1887

Chapter 10 : How Ribosomal Proteins and rRNA Recognize One Another

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

How Ribosomal Proteins and rRNA Recognize One Another, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap10-2.gif

Abstract:

The assembly and structural integrity of the ribosome are guaranteed by specific interactions among its component proteins and RNAs. In and other bacteria, many of the proteins that associate with rRNA also regulate the translation of ribosomal protein operons via interactions with the corresponding mRNAs. In all likelihood, these features define the specific three-dimensional surfaces that are recognized by the ribosomal proteins. The results discussed in this chapter focus on the studies of the interactions between ribosomal proteins S8 and L1 and their binding sites in the 16S and 23S rRNAs, respectively, which take place during ribosomal subunit assembly. The results demonstrated that the difference in the affinity of S8 for the two sites can in fact be attributed to the bulged bases. The conservation of nucleotides within the conserved core of the S8 binding site—whether in rRNA or in mRNA—is remarkable, and from evidence to be presented, it is clearly related to the capacity of both RNAs to associate with S8. Site-directed-mutagenesis experiments have shown that the identities of most of the nucleotides in the conserved core (nucleotides 595 to 598 and 640 to 644) are critical for optimal S8-RNA interaction, whereas almost all of the base pairs in the duplex segments can be replaced with only minimal effects on protein binding as long as the helical elements are maintained.

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10

Key Concept Ranking

16s rRNA Sequencing
0.41976058
Bacteria and Archaea
0.40192196
0.41976058
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Binding site for protein S8. (Left) Structures of the binding site for ribosomal protein S8 in 16S rRNA (left) and mRNA (right) from . (Right) Position of the S8 binding site in the secondary structure of the 16S rRNA. Helices 21 and 25 are denoted as H21 and H25, respectively.

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Phylogenetic conservation and mutagenesis in the binding site for protein S8. (Left) Conservation of nucleotides in bacterial and chloroplast 16S rRNAs; boldface, <95%; shadow, 90 to 95%; outline, 80 to 90%; hatched, constrained to A or U in over 93% of prokaryotic 16S rRNAs. (Right) Nucleotides which, when mutated, sharply decrease S8-RNA affinity (boldface).

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Base triples in the binding site for protein S8. (a) A595•(A596-U644). (b) U641•(G597-C643).

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Effects of nucleotide analogue substitutions on S8-RNA interaction. Abbreviations are: r, ribo; d, 2′-deoxy; 2′OMe, 2′-methyl; sU, 4-thiouridine; Pu, purine; I, inosine; 2APu, 2- aminopurine; 7deaza, 7-deaza.

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Structure of protein S8 showing amino acids implicated in RNA binding. Over 40 single-site mutants of protein S8 were isolated in a genetic screen designed to identify variants defective in RNA binding ( ). Altered amino acids, depicted in ball-and-stick mode, are displayed on the backbone structure of protein S8 from according to the crystallographic structure determined by . The effects of the amino acid replacements on S8-RNA interaction are indicated as follows: red, strongly deleterious; red-orange, mildly deleterious; orange, no effect; yellow, identified in screen but not yet tested. Gln56 and Tyr86, in magenta, correspond to Lys55 and Tyr85 in S8 (see the text).

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Binding site for protein L1. (Left) Structures of the binding site for ribosomal protein L1 in 23S rRNA (top) and L1-L11 mRNA (bottom) from . (Right) Position of the L1 binding site in the secondary structure of the 3′ half of the 23S rRNA. Helices 76, 77, and 78 are denoted as H76, H77, and H78, respectively.

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Phylogenetic conservation and mutagenesis in the binding site for protein L1. (Left) Conservation of nucleotides in bacterial and chloroplast 16S rRNAs; boldface, <95%; shadow, 90 to 95%; outline, 80 to 90%. (Right) Nucleotides which, when mutated, sharply decrease L1-RNA affinity (boldface).

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Modification-interference analysis of L1 binding site partially substituted with rUS. (a) Autoradiogram of rUS-substituted RNA after RNase U, alkali, and iodine treatment, followed by separation on a 15% polyacrylamide gel. Lane U, RNase U digestion; lane OH, partial alkaline hydrolysis; lane I2 total, iodine cleavage of unfractionated RNA; lane I2 selected, iodine cleavage of L1-bound RNA. (b) Relative intensities of bands corresponding to individual U residues after iodine cleavage, as measured by phosphorimaging. A value near 1.0 indicates no enrichment of rU over rUS in the bound fraction. Reduced values indicate a preference for the unmodified nucleotide.

