1887

Chapter 1 : Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap01-2.gif

Abstract:

In 1991, Yonath and coworkers, after nearly a decade of pioneering work on the crystallization of ribosomes, showed that it was possible to obtain diffraction to beyond 3 Å from crystals of the 50S subunit of Haloarcula marismortui. This work marked a milestone in ribosome crystallography, because it established that in principle an atomic-resolution structure of a ribosomal subunit could be obtained. In the meantime, work on whole-ribosome crystallography was also carried out with . The problem of nonisomorphism can be alleviated by the use of multiwavelength anomalous dispersion, in which phase information is obtained by data collection on the same crystal at different wavelengths. Alpha helices of proteins are also visible in the structure, so that it is possible to find and to determine the orientations of proteins of known crystal structure in the map. It is possible to see protein-RNA complexes in many cases. It was possible to determine a fold for it even though the resolution is well below the traditional “atomic” resolution of 3.5 Å required for a new trace because the central domain contains a high density of proteins of previously known crystal structure and well-characterized biochemistry. It is tempting to model much of the ribosome at an intermediate resolution, where one can see double-stranded RNA and recognize known protein structures, or at even-lower resolution, as has been done by others in conjunction with biochemical and electron microscopic data.

Citation: Ramakrishnan V, Capel M, Clemons, Jr. W, May J, Wimberly B. 2000. Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, p 3-9. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch1

Key Concept Ranking

Double-Stranded RNA
0.5997233
Haloarcula marismortui
0.48769918
Thermus thermophilus
0.47120056
0.5997233
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Harker section ( = 0.5) of an isomorphous difference Patterson map from a W17 derivative of 30S crystals, showing both a major and a minor site.

Citation: Ramakrishnan V, Capel M, Clemons, Jr. W, May J, Wimberly B. 2000. Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, p 3-9. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Electron density map at 5.5-Å resolution. (a) A stretch of double-stranded RNA that shows individual strands, major and minor grooves, and bumps that correspond to phosphate groups. (b) Fit of the crystal structure of S6 ( ) to the electron density, showing that individual proteins of known structure can be both located and oriented in the map.

Citation: Ramakrishnan V, Capel M, Clemons, Jr. W, May J, Wimberly B. 2000. Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, p 3-9. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(a) Stereo view of the fold of the central domain of 16S RNA. (b) Stereo view of the three-helix junction formed by helices 20, 21, and 22 in the central domain, with associated proteins. The green helix shows the interaction of the N-terminal helix of S8 with a minor groove of H25.

Citation: Ramakrishnan V, Capel M, Clemons, Jr. W, May J, Wimberly B. 2000. Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, p 3-9. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Relative positions of RNA helices 24, 27, and 44 (the 1400/1500 stem-loop) in the structure.

Citation: Ramakrishnan V, Capel M, Clemons, Jr. W, May J, Wimberly B. 2000. Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, p 3-9. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Importance of protein-protein interactions in the 30S subunit. The figure shows relative positions of proteins S4, S5, and S8 in the 30S structure. The spheres on S5 at the S4 interface are the sites of mutations. Similar mutations on S4 involve deletions of the C-terminal helix, which is also at the S4-S5 interface. The other spheres on the S5 structure are the sites of resistance to spectinomycin.

Citation: Ramakrishnan V, Capel M, Clemons, Jr. W, May J, Wimberly B. 2000. Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, p 3-9. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Stereo view of our current interpretation of the 30S subunit at 5.5-Å resolution. The proteins of known structure are shown, along with S20, the central domain of 16S RNA, and H44. Regions that appear to be clearly double-stranded RNA in the map are shown in gray.

