1887

Chapter 20 : Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap20-2.gif

Abstract:

RNA plays a critical role in all the steps of protein synthesis. The idea that the modern ribosome evolved from the original RNA-only protein-synthesizing machinery was so appealing, and made so much sense from the evolutionary standpoint, that it immediately found many proponents. The high degree of rRNA sequence conservation is usually perceived as an indication of the functional importance of the corresponding rRNA segment. Several nucleotide sequence segments of 23S rRNA, as well as a number of individual nucleotides, are invariant among all the studied organisms. Peptidyltransferase substrates, aminoacyl- and peptidyl-tRNAs, form tight contacts with rRNA, which has been demonstrated most clearly by crosslinking and footprinting experiments. By contrast, the omission of 5S rRNA during reconstitution of 50S subunits with either natural or in vitro-transcribed 23S rRNA had a significantly more severe effect on the peptidyltransferase activity, which was reduced to the level of no more than 0.03% of that of native 50S subunits. The RNA component of the peptidyltransferase center is composed of RNA segments scattered in the 23S rRNA primary structure. While some rRNA sequences are brought together in the rRNA secondary structure, other elements are brought into proximity with the catalytic center in the tertiary structure of the 50S subunit.

Citation: Khaitovich P, Mankin A. 2000. Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase, p 229-243. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch20

Key Concept Ranking

Small Nucleolar RNA
0.45736226
Sodium Dodecyl Sulfate
0.4519389
0.45736226
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Two-dimensional gel electrophoresis of proteins from 50S subunits and KSP particles. The identified proteins of KSP particles are labeled. Spot X in protein preparations from KSP particles was not sequenced; the corresponding spot in total protein of the 50S subunit contains unresolved proteins L1 and L4.

Citation: Khaitovich P, Mankin A. 2000. Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase, p 229-243. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Reconstitution of 50S subunits with natural and in vitro-transcribed 23S rRNA. (A) Temperature profiles for the two-step and three-step reconstitutions. (B) Sucrose gradient analysis of native 50S subunits or subunits reconstituted with natural or in vitro-transcribed 23S rRNA. The arrows indicate the positions of the peaks of native 50S subunits. (C) Peptidyltransferase activity of subunits reconstituted with in vitro-transcribed 23S rRNA in a two- or threestep reconstitution procedure. The spots shown correspond to the product of the peptidyltransferase reaction, [S]fMetpuromycin, resolved by paper electrophoresis (for details, see ). The histogram at the bottom of panel C shows the results of quantification of the [S]fMet-puromycin spot (total counts over a 10-h exposure).

Citation: Khaitovich P, Mankin A. 2000. Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase, p 229-243. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Compensatory effect of G2553C mutation in 23S rRNA and C75G mutation in aminoacyl-tRNA or its analogues. The schematic secondary structure of domain V of 23S rRNA and the position of G2553 are shown on the left. (A) Peptidyltransferase reaction between [S]fMet-tRNA and puromycin-containing oligonucleotides, CC-Pm or CGPm, catalyzed by 50S subunits reconstituted with the wild-type (G2553) or mutant (C2553) 23S rRNA. The reaction product, [S]fMet-puromycin, was resolved by paper electrophoresis and quantified. (B) Effect of G2553C mutation in 23S rRNA on peptidyltransferase reaction between [S]fMet-tRNA and either wild-type (C75) or mutant (G75) Val-tRNA ( ). The reaction product, [S]fMet-Val dipeptide, was resolved by thin-layer chromatography. In both experiments, the amount of radioactivity in the reaction product, [S]fMet-puromycin or [S]fMet-Val, was quantified after a 10-h exposure on a beta-scanner.

