1887

Chapter 23 : Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap23-2.gif

Abstract:

The chapter describes an approach to form defined photo-cross-links from targeted RNA sites within the ribosome, with an emphasis on those that are important functionally. In this approach, radioactive, photolabile derivatives of oligonucleotides (PHONTs) having sequences complementary to rRNA sequences are bound to their targeted sequences in intact ribosomal subunits and, on photolysis, form cross-links with neighboring ribosomal components. The PHONT approach offers several advantages. First, it allows targeting of sequences of particular functional or structural significance throughout the ribosome structure. Second, the cross-links formed provide a defined upper-limit distance for the separation of the linked components within the ribosome, given by the length of the tether. The chapter first describes the PHONT approach in general before presenting the results of recent applications of the approach to the study of the peptidyltransferase center (PTC). It identifies four principal elements in PHONT design: first, the backbone structure; second, the placement of the photolabile group within the oligonucleotide sequence; third, the length and flexibility of the tether linking the photolabile group with the oligonucleotide backbone; and fourth, the introduction of radioactivity. As is evident in the descriptions, PHONT design continues to evolve. Currently the YAMMP approach is applied to develop a three-dimensional model of the PTC based on cross-linking results, which provide the clearest set of constraints for model construction.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23

Key Concept Ranking

High-Performance Liquid Chromatography
0.47779223
Sodium Dodecyl Sulfate
0.47124714
0.47779223
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Space-filling model of heteroduplex between PHONTs and nt 517 to 527 in 16S rRNA. The tethered aryl azides correspond to five different PHONTs targeting this sequence ( ).

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Noncovalent binding of oligonucleotides to 50S subunits. ♦, 2′-OMe-RNA-p*2612-2604; ●, cDNA-p*2612-2604; ▲, 2′- OMe-RNA-p*2258-2253/ 52(S)-2248. The last oligonucleotide is the precursor to PHONT 5 ( Fig. 3 ), in which a nonbridging oxygen on the phosphoryl group connecting nucleotides complementary to G2253 and G2252 is replaced by a sulfur. The error bars indicate average deviations. Asterisks denote P-labeled material.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of PHONTs 1 to 7. The distances between the photogenerated nitrenes (or 4-thio position) and the bases complementary to rRNA nucleotides are indicated. ABA, azidobenzoylamide; SAz, -azidophenacyl derivative of a thiophosphate; *p and A*, P-labeled phosphoryl and adenyl groups placed at the 5′ and 3′ positions, respectively.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

RNase H digestion of 50S rRNA labeled by PHONTs 1 and 2. Labeled 50S RNA isolated from 50S subunits photolyzed in the presence of PHONT 1 or 2 was incubated with two equivalents of the indicated cDNA probe(s) and digested with RNase H. The cleavage products were subjected to urea-PAGE and visualized by autoradiography. Photolabeling experiments were carried out either in the absence of competitor 2′-OMe-oligoRNA [lanes (-)] or in the presence of a 10-fold excess (over the 50S subunit) of 2′- OMe-oligoRNA either complementary to nt 2604 to 2612 (PHONT 1 target) or 2448 to 2458 (PHONT 2 target) (lanes CH) or containing mismatches (lanes MM) to these two targets. Lane 1, RNA size markers. Lane 2, DNA size markers, with sizes (in nucleotides) indicated to the left of the gel. RNA sizes are italicized. Lanes 3 to 14, 23S rRNA labeled with photoprobe 1, digested with cDNAs 1892 to 1883 and 2505 to 2497 (lanes 3 to 5); cDNAs 1892 to 1883 and 1971 to 1962 (lanes 6 to 8); cDNAs 866 to 857 and 1051 to 1042 (lanes 9 to 11); cDNAs 866 to 857 and 916 to 907 (lanes 12 to 14). Lanes 15 to 17, 23S rRNA labeled with photoprobe 2, digested with cDNAs 2505 to 2497 and 2310 to 2301. The arrows point to specifically labeled RNase H fragments.