Citation: Ramakrishnan V, Capel M, Clemons, Jr. W, May J, Wimberly B. 2000. Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit, p 3-9. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap1
1. Abrahams, J. P.,, A. G. Leslie,, R. Lutter,, and J. E. Walker. 1994. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621628.
2. Agafonov, D. E.,, V. A. Kolb,, and A. S. Spirin. 1997. Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc. Natl. Acad. Sci. USA 94: 1289212897.
3. Agrawal, R. K.,, P. Penczek,, R. A. Grassucci,, and J. Frank. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95:61346138.
4. Allen, G.,, R. Capasso,, and C. Gualerzi. 1979. Identification of the amino acid residues of proteins S5 and S8 adjacent to each other in the 30 S ribosomal subunit of Escherichia coli. J. Biol. Chem. 254:98009806.
5. Ban, N.,, B. Freeborn,, P. Nissen,, P. Penczek,, R. A. Grassucci,, R. Sweet,, J. Frank,, P. B. Moore,, and T. A. Steitz. 1998. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93:11051115.
6. Batey, R.,, and J. Williamson. 1996. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16 S rRNA. I. Defining the minimal RNA site. J. Mol. Biol. 261:536549.
7. Blundell, T. L.,, and L. N. Johnson. 1976. Protein Crystallography. Academic Press, New York, N.Y.
8. Capel, M. S.,, D. M. Engelman,, B. R. Freeborn,, M. Kjeldgaard,, J. A. Langer,, V. Ramakrishnan,, D. G. Schindler,, D. K. Schneider,, B. P. Schoenborn,, I.-Y. Sillers,, S. Yabuki,, and P. B. Moore. 1987. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238:14031406.
9. Clemons, W. M., Jr.,, J. L. C. May,, B. T. Wimberly,, J. P. Mc-Cutcheon,, M. Capel,, and V. Ramakrishnan. 1999. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400:833840.
10. Crick, F. H. C.,, and B. S. Magdoff. 1956. The theory of the method of isomorphous replacement for protein crystals. I. Acta Crystallogr. 9:901908.
11. Gornicki, P.,, K. Nurse,, W. Hellmann,, M. Boublik,, and J. Ofengand. 1984. High resolution localization of the tRNA anticodon interaction site on the Escherichia coli 30 S ribosomal subunit. J. Biol. Chem. 259:1049310498.
12. Hauptman, H. 1997. Shake-and-bake: an algorithm for automated solution ab initio of crystal structures. Methods Enzymol. 277: 313.
13. Hendrickson, W. A. 1991. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:5158.
14. Knablein, J.,, T. Neuefeind,, F. Schneider,, A. Bergner,, A. Messerschmidt,, J. Lowe,, B. Steipe,, and R. Huber. 1997. Ta6Br(2+)12, a tool for phase determination of large biological assemblies by X-ray crystallography. J. Mol. Biol. 270:17.
15. Lindahl, M.,, L. A. Svensson,, A. Liljas,, S. E. Sedelnikova,, I. A. Eliseikina,, N. P. Fomenkova,, N. Nevskaya,, S. V. Nikonov,, M. B. Garber,, T. A. Muranova,, A. I. Rykonova,, and R. Amons. 1994. Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J. 13:12491254.
16. Lodmell, J. S.,, and A. E. Dahlberg. 1997. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science 277:12621267.
17. Lutter, L. C.,, H. Zeichhardt,, and C. G. Kurland. 1972. Ribosomal protein neighborhoods. I. S18 and S21 as well as S5 and S8 are neighbors. Mol. Gen. Genet. 119:357366.
18. McCutcheon, J. P.,, R. K. Agrawal,, S. M. Philips,, R. A. Grassucci,, S. E. Gerchman,, W. M. Clemons, Jr.,, V. Ramakrishnan,, and J. Frank. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96:43014306.
19. Moine, H.,, C. Cachia,, E. Westhof,, B. Ehresmann,, and C. Ehresmann. 1997. The RNA binding site of S8 ribosomal protein of Escherichia coli: selex and hydroxyl radical probing studies. RNA 3:255268.