Citation: Khaitovich P, Mankin A. 2000. Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase, p 229-243. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Effect of 5S rRNA and the ketolide antibiotic HMR3647 on the reconstitution of catalytically active large ribosomal subunits. (A) Sites of interactions of 5S rRNA and some macrolide, ketolide, and streptogramin B-type antibiotics with 23S rRNA. The regions boxed by solid lines in domains II and V show the sites of occurrence of antibiotic resistance mutations and/or rRNA positions whose accessibilities to chemical modifications are affected by the antibiotics. The region in domain V boxed by a dashed line shows the locations of 23S rRNA positions protected from chemical modification upon binding of the 5S rRNA-protein complex. 5S rRNA-23S rRNA cross-links are shown by dashed lines (see the text for references). (B and C) Effect of the presence of a ketolide, HMR3647, during the reconstitution procedure on the peptidyltransferase activity of 50S subunits assembled without 5S rRNA. The spots in panel C represent the product of the peptidyltransferase reaction, [S]fMet-puromycin. The drug was added before the first incubation step (lane 1), before the third incubation step (lane 2), or after completion of reconstitution (lane 3), as also shown in panel B. +, present; -, absent.

Citation: Khaitovich P, Mankin A. 2000. Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase, p 229-243. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap20
1. Asai, T.,, D. Zaporojets,, C. Squires,, and C. L. Squires. 1999. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc. Natl. Acad. Sci. USA 96:19711976.
2. Barta, A.,, and I. Halama,. 1996. The elusive peptidyl transferase—RNA or protein? p. 3554. In R. Green, and R. Schroeder (ed.), Ribosomal RNA and Group I Introns. R. G. Landes Company, Austin, Tex.
3. Baughman, G. A.,, and S. R. Fahnestock. 1979. Chloramphenicol resistance mutation in Escherichia coli which maps in the major ribosomal protein gene cluster. J. Bacteriol. 137:13151323.
4. Bernabeu, C.,, P. Conde,, D. Vazquez,, and J. P. Ballesta. 1979. Peptidyl transferase of bacterial ribosome: resistance to proteinase K. Eur. J. Biochem. 93:527533.
5. Bocchetta, M.,, L. Q. Xiong,, and A. S. Mankin. 1998. 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc. Natl. Acad. Sci. USA 95:35253530.
6. Böck, A.,, F. Turnowsky,, and G. Hogenauer. 1982. Tiamulin resistance mutations in Escherichia coli. J. Bacteriol. 151:1253-1260.
7. Brimacombe, R., , P. Mitchell, , M. Osswald, , K. Stade, , and D. Bochkariov. 1993. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J. 7:161167.
8. Brimacombe, R.,, P. Mitchell,, and F. Müller,. 1995. The organization of rRNA, tRNA, and mRNA in the ribosome, p. 129147. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
9. Chernyaeva, N. S.,, E. J. Murgola,, and A. S. Mankin. 1999. Suppression of nonsense mutations induced by expression of an RNA complementary to a conserved segment of 23S rRNA. J. Bacteriol. 181:52575262.
10. Chittum, H. S.,, and W. S. Champney. 1994. Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J. Bacteriol. 176:61926198.
11. Cooperman, B. S.,, T. Wooten,, D. P. Romero,, and R. R. Traut. 1995. Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. Biochem. Cell Biol. 73:10871094.
12. Crick, F. H. C. 1968. The origin of the genetic code. J. Mol. Biol. 38:367379.
13. Dabbs, E. R. 1991. Mutants lacking individual ribosomal proteins as a tool to investigate ribosomal properties. Biochimie 73:639-645.
14. Dallas, A., , R. Rycyna, , and P. Moore. 1995. A proposal for the conformation of loop E in Escherichia coli 5S rRNA. Biochem. Cell Biol. 73:887897.
