1887

Chapter 7 : What Is the Very Model of a Modern Macrophage Pathogen?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

What Is the Very Model of a Modern Macrophage Pathogen?, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap07-2.gif

Abstract:

This chapter describes the major mechanisms of killing used by the macrophage, how innate killing mechanisms, immune-regulated killing mechanisms can be modulated by the host immune response, and how different bacteria have learned to deal with this potential nemesis. Macrophages are extremely degradative cells. One of their prime tasks while they migrate through body tissues is to recognize, internalize, and digest ‘‘unwanted’’ material. Activation of macrophages by cytokines such as gamma interferon and tumor necrosis factor alpha will up-regulate the killing capacity of the phagocyte. These cytokines have pleotropic effects, affecting the killing pathways of the macrophages themselves and enhancing the responsiveness of the host’s cellular immune system. The parasitophorous vacuole in which resides is acidic, freely accessible to lysosomal tracers and is therefore likely to be actively hydrolytic. The cellular immune response is the product of the presentation of foreign antigens in the context of class I and class II major histocompatibility (MHC) antigens, or CD1 molecules. All of these molecules are expressed by macrophages, rendering them highly competent antigen-presenting cells. All intramacrophage pathogens have evolved mechanisms that confer a measure of direct resistance to the major routes of killing mobilized by the phagocyte. The killing mechanisms that appear most active are those that rely on the generation of reactive oxygen or nitrogen intermediates.

Citation: Russell D. 2000. What Is the Very Model of a Modern Macrophage Pathogen?, p 107-117. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch7