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap10
1. Allmang, C.,, M. Mougel,, E. Westhof,, B. Ehresmann,, and C. Ehresmann. 1994. Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8. Nucleic Acids Res. 22: 3708 3714.
2. Conn, G. L.,, D. E. Draper,, E. E. Lattman,, and A. G. Gittis. 1999. Crystal structure of a conserved ribosomal protein-RNA complex. Science 284: 1171 1174.
3. Davies, C.,, V. Ramakrishnan,, and S. W. White. 1996. Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 Å resolution. Structure 4: 1093 1104.
4. Dong, P.,, L. Jiang,, K. Harington,, P. B. C. Cahill,, and R. A. Zimmermann. Unpublished data.
5. Dragon, F.,, C. Payant,, and L. Brakier-Gingras. 1994. Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7. J. Mol. Biol. 244: 74 85.
6. Draper, D. E. 1995. Protein-RNA recognition. Annu. Rev. Biochem. 64: 593 620.
7. Draper, D. E., 1996. Ribosomal protein-RNA interactions, p. 171 197. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
8. Drygin, D.,, and R. A. Zimmermann. Unpublished data.
9. Egebjerg, J. , , J. Christiansen,, and R. A. Garrett. 1991. Attachment sites of primary binding proteins L1, L2 and L23 on 23S ribosomal RNA of Escherichia coli. J. Mol. Biol. 222: 251 264.
10. Gourse, R. L.,, D. L. Thurlow,, S. A. Gerbi,, and R. A. Zimmermann. 1981. Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc. Natl. Acad. Sci. USA 78: 2722 2726.
11. Grasby, J. A.,, and M. J. Gait. 1994. Synthetic oligoribonucleotides carrying site-specific modifications for RNA structure-function analysis. Biochimie 76: 1223 1234.
12. Gregory, R. J.,, P. B. F. Cahill,, D. L. Thurlow,, and R. A. Zimmermann. 1988. The interaction of Escherichia coli ribosomal protein S8 with its binding sites in ribosomal RNA and messenger RNA. J. Mol. Biol. 204: 295 307.
13. Gutell, R. R. Personal communication.
14. Hanner, M.,, C. Mayer,, C. Kohrer,, G. Golderer,, P. Grobner,, and W. Piendl. 1994. Autogenous translational regulation of the ribosomal MvaL1 operon in the archaebacterium Methanococcus vannielii, J. Bacteriol. 176: 409 418.
15. Kalurachchi, K.,, and E. P. Nikonowicz., 1998. NMR structure determination of the binding site for ribosomal protein S8 from Escherichia coli 16S rRNA. J. Mol. Biol. 280: 639 654.
16. Kalurachchi, K.,, K. Uma,, R. A. Zimmermann,, and E. P. Nikonowicz. 1997. Structural features of the binding site for ribosomal protein S8 in Escherichia coli 16S rRNA defined using NMR spectroscopy. Proc. Natl. Acad. Sci. USA 94: 2139 2144.
17. Lindahl, L.,, and J. Zengel. 1986. Ribosomal genes in Escherichia coli. Annu. Rev. Genet. 20: 297.
18. Moine, H.,, C. Cachia,, E. Westhof,, B. Ehresmann,, and C. Ehresmann. 1997. The RNA binding site of S8 ribosomal protein of Escherichia coli: selex and hydroxyl radical probing studies. RNA 3: 255 268.
19. Mougel, M.,, F. Eyermann,, E. Westhof,, P. Romby,, A. Expert- Bezançon,, J.-P. Ebel,, B. Ehresmann,, and C. Ehresmann. 1987. Binding of Escherichia coli ribosomal protein S8 to 16S rRNA. A model of the interaction and the tertiary structure of the RNA binding site. J. Mol. Biol. 198: 91 107.
20. Mougel, M.,, C. Allmang,, F. Eyermann,, C. Cachia,, B. Ehresmann,, and C. Ehresmann. 1993. Minimal 16S rRNA binding site and the role of conserved nucleotides in Escherichia coli ribosomal protein S8 recognition. Eur. J. Biochem. 215: 787 792.