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Reverse transcriptase analyses of PHONT 1-labeled 23S RNA extracted from PHONT 1-labeled 50S subunits. Lanes U, C, G, and A, sequencing products generated from control (nonphotolyzed) 23S rRNA in the presence of ddATP, ddGTP, ddCTP, and ddTTP, respectively. Lanes 1 to 3, control experiments for rRNA isolated from samples with (+) or without (−) photolysis (hν) as indicated. Lanes 4 to 6, samples photolyzed with PHONT 1 in the presence or absence of complementary (CH) or mismatched (MM) 2′-OMe-oligoRNAs as indicated. The arrows point to nucleotides at which pauses or stops induced by photoincorporation of PHONT 1 are observed. (A) With primer complementary to 23S rRNA nt 2639 to 2623. (B) With primer complementary to 23S rRNA nt 1983 to 1965.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Analyses of PHONT 1-labeled TP50. (A) RP-HPLC. TP50 was extracted from 50S subunits labeled with PHONT 1 (2′-OMe-RNA-p*2612-2604- C7-Az) in the absence or presence of either competitive complementary 2′-OMe–oligoRNA (2′-OMe-RNA-2612-2604) or MM-2′-OMe-RNA-2612-2604). (B) SDS-PAGE and autoradiographic analyses of RP-HPLC peak C in panel A. The lefthand four lanes represent TP50; the right-hand three lanes represent peak C. Lane (-), 50S subunits were incubated with prephotolyzed 1 with no further photolysis. Lanes (+), subunits photolyzed with 1. Lanes CH and MM, subunits photolyzed with 1 in the presence of 10-fold excess (over 50S subunits) of either 2′-OMe-RNA-2612-2604 (lanes CH) or MM-2′-OMe-RNA- 2612-2604 (lanes MM). The far righthand lane displays TP50 stained with Coomassie blue.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Oligonucleotides testing the target site specificity of PHONT 5 photoincorporation. The asterisk indicates the position of aryl azide attachment. Underlined nucleotides are not complementary to the target site.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Summary of cross-linking results useful for construction of a peptidyltransferase model. (A) The circled cross-links are from Table 1 . The large boldface numbers refer to target sites for PHONTs 1 to 6. (B) All relevant cross-links. The circled cross-links are as described in panel A. The boxed cross-links involve a variety of other approaches, mostly direct photolysis or via introduction of a photolabile group. The helices (underlined) are numbered as in Brimacombe, 1995.

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap23
1. Agrawal, R. K.,, and D. P. Burma. 1996. Sites of ribosomal RNAs involved in the subunit association of tight and loose couple ribosomes. J. Biol. Chem. 271: 21285 21291.
2. Agrawal R. K., , P. Penczek, , R. A. Grassucci, , and J. Frank. 1998. Visualization of elongation factor G on the Escherichia coli 70 S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95: 6134 6138.
3. Alexander, R. W.,, and B. S. Cooperman. 1998. Ribosomal proteins neighboring 23 S rRNA nucleotides 803-811 within the 50 S subunit. Biochemistry 37: 1714 1721.
4. Alexander, R. W.,, P. Muralikrishna,, and B. S. Cooperman. 1994. Ribosomal components neighboring the conserved 518-533 loop of 16 S ribosomal RNA in 30 S subunits. Biochemistry 33: 12109 12118.
5. Azad, A. A.,, P. Failla,, and J. Hanna. 1998. Inhibition of ribosomal subunit association and protein synthesis by oligonucleotides corresponding to defined regions of 18S rRNA and 5S rRNA. Biochem. Biophys. Res. Commun. 248: 51 56.
6. Ban, N.,, B. Freeborn,, P. Nissen,, P. Penczek,, R.A. Grassucci,, R. Sweet,, J. Frank,, P. B. Moore,, and T. A. Steitz. 1998. A 9-Å resolution x-ray crystallographic map of the large ribosomal subunit. Cell 93: 1105 1115.
7. Baranov, P. V.,, P. V. Sergiev,, O. A. Dontsova,, A. A. Bogdanov,, and R. Brimacombe. 1998. The database of ribosomal cross links (DRC). Nucleic Acids Res. 26: 187 189.