Key Concept Ranking

Tumor Necrosis Factor alpha
0.49338037
Bacterial Cell Wall
0.481326
0.49338037
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818111.chap7
1. Alpuche-Aranda, C. M.,, E. P. Berthiaume,, B. Mock,, J. A. Swanson,, and S. I. Miller. 1995. Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility. Infect. Immun. 63: 4456 4462.
2. Alpuche-Aranda, C. M.,, E. L. Racoosin,, J. A. Swanson,, and S. I. Miller. 1994. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J. Exp. Med. 179: 601 608.
3. Astarie-Dequeker, C.,, E. N. N’Diaye,, V. Le Cabec,, M. G. Rittig,, J. Prandi,, and I. Maridonneau- Parini. 1999. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect. Immun. 67: 469 477.
4. Baba, T.,, Y. Natsuhara,, K. Kaneda,, and I. Yano. 1997. Granuloma formation activity and mycolic acid composition of mycobacterial cord factor. Cell. Mol. Life Sci. 53: 227 232.
5. Bannantine, J. P.,, D. D. Rockey,, and T. Hackstadt. 1998. Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol. Microbiol. 28: 1017 1026.
6. Barzu, S.,, Z. Benjelloun-Touimi,, A. Phalipon,, P. Sansonetti,, and C. Parsot. 1997. Functional analysis of the Shigella flexneri IpaC invasin by insertional mutagenesis. Infect. Immun. 65: 1599 1605.
7. Beatty, W. L.,, E. R. Rhoades,, H.-J. Ullrich,, D. Chatterjee,, J. E. Heuser,, and D. G. Russell. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic, in press.
8. Beatty, W. L.,, and P. J. Sansonetti. 1997. Role of lipopolysaccharide in signaling to subepithelial polymorphonuclear leukocytes. Infect. Immun. 65: 4395 4404.
9. Buchmeier, N. A.,, and F. Heffron. 1991. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59: 2232 2238.
10. Chen, L.,, Q. W. Xie,, and C. Nathan. 1998. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell 1: 795 805.
11. Clague, M. J.,, S. Urbe,, F. Aniento,, and J. Gruenberg. 1994. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J. Biol. Chem. 269: 21 24.
12. Clark, R. A. 1999. Activation of the neutrophil respiratory burst oxidase. J. Infect. Dis. 179( Suppl 2): S309 S317.
13. Clemens, D. L. 1996. Characterization of the Mycobacterium tuberculosis phagosome. Trends Microbiol. 4: 113 118.
14. Clemens, D. L.,, and M. A. Horwitz. 1995. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181: 257 270.
15. Cossart, P. 1998. Interactions of the bacterial pathogen Listeria monocytogenes with mammalian cells: bacterial factors, cellular ligands, and signaling. Folia Microbiol. 43: 291 303.
16. de Chastellier, C.,, and L. Thilo. 1998. Modulation of phagosome processing as a key strategy for Mycobacterium avium survival within macrophages. Res. Immunol. 149: 699 702.
17. Deretic, V.,, J. Song,, and E. Pagan-Ramos. 1997. Loss of oxyR in Mycobacterium tuberculosis. Trends Microbiol. 5: 367 372.
18. Dinauer, M. C. 1993. The respiratory burst oxidase and the molecular genetics of chronic granulomatous disease. Crit. Rev. Clin. Lab. Sci. 30: 329 369.
19. Dramsi, S.,, and P. Cossart. 1998. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell. Dev. Biol. 14: 137 166.
20. Ehrt, S.,, M. U. Shiloh,, J. Ruan,, M. Choi,, S. Gunzburg,, C. Nathan,, Q. Xie,, and L. W. Riley. 1997. A novel antioxidant gene from Mycobacterium tuberculosis. J. Exp. Med. 186: 1885 1896.
21. Ernst, J. D. 1998. Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun. 66: 1277 1281.
22. Fang, F. C.,, M. A. DeGroote,, J. W. Foster,, A. J. Baumler,, U. Ochsner,, T. Testerman,, S. Bearson,, J. C. Giard,, Y. Xu,, G. Campbell,, and T. Laessig. 1999. Virulent Salmonella typhimurium has two periplasmic Cu, Znsuperoxide dismutases. Proc. Natl. Acad. Sci. USA 96: 7502 7507.
23. Farrant, J. L.,, A. Sansone,, J. R. Canvin,, M. J. Pallen,, P. R. Langford,, T. S. Wallis,, G. Dougan,, and J. S. Kroll. 1997. Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol. Microbiol. 25: 785 796.
24. Ferrari, G.,, H. Langen,, M. Naito,, and J. Pieters. 1999. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97: 435 447.
25. Gaydos, C. A.,, J. T. Summersgill,, N. N. Sahney,, J. A. Ramirez,, and T. C. Quinn. 1996. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect. Immun. 64: 1614 1620.
26. Gilbertson, B.,, J. Zhong,, and C. Cheers. 1999. Anergy, IFN-gamma production, and apoptosis in terminal infection of mice with Mycobacterium avium. J. Immunol. 163: 2073 2080.
27. Goldfine, H.,, T. Bannam,, N. C. Johnston,, and W. R. Zuckert. 1998. Bacterial phospholipases and intracellular growth: the two distinct phospholipases C of Listeria monocytogenes. Soc. Appl. Bacteriol. Symp. Ser. 27: 7S 14S.
28. Hackam, D. J.,, O. D. Rotstein,, W. Zhang,, S. Gruenheid,, P. Gros,, and S. Grinstein. 1998. Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J. Exp. Med. 188: 351 364.
29. Hackstadt, T. 1998. The diverse habitats of obligate intracellular parasites. Curr. Opin. Microbiol. 1: 82 87.