21. Nevskaya, N.,, S. Tishchenko,, A. Nikulin,, S. al-Karadaghi,, A. Liljas,, B. Ehresmann,, C. Ehresmann,, M. Garber,, and S. Nikonov. 1998. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific protein binding site. J. Mol. Biol. 279: 233 244.
22. Nikonov, S.,, N. Nevskaya,, I. Eliseikina,, N. Fomenkova,, A. Nikulin,, N. Ossina,, M. Garber,, B.-H. Jonsson,, C. Briand,, S. al-Karadaghi,, A. Svensson,, A. Ævarsson,, and A. Liljas. 1996. Crystal structure of the RNA binding ribosomal protein L1 from Thermus thermophilus. EMBO J. 15: 1350 1359.
23. Nikonowicz, E. P. Unpublished data.
24. Powers, T.,, and H. F. Noller. 1995. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1: 194 209.
25. Ryan, P. C.,, M. Lu,, and D. E. Draper. 1991. Recognition of the highly conserved GTPase center of 23S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J. Mol. Biol. 221: 1257 1268.
26. Sapag, A.,, J. V. Vartikar,, and D. E. Draper. 1990. Dissection of the 16S rRNA binding site for ribosomal protein S4. Biochim. Biophys. Acta 1050: 34 37.
27. Serganov, A. A.,, B. Masquida,, W. Westhof,, C. Cachia,, C. Portier,, M. Garber,, B. Ehresmann,, and C. Ehresmann. 1996. The 16S rRNA binding site of Thermus thermophilus ribosomal protein S15: comparison with Escherichia coli S15, minimum site and structure. RNA 2: 1124 1138.
28. Svensson, P.,, L. M. Changchien,, G. R. Craven,, and H. F. Noller. 1988. Interaction of ribosomal proteins S6, S8, S15 and S18 with the central domain of 16S ribosomal RNA. J. Mol. Biol. 200: 301 308.
29. Thomas, M. S.,, and M. Nomura. 1987. Translational regulation of the L11 ribosomal protein operon of Escherichia coli: mutations that define the target site for repression by L1. Nucleic Acids Res. 15: 3085 3096.
30. Thurlow, D. L.,, and R. A. Zimmermann. Unpublished data.
31. Uma, K.,, and R. A. Zimmermann. Unpublished data.
32. Uma, K.,, E. P. Nikonowicz,, K. Kalurachchi,, H. Wu,, I. Wower,, and R. A. Zimmermann. 1995. Structural characterization of Escherichia coli ribosomal protein S8 and its binding site in 16S ribosomal RNA. Nucleic Acids Symp. Ser. 33: 8 10.
33. Urlaub, H.,, B. Thiede,, E. C. Muller,, R. Brimacombe,, and B. Wittmann-Liebold. 1997. Identification and sequence analysis of contact sites between ribosomal proteins and rRNA in Escherichia coli 30S subunits by a new approach using matrixassisted laser desorption / ionization-mass spectrometry combined with N-terminal microsequencing. J. Biol. Chem. 272: 14547 14555.
34. Wimberly, B. T.,, R. Guymon,, J. P. McCutcheon,, S. W. White,, and V. Ramakrishnan. 1999. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97: 491 502.
35. Wower, I.,, M. P. Kowaleski,, L. E. Sears,, and R. A. Zimmermann. 1992. Mutagenesis of ribosomal protein S8 from Escherichia coli: defects in the regulation of the spc operon. J. Bacteriol. 174: 1213 1221.
36. Wu, H.,, L. Jiang,, and R. A. Zimmmerann. 1994. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction. Nucleic Acids Res. 22: 1687 1695.
37. Zimmermann, R. A. Unpublished data.
38. Zimmermann, R. A, , H. Wu, , I. K. Wower, , and K. Uma. Unpublished data.

Tables

Generic image for table
Table 1

Relative affinities of truncated variants of protein S8 for the S8 binding site

Citation: Zimmermann R, Alimov I, Uma K, Wu H, Wower I, Drygin D, Dong P, Jiang L, Nikonowicz E. 2000. How Ribosomal Proteins and rRNA Recognize One Another, p 93-104. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error