8. Barta, A.,, and I. Halama. 1996. The elusive peptidyl transferase— RNA or protein? p. 35 54. In R. Green and R. Schroeder (ed.), Ribosomal RNA and Group I Introns. R. G. Landes Company, Austin, Tex.
9. Barta, A.,, G. Steiner,, J. Brosius,, H. F. Noller,, and E. Kuechler. 1984. Identification of a site on 23 S ribosomal RNA located at the peptidyl transferase center. Proc. Natl. Acad. Sci. USA 81: 3607.
10. Brimacombe, R. 1995. The structure of ribosomal RNA: a three dimensional jigsaw puzzle. Eur. J. Biochem. 230: 365 383.
11. Brimacombe, R.,, B. Greuer,, P. Mitchell,, M. Osswald,, J. Rinke- Appel,, D. Schüler,, and K. Stade,. 1990. Three-dimensional structure and function of Escherichia coli 16S and 23S rRNA as studied by cross-linking techniques, p. 93 106. In W. E. Hill, , A. Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
12. Bukhtiyarov, Y.,, Z. Druzina,, and B. S. Cooperman. 1999. Identification of 23 S rRNA nucleotides neighboring the P-loop in the E. coli 50 S subunit. Nucleic Acids Res. 27: 4376 4384.
13. Cooperman, B. S. 1988. Affinity labeling of ribosomes. Methods Enzymol. 164: 341 361.
14. Cooperman, B. S.,, C. J. Weitzmann,, and M. A. Buck. 1988. Reverse phase high performance liquid chromatography of ribosomal proteins. Methods Enzymol. 164: 523 532.
15. Cooperman, B. S.,, C. J. Weitzmann,, and C. L. Fernandez,. 1990. Antibiotic probes of E. coli ribosomal peptidyltransferase, p. 491 501. In W. E. Hill, , A. Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
16. Cooperman, B. S.,, T. Wooten,, D. P. Romero,, and R. R. Traut. 1995. Histidine 229 in protein L2 is apparently essential for 50 S peptidyl transferase activity. Biochem. Cell Biol. 73: 1087 1094.
17. Cooperman, B. S.,, R. W. Alexander,, Y. Bukhtiyarov,, S. N. Vladimirov,, Z. Druzina,, R. Wang,, and N. Zuño. Photolabile derivatives of oligonucleotides (PHONTS) as probes of ribosomal structure. Methods Enzymol., in press.
18. Cundliffe, E., 1990. Recognition sites for antibiotics within rRNA, p. 479 490. In W. E. Hill, , A. Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
19. Dontsova, O.,, V. Tishkov,, S. Dokudovskaya,, A. Bogdanov,, T. Döring,, J. Rinke-Appel,, S. Thamm,, B. Greuer,, and R. Brimacombe. 1994. Stem-loop IV of 5S rRNA lies close to the peptidyltransferase center. Proc. Natl. Acad. Sci. USA 91: 4125 4129.
20. Fernandez-Puentes, C.,, and D. Vazquez. 1977. Effects of some proteins that inactivate the eukaryotic ribosome. FEBS Lett. 78: 143 146.
21. Frank, J. 1998. The ribosome-structure and functional ligandbinding experiments using cryo-electron microscopy. J. Struct. Biol. 124: 142 150.
22. Garrett, R. A.,, and C. Rodriguez-Fonseca,. 1996. The peptidyl transferase center, p. 327 355. In R. A. Zimmermann, and A. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function. CRC Press, Boca Raton, Fla.
23. Graifer, D. M.,, G. T. Babkina,, N. B. Matasova,, S. N. Vladimirov,, G. G. Karpova,, and V. V. Vlassov. 1989. Structural arrangement of transfer-RNA binding-sites on Escherichia coli ribosomes, as revealed from data on affinity labeling with photoactivatable transfer-RNA derivatives. Biochim. Biophys. Acta 1008: 146 156.
24. Green, R.,, and H. F. Noller. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66: 679 716.
25. Green, R.,, R. R. Samaha,, and H. F. Noller. 1997. Mutations at nucleotides G2251 and U2585 of the 23 S rRNA perturb the transferase centre of the ribosome. J. Mol. Biol. 266: 40 50.
26. Green, R.,, C. Switzer,, and H. F. Noller. 1998. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23 S ribosomal RNA. Science 280: 286 289.