30. Hackstadt, T.,, E. R. Fischer,, M. A. Scidmore,, D. D. Rockey,, and R. A. Heinzen. 1997. Origins and functions of the chlamydial. Trends Microbiol. 5: 288 293.
31. Hart, S. P.,, C. Haslett,, and I. Dransfield. 1996. Recognition of apoptotic cells by phagocytes. Experientia 52: 950 956.
32. Harth, G.,, D. L. Clemens,, and M. A. Horwitz. 1994. Glutamine synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. Proc. Natl. Acad. Sci. USA 91: 9342 9346.
33. Harth, G.,, and M. A. Horwitz. 1999. Export of recombinant Mycobacterium tuberculosis superoxide dismutase is dependent upon both information in the protein and mycobacterial export machinery. A model for studying export of leaderless proteins by pathogenic mycobacteria. J. Biol. Chem. 274: 4281 4292.
34. Heinzen, R. A.,, M. A. Scidmore,, D. D. Rockey,, and T. Hackstadt. 1996. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64: 796 809.
35. Hilbi, H.,, J. E. Moss,, D. Hersh,, Y. Chen,, J. Arondel,, S. Banerjee,, R. A. Flavell,, J. Yuan,, P. J. Sansonetti,, and A. Zychlinsky. 1998. Shigella-induced apoptosis is dependent on caspase- 1 which binds to IpaB. J. Biol. Chem. 273: 32895 32900.
36. Hilbi, H.,, A. Zychlinsky,, and P. J. Sansonetti. 1997. Macrophage apoptosis in microbial infections. Parasitology 115( Suppl.): S79 S87.
37. Hmama, Z.,, R. Gabathuler,, W. A. Jefferies,, G. de Jong,, and N. E. Reiner. 1998. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J. Immunol. 161: 4882 4893.
38. Horwitz, M. A.,, and F. R. Maxfield. 1984. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J. Cell Biol. 99: 1936 1943.
39. Hu, Y.,, P. D. Butcher,, J. A. Mangan,, M. A. Rajandream,, and A. R. Coates. 1999. Regulation of hmp gene transcription in Mycobacterium tuberculosis: effects of oxygen limitation and nitrosative and oxidative stress. J. Bacteriol. 181: 3486 3493.
40. Ishibashi, Y.,, and T. Arai. 1995. Salmonella typhi does not inhibit phagosome-lysosome fusion in human monocyte-derived macrophages. FEMS Immunol. Med. Microbiol. 12: 55 61.
41. Johnson, W. J.,, G. J. Warner,, P. G. Yancey,, and G. H. Rothblat. 1996. Lysosomal metabolism of lipids. Subcell. Biochem. 27: 239 294.
42. Manca, C.,, S. Paul,, C. E. Barry 3rd,, V. H. Freedman,, and G. Kaplan. 1999. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67: 74 79.
43. Marquis, H.,, H. Goldfine,, and D. A. Portnoy. 1997. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J. Cell Biol. 137: 1381 1392.
44. Mason, R. W. 1996. Lysosomal metabolism of proteins. Subcell. Biochem. 27: 159 190.
45. McGee, Z. A.,, and C. M. Clemens. 1994. Effect of bacterial products on tumor necrosis factor production: quantitation in biological fluids or tissues. Methods Enzymol. 236: 23 31.
46. Menard, R.,, P. J. Sansonetti,, and C. Parsot. 1993. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J. Bacteriol. 175: 5899 5906.
47. Nathan, C. 1997. Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 100: 2417 2423.
48. Nicod, L. P. 1999. Pulmonary defence mechanisms. Respiration 66: 2 11.
49. Oh, Y. K.,, and R. M. Straubinger. 1996. Intracellular fate of Mycobacterium avium: use of duallabel spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction. Infect. Immun. 64: 319 325.
50. Portnoy, D. A.,, and S. Jones. 1994. The cell biology of Listeria monocytogenes infection (escape from a vacuole). Ann. N. Y. Acad. Sci. 730: 15 25.
51. Rathman, M.,, M. D. Sjaastad,, and S. Falkow. 1996. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect. Immun. 64: 2765 2773.
52. Rhoades, E. R.,, A. A. Frank,, and I. M. Orme. 1997. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung Dis. 78: 57 66.
53. Ricevuti, G. 1997. Host tissue damage by phagocytes. Ann. N. Y. Acad. Sci. 832: 426 448.
54. Rincon, M.,, J. Anguita,, T. Nakamura,, E. Fikrig,, and R. A. Flavell. 1997. Interleukin (IL)-6 directs the differentiation of IL-4- producing CD4+ T cells. J. Exp. Med. 185: 461 469.
55. Roggenkamp, A.,, T. Bittner,, L. Leitritz,, A. Sing,, and J. Heesemann. 1997. Contribution of the Mn-cofactored superoxide dismutase (SodA) to the virulence of Yersinia enterocolitica serotype O8. Infect. Immun. 65: 4705 4710.
56. Russell, D. G., 1999. Where to stay inside the cell: a homesteader’s guide to intracellular parasitism, p. 131 152. In P. Cossart,, S. Normark,, R. Rappuoli,, and P. Boquet (ed.), Cellular Microbiology. AMS Press, Washington, D.C.
57. Russell, D. G.,, J. Dant,, and S. Sturgill-Koszycki. 1996 . Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J. Immunol. 156: 4764 4773.
58. Russell, D. G.,, S. Sturgill-Koszycki,, T. Vanheyningen,, H. Collins,, and U. E. Schaible. 1997. Why intracellular parasitism need not be a degrading experience for Mycobacterium. Philos. Trans. R. Soc. London B Biol. Sci. 352: 1303 1310.
59. Sambrano, G. R.,, and D. Steinberg. 1995. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc. Natl. Acad. Sci. USA 92: 1396 1400.
