1887

Chapter 18 : Nuclear Import of Ribosomal Proteins: Evidence for a Novel Type of Nuclear Localization Signal

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Nuclear Import of Ribosomal Proteins: Evidence for a Novel Type of Nuclear Localization Signal, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap18-2.gif

Abstract:

In recent years considerable insight has been gained into the mechanisms of nucleocytoplasmic transport. Interestingly, a number of strong indications were found that nuclear import of r-proteins uses a specialized import pathway different from that used by the majority of karyophilic proteins. This suggests that the nuclear localization signals or sequences (NLSs) of r-proteins may be structurally distinct from the classical NLSs present in the latter class of proteins. This chapter reviews present knowledge of the mechanism and signals responsible for the nuclear import of proteins, in particular, r-proteins. A similar situation exists in mammalian cells, where the nuclear import of rat r-proteins S7, L5, and L23a could be achieved by four different vertebrate importins, namely, transportin; RanBP5, the homologue of yeast Pse1p; and Ran BP7; as well as importin β itself, but without the aid of importin α. Mammalian r-proteins also use a specialized nuclear import pathway not involving importin α.The situation is even more complex than in yeast, however, since four different receptors have been identified, all belonging to the importin β family: transportin, which is also involved in nuclear import of hnRNP proteins; importin β itself; RanBP5, the homologue of the yeast r-protein importin Pse1p; and RanBP7. Each of these receptors was shown to be able to promote nuclear import of at least three different r-proteins (S7, L5, and L23a) directly, without the help of importin α.

Citation: Stuger R, Timmers A, Raué H, Van'y Riet J. 2000. Nuclear Import of Ribosomal Proteins: Evidence for a Novel Type of Nuclear Localization Signal, p 205-214. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch18

Key Concept Ranking

Simian virus 40
0.45113686
Acidic Amino Acids
0.400996
0.45113686
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Comparison of the NLS of human r-protein L23a with the corresponding region in its L25 functional homologue from . *, identical residues; ^, similar residues. The sequences identified experimentally as having NLS activity are indicated by thick lines. YRP-like motifs are indicated by thin lines.

Citation: Stuger R, Timmers A, Raué H, Van'y Riet J. 2000. Nuclear Import of Ribosomal Proteins: Evidence for a Novel Type of Nuclear Localization Signal, p 205-214. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap18
1. Adam, E. J. H.,, and S. A. Adam. 1994. Identification of cytosolic factors required for nuclear location: sequence-mediated binding to the nuclear envelope. J. Cell. Biol. 125:547555.
2. Aitchison, J. D.,, G. Blobel,, and M. P. Rout. 1996. Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274:624627.
3. Annilo, T.,, A. Karis,, S. Hoth,, T. Rikk,, J. Kruppa,, and A. Metspalu. 1998. Nuclear import and nucleolar accumulation of the human ribosomal protein S7 depends on both a minimal nuclear localization sequence and an adjacent basic region. Biochem. Biophys. Res. Commun. 249:759766.
4. Ballesta, J. P. G.,, M. A. Rodriguez-Gabriel,, G. Bou,, E. Briones,, R. Zambrano,, and M. Remacha. 1999. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. FEMS Microbiol. Lett. 23:537550.
5. Booher, R. N.,, C. E. Alfa,, J. S. Hyams,, and D. H. Beach. 1989. The fission yeast cdc2 /cdc13/ suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58:485497.
6. Bouvet, P.,, J. J. Diaz,, K. Kindbeiter,, J. J. Madjar,, and F. Amalric. 1998. Nucleolin interacts with several ribosomal proteins through its RGG domain. J. Biol. Chem. 273:1902519029.
7. Breeuwer, M.,, and D. S. Goldfarb. 1990. Facilitated nuclear transport of Histone H1 and other small nucleophilic proteins. Cell 60:9991008.
8. Chelsky, D.,, R. Ralph,, and G. Jonak. 1989. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol. Cell. Biol. 9:24872492.
9. Conti, E.,, M. Uy,, L. Leighton,, G. Blobel,, and J. Kuriyan. 1998. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94:193204.
10. Dang, C. V.,, and W. M. F. Lee. 1989. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, Hsp70 and HIV tat proteins. J. Biol. Chem. 264:1801918023.
11. Dingwall, C. 1991. Transport across the nuclear envelope: enigmas and explanations. Bioessays 13:213217.
12. Dingwall, C. M.,, and R. A. Laskey. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478481.
13. El Baradi, T. T. A. L.,, C. A. F. M. Van der Sande,, W. H. Mager,, H. A. Raué,, and R. J. Planta. 1986. The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein. Curr. Genet. 10:733739.
14. Fahrenkrog, B.,, E. C. Hurt,, U. Aebi,, and N. Pante. 1998. Molecular architecture of the yeast nuclear pore complex—localization of Nsp1p subcomplexes. J. Cell Biol. 143:577588.
15. Fischer, U.,, E. Darzynkiewicz,, S. M. Tahara,, N. A. Dathan,, R. Lührmann,, and I. W. Mattaj. 1991. Diversity in the signals required for nuclear accumulation of U snRNPs and variety in the pathways of nuclear transport. J. Cell Biol. 113:705714.
16. Fischer, U.,, J. Huber,, W. C. Boelens,, I. W. Mattaj,, and R. Lührmann. 1995. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475483.
17. Fried, H. M., 1993. Nucleocytoplasmic transport in ribosome biogenesis, p. 257267. In A. J. P. Brown, , M. F. Tuite, , and J. E. G. McCarthy (ed.), Protein Synthesis and Targeting in Yeast. Springer-Verlag, Berlin, Germany.
18. Goldberg, M. W.,, and T. D. Allen. 1995. Structural and functional organization of the nuclear envelope. Curr. Opin. Cell Biol. 7: 301309.
19. Görlich, D.,, and I. W. Mattaj. 1996. Nucleocytoplasmic transport. Science 271:15131518.
20. Görlich, D.,, F. Vogel,, A. D. Mills,, E. Hartmann,, and R. A. Laskey. 1995. Distinct functions for the two importin subunits in nuclear protein import. Nature 377:246248.
21. Gritz, L.,, N. Abovich,, J. L. Teem,, and M. Rosbash. 1985. Posttranscriptional regulation and assembly into ribosomes of a Saccharomyces cerevisiae ribosomal protein-β-galactosidase fusion. Mol. Cell. Biol. 5:34363442.
22. Hall, M. N.,, L. Hereford,, and I. L. Herskowitz. 1984. Targeting of Escherichia coli ?-galactosidase to the nucleus in yeast. Cell 36:10571065.
23. Huber, J.,, U. Cronshagen,, M. Kadokura,, C. Marshallsay,, T. Wada,, M. Sekine,, and R. Lührmann. 1998. Snurportin1, an M(3)G-Cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17:41144126.
24. Jäkel, S.,, and D. Görlich. 1998. Importin beta, Transportin, Ranbp5 and Ranbp7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17:44914502.
25. Jeeninga, R. E.,, J. Venema,, and H. A. Raué. 1996. Rat RL23a ribosomal protein efficiently competes with its Saccharomyces cerevisiae L25 homologue for assembly into 60 S subunits. J. Mol. Biol. 263:648656.
26. Kalderon, D.,, E. L. Roberts,, W. D. Richardson,, and A. E. Smith. 1984. A short amino acid sequence able to specify nuclear location. Cell 39:499509.
27. Kobe, B. 1999. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat. Struct. Biol. 6:388397.
28. Kruiswijk, T.,, R. J. Planta,, and J. M. Krop. 1978. The course of assembly of ribosomal subunits in yeast. Biochim. Biophys. Acta 517:378389.
29. Mager, W. H.,, R. J. Planta,, J. P. G. Ballesta,, J. C. Lee,, K. Mizuta,, K. Suzuki,, J. R. Warner,, and J. Woolford. 1997. A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Nucleic Acids Res. 25:48724875.
30. Maicas, E.,, F. G. Pluthero,, and J. D. Friesen. 1988. The accumulation of three yeast ribosomal proteins under conditions of excess mRNA is determined primarily by fast protein decay. Mol. Cell. Biol. 8:169175.
31. Mattaj, I. W.,, and L. Englmeier. 1998. Nucleocytoplasmic transport— the soluble phase. Annu. Rev. Biochem. 67:265306.
32. Melchior, F.,, and L. Gerace. 1995. Mechanisms of nuclear protein import. Curr. Opin. Cell. Biol. 7:310318.
33. Mélèse, T.,, and Z. Xue. 1995. The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 7:319324.
34. Michael, W. M.,, M. Y. Choi,, and G. Dreyfuss. 1995. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 83:415422.
35. Moore, M. S.,, and G. Blobel. 1994. Purification of a Ran-interacting protein that is required for protein import into the nucleus. Proc. Natl. Acad. Sci. USA 91:1021210216.
36. Moreland, R. B.,, H. G. Nam,, L. M. Hereford,, and H. M. Fried. 1985. Identification of a nuclear localization signal of a yeast ribosomal protein. Proc. Natl. Acad. Sci. USA 82:65616565.
37. Nehrbass, U.,, and G. Blobel. 1996. Role of the nuclear transport factor p10 in nuclear import. Science 272:120122.
38. Nehrbass, U.,, E. Fabre,, S. Dihlmann,, W. Herth,, and E. C. Hurt. 1993. Analysis of nucleocytoplasmic transport in a thermosensitive mutant of nuclear pore protein NSP1. Eur. J. Cell Biol. 62:112.
39. Osborne, M. A.,, and P. A. Silver. 1993. Nucleocytoplasmic transport in the yeast Saccharomyces cerevisiae. Annu. Rev. Biochem. 62:219254.
40. Panté, N.,, and U. Aebi. 1996. Molecular dissection of the nuclear pore complex. Crit. Rev. Biochem. Mol. Biol. 31:153199.
41. Paschal, B. M.,, and L. Gerace. 1995. Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J. Cell Biol. 129:925937.
42. Planta, R. J. 1997. Regulation of ribosome synthesis in yeast. Yeast 13:15051518.
43. Pollard, V. W.,, W. M. Michael,, S. Nakielny,, M. C. Siomi,, F. Wang,, and G. Dreyfuss. 1996. A novel receptor-mediated nuclear protein import pathway. Cell 86:985994.
44. Quaye, I. K. E.,, S. Toku,, and T. Tanaka. 1996. Sequence requirement for nucleolar localisation of rat ribosomal protein L31. Eur. J. Cell Biol. 69:151155.
45. Raué, H. A.,, and R. J. Planta. 1991. Ribosome biogenesis in yeast. Prog. Nucleic Acid Res. Mol. Biol. 41:89129.
46. Roberts, B. L.,, W. D. Richardson,, and A. E. Smith. 1987. The effect of protein context on nuclear location signal function. Cell 50:465475.
47. Rosenblum, J. S.,, L. F. Pemberton,, and G. Blobel. 1997. A nuclear import pathway for a protein involved in tRNA maturation. J. Cell Biol. 139:16551661.
48. Rout, M. P.,, G. Blobel,, and J. D. Aitchison. 1997. A distinct nuclear import pathway used by ribosomal proteins. Cell 89:715725.
49. Russo, G.,, G. Ricciardelli,, and C. Pietropaolo. 1997. Different domains cooperate to target the human ribosomal L7a protein to the nucleus and to the nucleoli. J. Biol. Chem. 272:52295235.
50. Rutgers, C. A.,, P. J. Schaap,, J. Van ’t Riet,, C. L. Woldringh,, and H. A. Raué. 1990. In vivo and in vitro analysis of structure-function relationships in ribosomal protein L25 from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1050:7479.
51. Rutgers, C. A.,, J. M. J. Rientjes,, J. Van ’t Riet,, and H. A. Raué. 1991. rRNA binding domain of yeast ribosomal protein L25. Identification of its borders and a key leucine residue. J. Mol. Biol. 218:375385.
52. Schaap, P. J.,, J. Van ’t Riet,, C. L. Woldringh,, and H. A. Raué. 1991. Identification and functional analysis of the nuclear localization signals of ribosomal protein L25 from Saccharomyces cerevisiae. J. Mol. Biol. 221:225237.
53. Scheer, U.,, and D. Weisenberger. 1994. The nucleolus. Curr. Opin. Cell Biol. 6:354359.
54. Schlenstedt, G.,, E. Smirnova,, R. Deane,, J. Solsbacher,, U. Kutay,, D. Gorlich,, H. Ponstingl,, and F. R. Bischoff. 1997. Yrb4p, a yeast Ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. EMBO J. 16:62376249.
55. Schmidt, C.,, E. Lipsius,, and J. Kruppa. 1995. Nuclear and nucleolar targeting of human ribosomal protein S6. Mol. Biol. Cell 6:18751885.
56. Schmidt-Zachmann, M. S.,, and E. A. Nigg. 1993. Protein localization to the nucleolus—a search for targeting domains in nucleolin. J. Cell Sci. 105:799806.
57. Shimmin, L. C.,, G. Ramirez,, A. T. Matheson,, and P. P. Dennis. 1989. Sequence alignment and evolutionary comparison of the L10 equivalent and L12 equivalent ribosomal proteins from archaebacteria, eubacteria, and eucaryotes. J. Mol. Evol. 29:448462.
58. Timmers, A. C. J.,, R. Stuger,, P. J. Schaap,, J. Van ’t Riet,, and H. A. Raué. 1999. Nuclear and nucleolar localization of Saccharomyces cerevisiae ribosomal proteins S22 and S25. FEBS Lett. 452:335340.
59. Tollervey, D. 1996. Trans-acting factors in ribosome synthesis. Exp. Cell Res. 229:226232.
60. Underwood, M.,, and H. M. Fried. 1990. Characterization of nuclear localizing sequences derived from yeast ribosomal protein L29. EMBO J. 9:9199.
61. Vodkin, M. H.,, R. J. Novak,, and G. L. McLaughlin. 1996. Database searches with multiple oligopeptides containing ambiguous residues. BioTechniques 21:11161117.
62. Wagner, P.,, and M. N. Hall. 1993. Nuclear protein transport is functionally conserved between yeast and higher eukaryotes. FEBS Lett. 321:261266.
63. Warner, J. R. 1979. Distribution of newly formed ribosomal proteins in HeLa cell fractions. J. Cell Biol. 80:767772.
64. Warner, J. R.,, G. Mitra,, F. Schwindiger,, M. Studeny,, and H. M. Fried. 1985. Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating mRNA splicing, translational initiation, and protein turnover. Mol. Cell. Biol. 5:15121521.
65. Weis, K. 1998. Importins and exportins—how to get in and out of the nucleus. Trends Biochem. Sci. 23:235.
66. Wen, W.,, J. L. Meinkoth,, R. Y. Tsien,, and S. S. Taylor. 1995. Identification of a signal for rapid export of proteins from the nucleus. Cell 82:463473.
67. Wozniak, R. W.,, M. P. Rout,, and J. D. Aitchison. 1998. Karyopherins and kissing cousins. Trends Cell Biol. 8:184188.
68. Xue, Z.,, and T. Mélèse. 1994. Nucleolar proteins that bind NLSs: a role in nuclear import or ribosome biogenesis? Trends Cell Biol. 4:414417.

Tables

Generic image for table
Table 1

NLSs identified experimentally in yeast r-proteins

Citation: Stuger R, Timmers A, Raué H, Van'y Riet J. 2000. Nuclear Import of Ribosomal Proteins: Evidence for a Novel Type of Nuclear Localization Signal, p 205-214. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch18
Generic image for table
Table 2

Putative NLSs identified by computer search of the complete set of yeast r-protein sequences

Citation: Stuger R, Timmers A, Raué H, Van'y Riet J. 2000. Nuclear Import of Ribosomal Proteins: Evidence for a Novel Type of Nuclear Localization Signal, p 205-214. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch18
Generic image for table
Table 3

NLSs identified experimentally in mammalian r-proteins

Citation: Stuger R, Timmers A, Raué H, Van'y Riet J. 2000. Nuclear Import of Ribosomal Proteins: Evidence for a Novel Type of Nuclear Localization Signal, p 205-214. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error