27. Gregory, S. T.,, and A. E. Dahlberg. 1998. Mutations in the conserved P loop perturb the conformation of two structural elements in the peptidyl transferase center of 23 S ribosomal RNA. J. Mol. Biol. 285: 1475 1483.
28. Gulle, H.,, E. Hoppe,, M. Osswald,, B. Greuer,, R. Brimacombe,, and G. Stoffler. 1988. RNA-protein cross-linking in Escherichia coli 50 S ribosomal subunits; determination of sites on 23 S RNA that are cross-linked to proteins L2, L4, L24 and L27 by treatment with 2-iminothiolane. Nucleic Acids Res. 16: 815 832.
29. Gutell, R. R.,, N. Larsen,, and C. R. Woese. 1994. Lessons from an evolving rRNA: 16 S and 23 S rRNA structures from a comparative perspective. Microbiol. Rev. 58: 10 26.
30. Hall, C. C.,, D. Johnson,, and B. S. Cooperman. 1988. [3H]-pazidopuromycin photoaffinity labeling of E. coli ribosomes: evidence for site-specific interaction at U-2504 and G-2502 in domain V of 23 S ribosomal RNA. Biochemistry 27: 3983 3990.
31. Hausner, T.-P.,, J. Atmadja,, and K. Nierhaus. 1987. Evidence that the G2661 region of 23 S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69: 911 923.
32. Hill, W. E.,, J. Weller,, T. Gluick,, C. Merryman,, R. T. Marconi,, A. Tassanakajohn,, and W. E. Tapprich,. 1990. Probing ribosome structure and function by using short complementary DNA oligomers, p. 93 106. In W. E. Hill, , A. Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
33. Inoue, H.,, Y. Hayase,, A. Imura,, S. Iwai,, K. Miura,, and E. Ohtsuka. 1987. Synthesis and hybridization studies on two complementary non(2′-O-methyl)ribonucleotides. Nucleic Acids Res. 15: 6131 6148.
34. Inoue, H.,, Y. Hayase,, S. Iwai,, and E. Ohtsuka. 1988. Sequencespecific cleavage of RNA using chimeric DNA splints and RNase H. Nucleic Acids Res. Symp. Ser. 19: 135 138.
35. Johnson, A. E.,, and C. R. Cantor. 1980. Elongation factordependent affinity labeling of E. coli ribosomes. J. Mol. Biol. 138: 273 297.
36. Joseph, S.,, and H. F. Noller. 1996. Mapping the rRNA neighborhood of the acceptor end of tRNA in the ribosome. EMBO J. 15: 910 916.
37. Joseph, S.,, B. Weiser,, and H. F. Noller. 1997. Mapping the inside of the ribosome with an RNA helical ruler. Science 278: 1093 1098.
38. Kerlavage, A. R.,, T. Hasan,, and B. S. Cooperman. 1983. Reversephase high performance liquid chromatography of Escherichia coli ribosomal proteins: standardization of 70S, 50S, and 30S protein chromatograms. Functional activity of purified proteins. J. Biol. Chem. 258: 6313 6318.
39. Khaitovich, P.,, A. S. Mankin,, R. Green,, L. Lancaster,, and H. F. Noller. 1999. Characterization of functionally active subribosomal particles from Thermus aquaticus. Proc. Natl. Acad. Sci. USA 96: 85 90.
40. Lasater, L. S.,, P. A. Cann,, and D. G. Glitz. 1989. Localization of the site of cleavage of ribosomal RNA by colicin-E3—placement on the small ribosomal subunit by electron microscopy of antibody- complementary oligodeoxynucleotide complexes. J. Biol. Chem. 264: 21798 21805.
41. Lasater, L. S.,, L. Montesano-Roditis,, P. A. Cann,, and D. G. Glitz. 1990. Localization of an oligodeoxynucleotide complementing 16 S ribosomal RNA residues 520-531 on the small subunit of E. coli ribosomes—electron microscopy of ribosome-cDNAantibody complexes. Nucleic Acids Res. 18: 477 485.