60. Sansonetti, P. J.,, J. Arondel,, M. Huerre,, A. Harada,, and K. Matsushima. 1999. Interleukin- 8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67: 1471 1480.
61. Schaible, U. E.,, S. Sturgill-Koszycki,, P. H. Schlesinger,, and D. G. Russell. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160: 1290 1296.
62. Scidmore, M. A.,, D. D. Rockey,, E. R. Fischer,, R. A. Heinzen,, and T. Hackstadt. 1996. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64: 5366 5372.
63. Shiloh, M. U.,, J. D. MacMicking,, S. Nicholson,, J. E. Brause,, S. Potter,, M. Marino,, F. Fang,, M. Dinauer,, and C. Nathan. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10: 29 38.
64. Sinai, A. P.,, and K. A. Joiner. 1997. Safe haven: the cell biology of nonfusogenic pathogen vacuoles. Annu. Rev. Microbiol. 51: 415 462.
65. Spargo, B. J.,, L. M. Crowe,, T. Ioneda,, B. L. Beaman,, and J. H. Crowe. 1991. Cord factor (alpha,alpha-trehalose 6,6'-dimycolate) inhibits fusion between phospholipid vesicles. Proc. Natl. Acad. Sci. USA 88: 737 740.
66.St. John, G., and H. M. Steinman. 1996. Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J. Bacteriol. 178: 15781584.
67. Sturgill-Koszycki, S.,, U. E. Schaible,, and D. G. Russell. 1996. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J. 15: 6960 6968.
68. Sturgill-Koszycki, S.,, P. H. Schlesinger,, P. Chakraborty,, P. L. Haddix,, H. L. Collins,, A. K. Fok,, R. D. Allen,, S. L. Gluck,, J. Heuser,, and D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678 681.
69. Sussman, G.,, and A. A. Wadee. 1992. Supernatants derived from CD8+ lymphocytes activated by mycobacterial fractions inhibit cytokine production. The role of interleukin-6. Biotherapy 4: 87 95.
70. Swanson, M. S.,, and R. R. Isberg. 1996. Identification of Legionella pneumophila mutants that have aberrant intracellular fates. Infect. Immun. 64: 2585 2594.
71. Ting, L.-M.,, A. C. Kim,, A. Cattamanchi,, and J. D. Ernst. 1999. Mycobacterium tuberculosis inhibits IFN-g transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163: 3898 3906.
72. Uchiya, K.-I.,, M. A. Barbieri,, K. Funato,, A. Shah,, P. D. Stahl,, and E. A. Groisman. 1999. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18: 101 110.
73. VanHeyningen, T. K.,, H. L. Collins,, and D. G. Russell. 1997. IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses. J. Immunol. 158: 330 337.
74. van Weert, A. W.,, K. W. Dunn,, H. J. Gueze,, F. R. Maxfield,, and W. Stoorvogel. 1995. Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. J. Cell Biol. 130: 821 834.
75. Via, L. E.,, D. Deretic,, R. J. Ulmer,, N. S. Hibler,, L. A. Huber,, and V. Deretic. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272: 13326 13331.
76. Via, L. E.,, R. A. Fratti,, M. McFalone,, E. Pagan-Ramos,, D. Deretic,, and V. Deretic. 1998. Effects of cytokines on mycobacterial phagosome maturation. J. Cell Sci. 111: 897 905.
77. Vogel, J. P.,, H. L. Andrews,, S. K. Wong,, and R. R. Isberg. 1998. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873 876.
78. Vogel, J. P.,, and R. R. Isberg. 1999. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2: 30 34.
79. Wadee, A. A.,, G. Sussman,, R. H. Kuschke,, and S. G. Reddy. 1993. Suppression of cytokine production by supernatants from CD8+ lymphocytes activated by mycobacterial fractions: the role of interleukins 4 and 6. Biotherapy 7: 125 136.
80. Webster, P.,, and D. G. Russell. 1993. Biology of the Trypanosomatid flagellar pocket. Parasitol. Today 9: 201 206.
81. Wientjes, F. B.,, and A. W. Segal. 1995. NADPH oxidase and the respiratory burst. Semin. Cell Biol. 6: 357 365.
82. Wilson, T.,, B. J. Wards,, S. J. White,, B. Skou,, G. W. de Lisle,, and D. M. Collins. 1997. Production of avirulent Mycobacterium bovis strains by illegitimate recombination with deoxyribonucleic acid fragments containing an interrupted ahpC gene. Tuber. Lung Dis. 78: 229 235.
83. Winchester, B. G. 1996. Lysosomal metabolism of glycoconjugates. Subcell. Biochem. 27: 191 238.
84. Winter, G.,, M. Fuchs,, M. J. McConville,, Y. D. Stierhof,, and P. Overath. 1994. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J. Cell Sci. 107: 2471 2482.
85. Xia, Y.,, and J. L. Zweier. 1997. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl. Acad. Sci. USA 94: 6954 6958.
86. Xu, S.,, A. Cooper,, S. Sturgill-Koszycki,, T. van Heyningen,, D. Chatterjee,, I. Orme,, P. Allen,, and D. G. Russell. 1994. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J. Immunol. 153: 2568 2578.
87. Yamasaki, C.,, Y. Natori,, X. T. Zeng,, M. Ohmura,, S. Yamasaki,, and Y. Takeda. 1999. Induction of cytokines in a human colon epithelial cell line by Shiga toxin 1 (Stx1) and Stx2 but not by non-toxic mutant Stx1 which lacks N-glycosidase activity. FEBS Lett. 442: 231 234.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error