15. Dohme, F.,, and K. H. Nierhaus. 1976. Role of 5S RNA in the assembly and function of the 50S subunit from Escherichia coli. Proc. Natl. Acad. Sci. USA 73:22212225.
16. Dokudovskaya, S.,, O. Dontsova,, O. Shpanchenko,, A. Bogdanov,, and R. Brimacombe. 1996. Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA. RNA 2:146152.
17. Dontsova, O.,, V. Tishkov,, S. Dokudovskaya,, A. Bogdanov,, T. Döring,, J. Rinke-Appel,, S. Thamm,, B. Greuer,, and R. Brimacombe. 1994. Stem-loop IV of 5S rRNA lies close to the peptidyltransferase center. Proc. Natl. Acad. Sci. USA 91:41254129.
18. Draper, D. E.,, and L. P. Reynaldo. 1999. RNA binding strategies of ribosomal proteins. Nucleic Acids Res. 27:381388.
19. Franceschi, F. J.,, and K. H. Nierhaus. 1990. Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit. Analysis of an Escherichia coli mutant lacking L15. J. Biol. Chem. 265:1667616682.
20. Garrett, R. A.,, and C. Rodriguez-Fonseca. 1996. The peptidyl transferase center, p. 327355. In R. A. Zimmermann and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
21. Glotz, C.,, C. Zwieb,, R. Brimacombe,, K. Edwards,, and H. Kossel. 1981. Secondary structure of the large subunit ribosomal RNA from Escherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucleic Acids Res. 9:32873306.
22. Green, R. Personal communication.
23. Green, R.,, and H. F. Noller. 1996. In vitro complementation analysis localizes 23S rRNA postranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA 2:10111021.
24. Green, R.,, and H. F. Noller. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66:679716.
25. Green, R.,, and H. F. Noller. 1999. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38:17721779.
26. Green, R.,, C. Switzer,, and H. F. Noller. 1998. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S rribosomal RNA. Science 280:286289.
27. Gregory, S. T.,, and A. E. Dahlberg. 1999. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J. Mol. Biol. 289:827834.
28. Gustafsson, C.,, and B. C. Persson. 1998. Identification of the rrmA gene encoding the 23S rRNA m1G745 methyltransferase in Escherichia coli and characterization of an m1G745-deficient mutant. J. Bacteriol. 180:359365.
29. Gutell, R. R., 1996. Comparative sequence analysis and the structure of 16S and 23S rRNA, p. 111128. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
30. Hampl, H.,, H. Schulze,, and K. H. Nierhaus. 1981. Ribosomal components from Escherichia coli 50S subunits involved in the reconstitution of peptidyltransferase activity. J. Biol. Chem. 256:22842288.
31. Hansen, L. H.,, P. Mauvais,, and S. Douthwaite. 1999. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31:623632.
32. Hummel, H.,, W. Piepersberg,, and A. Böck. 1979. Analysis of lincomycin resistance mutations in Escherichia coli. Mol. Gen. Genet. 169:345347.
33. Khaitovich, P.,, and A. S. Mankin. 1999. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5S rRNA. J. Mol. Biol. 291:10251034.
34. Khaitovich, P.,, A. S. Mankin,, R. Green,, L. Lancaster,, and H. F. Noller. 1999a. Characterization of functionally active subribosomal particles from Thermus aquaticus. Proc. Natl. Acad. Sci. USA 96:8590.
35. Khaitovich, P.,, T. Tenson,, P. Kloss,, and A. S. Mankin. 1999b. Reconstitution of functionally active Thermus aquaticus large ribosomal subunity with in vitro-transcribed rRNA. Biochemistry 38:17801788.
36. Khaitovich, P.,, T. Tenson,, A. S. Mankin,, and R. Green. 1999c. Peptidyl transferase activity catalyzed by protein-free 23S ribosomal RNA remains elusive. RNA 5:605608.
37. Krzyzosiak, W.,, R. Denman,, K. Nurse,, W. Hellmann,, M. Boublik,, C. W. Gehrke,, P. F. Agris,, and J. Ofengand. 1987. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26:23532364.