42. Leffers, H.,, J. Egebjerg,, A. Andersen,, T. Christensen,, and R. A. Garrett. 1988. Domain VI of E. coli 23 S ribosomal RNA: structure, assembly and function. J. Mol. Biol. 204: 507 522.
43. Lodmell, J. S.,, and A. Dahlberg. 1997. A conformational switch in Escherichia coli 16 S ribosomal RNA during decoding of messenger RNA. Science 277: 1262 1267.
44. Lodmell, J. S.,, W. E. Tapprich,, and W. E. Hill. 1993. Evidence for a conformational change in the exit site of the E. coli ribosome upon tRNA binding. Biochemistry 32: 4067 4072.
45. MacMillan, A. M.,, and G. L. Verdine. 1991. Engineering tethered DNA molecules by the convertible nucleotide approach. Tetrahedron 47: 2603 2616.
46. Malhotra, A.,, R. K.-Z. Tan,, and S. C. Harvey. 1994. Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys. J. 66: 1777 1795.
47. Mankin, A. S.,, E. A. Skripkin,, N. V. Chichkova,, A. M. Kopylov,, and A. A. Bogdanov. 1981. An enzymatic approach for localization of oligodeoxyribonucleotide binding sites on RNA. FEBS Lett. 131: 253 256.
48. Marconi, R. T.,, and W. E. Hill. 1988. Identification of defined sequences in domain V of E. coli 23 S rRNA in the 50 S subunit accessible for hybridization with complementary oligodeoxyribonucleotides. Nucleic Acids Res. 16: 1603 1615.
49. Marconi, R. T.,, and W. E. Hill. 1989. Evidence for a tRNA/rRNA interaction site within the peptidyltransferase center of the E. coli ribosome. Biochemistry 28: 893 899.
50. Marconi, R. T.,, J. S. Lodmell,, and W. E. Hill. 1990. Identification of a rRNA/ chloramphenicol interaction site within the peptidyltransferase center of the 50 S subunit of the E. coli ribosome. J. Biol. Chem. 265: 7894 7899.
51. McWilliams, R. A.,, and D. G. Glitz. 1991. Localization of a segment of 16 S RNA on the surface of the small ribosomal subunit by immune electron microscopy of complementary oligodeoxynucleotides. Biochimie 73: 911 918.
52. Melançon, P.,, W. E. Tapprich,, and L. Brakier-Gingras. 1992. Single-base mutations at position 2661 of Escherichia coli 23 S rRNA increase efficiency of translational proofreading. J. Bacteriol. 174: 7896 7901.
53. Meyer, H. A.,, F. Triana-Alonso,, C. M. Spahn,, T. Twardowski,, A. Sobkiewicz,, and K. H. Nierhaus. 1996. Effects of antisense DNA against the alpha-sarcin stem-loop structure of the ribosomal 23 S rRNA. Nucleic Acids Res. 24: 3996 4002.
54. Miller, S. P.,, and J. W. Bodley. 1991. Alpha-sarcin cleavage of ribosomal-RNA is inhibited by the binding of elongation factor- G or thiostrepton to the ribosome. Nucleic Acids Res. 19: 1657 1660.
55. Moazed, D.,, and H. F. Noller. 1987. Interaction of antibiotics with functional sites in 16 S ribosomal RNA. Nature 327: 389 394.
56. Moazed, D.,, and H. F. Noller. 1989. Interaction of tRNA with 23 S rRNA in the ribosomal A, P, and E sites. Cell 57: 585 597.
57. Moazed, D.,, S. Stern,, and H. F. Noller. 1986. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J. Mol. Biol. 187: 399 416.
58. Moazed, D.,, J. M. Robertson,, and H. F. Noller. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23 S rRNA. Nature 334: 362 364.
59. Moore, P. B. 1998. The three-dimensional structure of the ribosome and its components. Annu. Rev. Biophys. Biomol. Struct. 27: 35 58.
60. Mueller, F.,, and R. Brimacombe. 1997. A new model for the threedimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 Å. J. Mol. Biol. 271: 524 544.
61. Muralikrishna, P.,, and B. S. Cooperman. 1991. A photolabile oligodeoxyribonucleotide probe of the peptidyl transferase center: identification of neighboring ribosomal components. Biochemistry 30: 5421 5428.