20. Mueller, F.,, and R. Brimacombe. 1997. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J. Mol. Biol. 271:545565.
21. Powers, T.,, and H. F. Noller. 1995. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1:194209.
22. Ramakrishnan, V.,, and S. W. White. 1992. Structure of ribosomal protein S5 reveals sites of interaction with 16S RNA. Nature 358:768771.
23. Ramakrishnan, V.,, S. Yabuki,, I.-Y. Sillers,, D. G. Schindler,, D. M. Engelman,, and P. B. Moore. 1981. Position of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli. J. Mol. Biol. 153:739760.
24. Serganov, A. A.,, B. Masquida,, E. Westhof,, C. Cachia,, C. Portier,, M. Garber,, B. Ehresmann,, and C. Ehresmann. 1996. The 16S rRNA binding site of Thermus thermophilus ribosomal protein S15: comparison with Escherichia coli S15, minimum site and structure. RNA 2:11241138.
25. Terwilliger, T.,, and J. Berendzen. 1999. Automated MAD and MIR structure determination. Acta Crystallogr. D55:849861.
26. Thygesen, J.,, S. Weinstein,, F. Franceschi,, and A. Yonath. 1996. The suitability of multi-metal clusters for phasing in crystallography of large macromolecular assemblies. Structure 4:513518.
27. Trakhanov, S. D.,, M. M. Yusupov,, S. C. Agalarov,, M. B. Garber,, S. N. Ryazantsev,, S. V. Tischenko,, and V. A. Shirokov. 1987. Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus. FEBS Lett. 220:319322.
28. Tsukihara, T.,, H. Aoyama,, E. Yamashita,, T. Tomizaki,, H. Yamaguchi,, K. Shinzawa-Itoh,, R. Nakashima,, R. Yaono,, and S. Yoshikawa. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:11361144.
29. Ungewickell, E.,, R. Garrett,, C. Ehresmann,, P. Stiegler,, and P. Fellner. 1975. An investigation of the 16-S RNA binding sites of ribosomal proteins S4, S8, S15, and S20 from Escherichia coli. Eur. J. Biochem. 51:165180.
30. van Acken, U. 1975. Proteinchemical studies on ribosomal proteins S4 and S12 from ram (ribosomal ambiguity) mutants of Escherichia coli. Mol. Gen. Genet. 140:6168.
31. von Böhlen, K.,, I. Makowski,, H. A. S. Hansen,, H. Bartels,, Z. Berkovitch-Yellin,, A. Zaytzev-Bashan,, S. Meyer,, C. Paulke,, F. Franceschi,, and A. Yonath. 1991. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J. Mol. Biol. 222:1115.
32. Wittmann-Liebold, B.,, and B. Greuer. 1978. The primary structure of protein S5 from the small subunit of the Escherichia coli ribosome. FEBS Lett. 95:9198.
33. Wu, H.,, L. Jiang,, and R. A. Zimmermann. 1994. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction. Nucleic Acids Res. 22:16871695.
34. Yonath, A.,, and F. Franceschi. 1998. Functional universality and evolutionary diversity: insights from the structure of the ribosome. Structure 6:679684.
35. Yonath, A.,, C. Glotz,, H. S. Gewitz,, K. S. Bartels,, K. von Böhlen,, L. Makowski,, and H. G. Wittmann. 1988. Characterization of crystals of small ribosomal subunits. J. Mol. Biol. 203:831834.
36. Yonath, A.,, J. Harms,, H. A. Hansen,, A. Bashan,, F. Schlunzen,, I. Levin,, I. Koelln,, A. Tocilj,, I. Agmon,, M. Peretz,, H. Bartels,, W. S. Bennett,, S. Krumbholz,, D. Janell,, S. Weinstein,, T. Auerbach,, H. Avila,, M. Piolleti,, S. Morlang,, and F. Franceschi. 1998. Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry. Acta Crystallogr. A54:945955.
37. Yusupov, M. M.,, S. V. Tischenko,, S. D. Trakhanov,, S. N. Ryazantsev,, and M. B. Garber. 1988. A new crystalline form of 30 S ribosomal subunits from Thermus thermophilus. FEBS Lett. 238:113115.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error