38. Lazaro, E.,, L. A. G. M. vandenBroek,, A. S. Felix,, H. C. J. Ottenheijm,, and J. P. G. Ballesta. 1991. Chemical, biochemical and genetic endeavours characterizing the interaction of sparsomycin with the ribosome. Biochimie 73:11371143.
39. Le Goffic, F.,, M. L. Capmau,, L. Chausson,, and D. Bonnet. 1980. Photo-induced affinity labeling of Escherichia coli ribosomes by chloramphenicol. Eur. J. Biochem. 106:667674.
40. Leviev, I.,, S. Levieva,, and R. A. Garrett. 1995. Role for the highly conserved region of domain IV of 23S-like rRNA in subunit-subunit interactions at the peptidyl transferase centre. Nucleic Acids Res. 23:15121517.
41. Liu, J. C. H.,, M. Liu,, and J. Horowitz. 1998. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu. RNA 4:639646.
42. Lund, E.,, and J. E. Dahlberg. 1998. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282:20822085.
43. Maimets, T.,, J. Remme,, and R. Villems. 1984. Ribosomal protein L16 binds to the 3'end of transfer RNA. FEBS Lett. 153:5356.
44. Mankin, A. S., 1995. Selection for spontaneous and engineered mutations in the rRNA genes in halophilic archaea, p. 209216. In F. T. Robb, , A. R. Place, , K. R. Sowers, , H. J. Schreier, , S. DasSarma, , and E. M. Fleischmann (ed.), Archaea, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
45. Mankin, A. S.,, and A. M. Kopylov. 1981. A secondary structure of the mitochondrial 12S rRNA as an example of rRNA economy. Biochem. Int. 3:587593.
46. Mankin, A. S.,, I. Leviev,, and R. A. Garrett. 1994. Crosshypersensitivity effects of mutations in 23 S rRNA yield insight into aminoacyl-tRNA binding. J. Mol. Biol. 244:151157.
47. Melancon, P.,, D. Leclerc,, N. Destroismaisons,, and L. Brakier- Gingras. 1990. The anti-Shine-Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for the correct selection of translational starts. Biochemistry 29:34023407.
48. Moazed, D.,, and H. F. Noller. 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879884.
49. Moazed, D.,, and H. F. Noller, 1989. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57:585597.
50. Moine, H.,, K. Nurse,, B. Ehresmann,, C. Ehresmann,, and J. Ofengand. 1997. Conformational analysis of Escherichia coli 30S ribosomes containing the single-base mutations G530U, U1498G, G1401C, and C1501G and the double-base mutation G1401C/ C1501G. Biochemistry 36:1370013709.
51. Monro, R. E. 1967. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J. Mol. Biol. 26:147151.
52. Moore, V. G.,, R. E. Atchison,, G. Thomas,, M. Moran,, and H. F. Noller. 1975. Identification of a ribosomal protein essential for peptidyl transferase activity. Proc. Natl. Acad. Sci. USA 72:844848.
53. Nierhaus, K. H.,, and F. Dohme. 1974. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc. Natl. Acad. Sci. USA 71:47134717.
54. Nitta, I.,, Y. Kamada,, H. Noda,, T. Ueda,, and K. Watanabe. 1998a Reconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains. Science 281:666669.
55. Nitta, I.,, T. Ueda,, and K. Watanabe. 1998b. Possible involvement of Escherichia coli 23S ribosomal RNA in peptide bond formation. RNA 4:257267.
56. Noller, H. F. 1993. Peptidyl transferase: protein, ribonucleoprotein, or RNA? J. Bacteriol. 175:52975300.
57. Noller, H. F.,, V. Hoffarth,, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:14161419.
58. Nomura, M.,, and V. A. Erdmann. 1970. Reconstitution of 50S ribosomal subunits from dissociated molecular components. Nature 228:744748.
59. O’Connor, M.,, N. M. Willis,, L. Bossi,, R. F. Gesteland,, and J. F. Atkins. 1993. Functional tRNAs with altered 3' ends. EMBO J. 12:25592566.
60. Ohkubo, S.,, A. Muto,, Y. Kawauchi,, F. Yamao,, and S. Osawa. 1987. The ribosomal protein gene cluster of Mycoplasma capricolum. Mol. Gen. Genet. 210:314322.
61. Østergaard, P.,, H. Phan,, L. B. Johansen,, J. Egebjerg,, L. Ostergaard,, B. T. Porse,, and R. A. Garrett. 1998. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA. J. Mol. Biol. 284:227240.
62. Pan, C.,, and T. L. Mason. 1997. Functional analysis of ribosomal protein L2 in yeast mitochondia. J. Biol. Chem. 272:81658171.
63. Porse, B. T.,, H. P. Thi-Ngoc,, and R. A. Garrett. 1996. The donor substrate site within the peptidyl transferase loop of 23 S rRNA and its putative interactions with the CCA-end of N-blocked aminoacyl-tRNAPhe. J. Mol. Biol. 264:472483.
64. Porse, B. T.,, S. V. Kirillov,, M. J. Awayez,, and R. A. Garrett. 1999. UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on binding of the streptogramin B antibiotic, pristinamycin IA. RNA 5:585595.
65. Raychaudhuri, S.,, J. Conrad,, B. G. Hall,, and J. Ofengand. 1998. A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA 4:14071417.
66. Remme, J.,, E. Metspalu,, T. Maimets,, and R. Villems. 1985. The properties of the complex between ribosomal protein L2 and tRNA. FEBS Lett. 190:275278.
67. Rozenski, J.,, P. F. Crain,, and J. A. McCloskey. 1999. The RNA modification database: 1999 update. Nucleic Acids Res. 27:196197.
68. Saarma, U.,, and J. Remme. 1992. Novel mutants of 23S rRNA: characterization of functional properties. Nucleic Acids Res. 20: 31473152.
69. Samaha, R. R.,, R. Green,, and H. F. Noller. 1995. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377:309314.
70. Sergiev, P.,, S. Dokudovskaya,, E. Romanova,, A. Topin,, A. Bogdanov,, R. Brimacombe,, and O. Dontsova. 1998. The environment of 5S rRNA in the ribosome: cross-links to the GTPase-associated area of 23S rRNA. Nucleic Acids Res. 26: 25192525.
71. Sirum-Connolly, K.,, and T. L. Mason. 1993. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262:18861889.
72. Sirum-Connolly, K.,, J. M. Peltier,, P. F. Crain,, J. A. McCloskey,, and T. L. Mason. 1995. Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 77:3039.
73. Stöffler-Meilicke, M.,, and G. Stöffler,. 1990. Topography of the ribosomal proteins from Escherichia coli within the intact subunits as determined by immunoelectron microscopy and proteinprotein cross-linking , p. 123133. In W. E. Hill, , A. Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
74. Triman, K. L.,, A. Peister,, and R. A. Goel. 1998. Expanded versions of the 16S and 23S ribosomal RNA mutation databases (16SMDBexp and 23SMDBexp). Nucleic Acids Res. 26:280284.
75. Uhlein, M.,, W. Weglohner,, H. Urlaub,, and B. Wittmann-Liebold. 1998. Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies. Biochem. J. 331:423430.
76. Walleczek, J.,, D. Schüler,, M. Stöffler-Meilicke,, R. Brimacombe,, and G. Stöffler. 1988. A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO J. 7:35713576.
77. Weitzmann, C. J.,, P. R. Cunningham,, and J. Ofengand. 1990. Cloning, in vitro transcription, and biological activity of Escherichia coli 23S ribosomal RNA. Nucleic Acids Res. 18:35153520.
78. Wittmann-Liebold, B.,, A. K. E. Köpke,, E. Arndt,, W. Krömer,, T. Hatakeyama,, and H.-G. Wittmann,. 1990. Sequence comparison and evolution of ribosomal proteins and their genes , p. 598616. In W. E. Hill, , A Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
79. Wower, J.,, I. K. Wower,, S. V. Kirillov,, K. V. Rosen,, S. S. Hixson,, and R. A. Zimmermann. 1995. Peptidyl transferase and beyond. Biochem. Cell Biol. 73:10411047.
80. Xiong, L.,, S. Shah,, P. Mauvais,, and A. S. Mankin. 1999. A ketolide resistance mutation in domain II of 23S rRNA reveals proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol. 31:633639.
81. Zhang, B.,, and T. R. Cech. 1997. Peptide bond formation by in vitro selected ribozymes. Nature 390:96100.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error