62. Muralikrishna, P.,, and B. S. Cooperman. 1994. A photolabile oligodeoxyribonucleotide probe of the decoding site in the small subunit of the Escherichia coli ribosome: identification of neighboring ribosomal components. Biochemistry 33: 1392 1398.
63. Muralikrishna, P.,, and B. S. Cooperman. 1995. Ribosomal proteins neighboring the 2475 loop in Escherichia coli 50 S subunits. Biochemistry 34: 115 121.
64. Muralikrishna, P.,, R. W. Alexander,, and B. S. Cooperman. 1997. Placement of the a-sarcin loop within the 50 S subunit: evidence derived using a photolabile deoxyoligonucleotide probe. Nucleic Acids Res. 25: 4562 4569.
65. Noller, H. F.,, R. Green,, G. Heilek,, V. Hoffarth,, A. Huttenhofer,, S. Joseph,, I. Lee,, K. Lieberman,, A. Mankin,, C. Merryman,, T. Powers,, E. V. Puglisi,, R. R. Samaha,, and B. Weiser. 1995. Structure and function of ribosomal RNA. Biochem. Cell Biol. 73: 997 1009.
66. Oakes, M. I.,, and J. A. Lake. 1990. DNA-hybridization electron microscopy—localization of 5 regions of 16-S rRNA on the surface of 30-S ribosomal subunits. J. Mol. Biol. 211: 897 906.
67. Oakes, M. I.,, L. Kahan,, and J. A. Lake. 1990. DNA-hybridization electron microscopy—tertiary structure of 16-S rRNA. J. Mol. Biol. 211: 907 918.
68. Osswald, M.,, T. Döring,, and R. Brimacombe. 1995. The ribosomal neighborhood of the central fold of tRNA: cross-links from position 47 to tRNA located at the A, P or E site. Nucleic Acids Res. 23: 4635 4641.
69. Pelligrini, M.,, and C. R. Cantor,. 1977. Affinity labeling of ribosomes, p. 203 244. In H. Weissbach, and S. Pestka (ed.), Molecular Mechanisms of Protein Synthesis. Academic Press, New York, N.Y.
70. Porse, B. T.,, and R. A. Garrett. 1995. Mapping important nucleotides in the peptidyl transferase center of 23 S rRNA using a random mutagenesis approach. J. Mol. Biol. 249: 1 10.
71. Porse, B. T.,, C. Rodriguez-Fonseca,, I. Leviev,, and R. A. Garrett. 1995. Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity. Biochem. Cell Biol. 73: 877 885.
72. Redl, B.,, J. Walleczek,, M. Stöffler-Meilicke,, and G. Stöffler. 1989. Immunoblotting analysis of protein-protein cross-links within the 50 S ribosomal subunit of E. coli. Eur. J. Biochem. 181: 351 356.
73. Rodriguez-Fonseca, C.,, R. Amils,, and R. A. Garrett. 1995. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J. Mol. Biol. 247: 224 235.
74. Samaha, R. R.,, R. Green,, and H. F. Noller. 1995a. A base pair between tRNA and 23 S rRNA in the peptidyl transferase centre of the ribosome. Nature 377: 309 314.
75. Samaha, R. R.,, R. Green,, and H. F. Noller. 1995b. A base-pair between transfer-RNA and 238-ribosomal-RNA in the peptidyl transferase center of the ribosome. Nature 378: 419.
76. Seo, H. S.,, and B. S. Cooperman. Unpublished data.
77. Skripkin, E. A.,, A. M. Kopylov,, A. A. Bogdanov,, S. V. Vinogradov,, and Y. A. Berlin. 1979. rRNA topography in ribosomes. IV. The accessibility of the 5′-end region of 16 S tRNA. Mol. Biol. Rep. 5: 221 224.
78. Stark, H.,, M. V. Rodnina,, J. Rinke-Appel,, R. Brimacombe,, W. Wintermeyer,, and M. van Heel. 1997. Visualization of elongation factor Tu on the E. coli ribosome. Nature 389: 403 406.
79. Steiner, G.,, E. Kuechler,, and A. Barta. 1988. Photo-affinity labeling at the peptidyl transferase centre reveals two different positions of the A- and P-sites in domain V of 23 S rRNA. EMBO J. 7: 3949 3955.
80. Stiege, W.,, J. Atmadja,, M. Zobawa,, and R. Brimacombe. 1986. Investigation of the tertiary folding of E. coli ribosomal RNA by intra-RNA crosslinking in vivo. J. Mol. Biol. 191: 135 138.
81. Szewczak, A. A.,, and P. B. Moore. 1995. The sarcin / ricin loop, a modular RNA. J. Mol. Biol. 247: 81 98.
82. Tanaka, I.,, A. Nakagawa,, H. Hosaka,, S. Wakatsuki,, F. Mueller,, and R. Brimacombe. 1998. Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16 S ribosomal RNA. RNA 4: 542 550.
83. Tapio, S.,, and L. A. Isaksson. 1991. Base 2661 in Escherichia coli 23 S rRNA influences the binding of elongation factor Tu during protein synthesis in vivo. Eur. J. Biochem. 202: 981 984.
84. Tapprich, W. E.,, and A. Dahlberg. 1990. A single base mutation at position 2661 in E. coli 23 S ribosomal RNA affects the binding of ternary complex to the ribosome. EMBO J. 9: 2649 2655.
85. Tate, W. P.,, V. G. Sumpter,, C. N. A. Trotman,, M. Herold,, and K. H. Nierhaus. 1987. The peptidyltransferase centre of the E. coli ribosome. Eur. J. Biochem. 165: 403 408.
86. Tranque, P.,, M. C. Hu,, G. M. Edelman,, and V. P. Mauro. 1998. rRNA complementarity within mRNAs: a possible basis for mRNA-ribosome interactions and translational control. Proc. Natl. Acad. Sci. USA 95: 12238 12243.
87. Traut, R. R.,, D. S. Tewari,, A. Sommer,, G. R. Gavino,, H. M. Olson,, and D. G. Glitz,. 1986. Protein topography of ribosomal functional domains: effects of monoclonal antibodies to different epitopes in E. coli protein L7/L12 on ribosome function and structure , p. 286 308. In B. Hardesty, and G. Kramer (ed.), Structure, Function, and Genetics of Ribosomes. Springer, New York, N.Y.
88. Uhlein, M.,, W. Weglöhner,, H. Urlaub,, and B. Wittmann-Liebold. 1998. Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies. Biochem. J. 331: 423 430.
89. Vladimirov, S. N.,, Z. Druzina,, R. Wang,, and B. S. Cooperman. Identification of 50 S components neighboring 23 S rRNA nucleotides A2448 and U2604 within the peptidyl transferase center of E. coli ribosomes. Biochemistry, in press.
90. Walleczek, J.,, B. Redl,, M. Stoffler-Meilicke,, and G. Stoffler. 1989a. Protein-protein cross-linking of the 50 S ribosomal subunit of E. coli using 2-iminothiolane. J. Biol. Chem. 264: 4231 4237.
91. Walleczek, J.,, T. Martin,, B. Redl,, M. Stoffler-Meilicke,, and G. Stoffler. 1989b. Comparative cross-linking study on the 50 S ribosomal subunit from E. coli. Biochemistry 28: 4099 4105.
92. Wang, R.,, R. W. Alexander,, M. van Loock,, S. Vladimirov,, Y. Bukhtiyarov,, S. C. Harvey,, and B. S. Cooperman. 1999. Threedimensional placement of the conserved 530 loop of 16 S rRNA and of its neighboring components in the 30 S subunit. J. Mol. Biol. 286: 521 540.
93. Weller, J.,, and W. E. Hill. 1992. Probing dynamic changes in rRNA conformation in the 30 S subunit of the E. coli ribosome. Biochemistry 31: 2748 2757.
94. Weller, J.,, and W. E. Hill. 1994. Probing the interactions of poly(U) and tRNAPHE with nucleotides 1530-1542 and 1390- 1417 of 16 S rRNA of E. coli. J. Biol. Chem. 269: 19369 19374.
95. Wilson, K. S.,, and H. F. Noller. 1998. