,, J. Sadoff,, M. J. Bjorn,, and E. S. Maxwell. 1978. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc. Natl. Acad. Sci. USA 75:32113215.
57. Jiang, Y.,, M. Camara,, S. R. Chhabra,, K. R. Hardie,, B. W. Bycroft,, A. Lazdunski,, G. P. C. Salmond,, G. S. A. B. Stewart,, and P. Williams. 1998. In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N-butanoyl-L-homoserine lactone. Mol. Microbiol. 28:193203.
58. Kessler, E.,, and M. Safrin. 1988. Partial purification and characterization of an inactive precursor of Pseudomonas aeruginosa elastase. J. Bacteriol. 170:12151219.
59. Kessler, E.,, M. Safrin,, J. K. Gustin,, and D. E. Ohman. 1998. Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J. Biol. Chem. 273:3022530231.
60. Lam, J.,, R. Chan,, K. Lam,, and J. W. Costerton. 1980. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28:546556.
61. Latifi, A.,, K. M. Winson,, M. Foglino,, B. W. Bycroft,, G. S. A. B. Stewart,, A. Lazdunski,, and P. Williams. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 17:333344.
62. Lawrence, J. R.,, D. R. Korber,, B. D. Hoyle,, J. W. Costerton,, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173:65586567.
63. Lowbury, E. 1972. Prevention and treatment of sepsis in burns. Proc. R. Soc. Med. 65:2527.
64. Luzar, M.,, M. Thomassen,, and T. Montie. 1985. Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition. Infect. Immun. 50:577582.
65. Mahajan-Miklos, S.,, M. W. Tan,, L. G. Rahme,, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:4756.
66. Mahenthiralingham, E.,, M. Campbell,, and D. P. Speert. 1994. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun. 62:596605.
67. Martin, P.,, A. A. Watson,, T. F. McCaul,, and J. S. Mattick. 1995. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 16:497508.
68. Mathee, K.,, O. Ciofu,, C. Sternberg,, P. W. Lindum,, J. I. Campbell,, P. Jensen,, A. H. Johnsen,, M. Givskov,, D. E. Ohman,, S. Molin,, N. Hoiby,, and A. Kharazmi. 1999. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:13491357.
69. McFall-Ngai, M. 1998. The development of cooperative associations between animals and bacteria: establishing detente between domains. Am. Zool. 38:593608.
70. McIver, K. S.,, E. Kessler,, and D. E. Ohman. 1991. Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J. Bacteriol. 173:77817789.
71. McIver, K. S.,, E. Kessler,, J. C. Olson,, and D. E. Ohman. 1995. The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol. Microbiol. 18:877889.
72. McIver, K. S.,, J. C. Olson,, and D. E. Ohman. 1993. Pseudomonas aeruginosa lasB1 mutants produce an elastase, substituted at active-site His- 223, that is defective in activity, processing, and secretion. J. Bacteriol. 175:40084015.
73. Meyer, J. M.,, A. Neely,, A. Stintzi,, C. Georges,, and I. A. Holder. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64:518523.
74. Miyazaki, H.,, H. Kato,, T. Nakazawa,, and M. Tsuda. 1995. A positive regulatory gene, pvdS, for expression of pyoverdin biosynthetic genes in Pseudomonas aeruginosa PAO. Mol. Gen. Genet. 248:1724.
75. Møller, S.,, C. Sternberg,, J. B. Andersen,, B. B. Christensen,, J. L. Ramos,, M. Givskov,, and S. Mølin. 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64:721732.
76. Moré, M. I.,, D. Finger,, J. L. Stryker,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through the use of defined substrates. Science 272:16551658.
77. Morihara, K.,, and J. Y. Homma,. 1985. Pseudomonas proteases, p. 4179. In I. A. Holder (ed.), Bacterial Enzymes and Virulence. CRC Press, Boca Raton, Fla.
78. Nealson, K. H.,, T. Platt,, and J. W. Hastings. 1970. Cellular control of the synthesis and activity of the bacterial luminescence system. J. Bacteriol. 104:313322.
79. Nicas, T. I.,, and B. H. Iglewski. 1985. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can. J. Microbiol. 31:387392.
80. O’Toole, G. A.,, and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295304.
81. O’Toole, G. A.,, and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28:449461.
82. Ochsner, U. A.,, A. K. Koch,, A. Fiechter,, and J. Reiser. 1994. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176:20442054.
83. Ochsner, U. A.,, and J. Reiser. 1995. Autoinducer- mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:64246428.
84. Ostroff, R. M.,, and M. L. Vasil. 1987. Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J. Bacteriol. 169:45974601.
85. Palleroni, N., 1984. Family I. Pseudomonadaceae. In N. R. Krieg, and J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore, Md.
86. Park, S.,, and D. R. Galloway. 1995. Purification and characterization of LasD: a second staphylolytic proteinase produced by Pseudomonas aeruginosa. Mol. Microbiol. 16:263270.
87. Parsek, M. R.,, A. L. Schaefer,, and E. P. Greenberg. 1997. Analysis of random and sitedirected mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol. Microbiol. 26:301310.
88. Parsek, M. R.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96:43604365.
89. Passador, L.,, J. M. Cook,, M. J. Gambello,, L. Rust,, and B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:11271130.
90. Pearson, J. P.,, K. M. Gray,, L. Passador,, K. D. Tucker,, A. Eberhard,, B. H. Iglewski,, and E. P. Greenberg. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91:197201.
91. Pearson, J. P.,, L. Passador,, B. H. Iglewski,, and E. P. Greenberg. 1995. A second Nacylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:14901494.
92. Pearson, J. P.,, C. Van Delden,, and B. H. Iglewski. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181:12031210.
93. Pesci, E. C.,, J. P. Pearson,, P. C. Seed,, and B. H. Iglewski. 1997. Regulation of las and rhl quorum sensing systems in Pseudomonas aeruginosa. J. Bacteriol. 179:31273132.
94. Preston, M. J.,, P. C. Seed,, D. S. Toder,, B. H. Iglewski,, D. E. Ohman,, J. K. Gustin,, J. B. Goldberg,, and G. B. Pier. 1997. Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect. Immun. 65:30863090.
95. Prigent-Combaret, C.,, O. Vidal,, C. Dorel,, and P. Lejeune. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol. 181:59936002.
96. Prince, A. 1992. Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract. Microb. Pathog. 13:251260.
97. Pritchard, A. E.,, and M. L. Vasil. 1986. Nucleotide sequence and expression of a phosphate- regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa. J. Bacteriol. 167:291298.
98. Rahme, L. G.,, E. J. Stevens,, S. F. Wolfort,, J. Shao,, R. G. Tompkins,, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:18991902.
99. Reimmann, C.,, M. Beyeler,, A. Latifi,, H. Winteler,, M. Foglino,, A. Lazdunski,, and D. Haas. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyrylhomoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol. Microbiol. 24:309319.
100. Ruby, E. G. 1996. Lessons from a cooperative bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbioses. Annu. Rev. Microbiol. 50:591624.
101. Sata, H.,, K. Okinda,, and H. Saiton. 1988. Role of pilin in the pathogenesis of Pseudomonas aeruginosa burn infection. Microbiol. Immunol. 32:131139.
102. Schaefer, A. L.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93:95059509.
103. Seed, P. C.,, L. Passador,, and B. H. Iglewski. 1995. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177:654659.
104. Shadel, G. S.,, R. Young,, and T. Baldwin. 1990. Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744. J. Bacteriol. 172:39803987.
105. Shreve, G. S.,, S. Inguva,, and S. Gunnam. 1995. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol. Mar. Biol. Biotechnol. 4:331337.
106. Sitnikov, D. M.,, J. B. Schineller,, and T. O. Baldwin. 1995. Transcriptional regulation of bioluminescence genes from Vibrio fischeri. Mol. Microbiol. 17:801812.
107. Sorensen, R. U.,, and F. J. Joseph,. 1993. Phenazine pugments in Pseudomonas aeruginosa infection, p. 4357. In M. Campa,, M. Bendenelli,, and H. Friedman (ed.), Pseudomonas aeruginosa as an Opportunistic Pathogen. Plenum Press, New York, N.Y.
108. Stevens, A. M.,, K. M. Dolan,, and E. P. Greenberg. 1994. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA 91:1261912623.
109. Stevens, A. M.,, and E. P. Greenberg. 1997. Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. Bacteriol. 179:557562.
110. Stintzi, A.,, K. Evans,, J. M. Meyer,, and K. Poole. 1998. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol. Lett. 166:341345.
111. Stintzi, A.,, Z. Johnson,, M. Stonehouse,, U. Ochsner,, J. M. Meyer,, M. L. Vasil,, and K. Poole. 1999. The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J. Bacteriol. 181:41184124.
112. Tamura, Y.,, S. Suzuki,, and T. Sawada. 1992. Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice. Microb. Pathog. 12:237244.
113. Tang, H. B.,, E. DiMango,, R. Bryan,, M. Gambello,, B. H. Iglewski,, J. B. Goldberg,, and A. Prince. 1996. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun. 64:3743.
114. Tommassen, J.,, A. Filloux,, M. Bally,, M. Murgier,, and A. Lazdunski. 1992. Protein secretion in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 9:7390.
115. Wick, M. J.,, A. N. Hamood,, and B. H. Iglewski. 1990. Analysis of the structure-function relationship of Pseudomonas aeruginosa exotoxin A. Mol. Microbiol. 4:527535.
116. Winson, M. K.,, M. Camara,, A. Latifi,, M. Foglino,, S. R. Chhabra,, M. Daykin,, M. Bally,, V. Chapon,, G. P. C. Salmond,, B. W. Bycroft,, A. Lazdunski,, G. S. A. B. Stewart,, and P. Williams. 1995. Multiple Nacyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:94279431.
117. Woods, D. E.,, S. J. Cryz,, R. L. Friedman,, and B. H. Iglewski. 1982. Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infection of rats. Infect. Immun. 36:12231228.
118. Xiao, R.,, and W. S. Kisaalita. 1997. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143:25092515.
119. Zhang, L.,, P. J. Murphy,, A. Kerr,, and M. E. Tate. 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature (London) 362:446448.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error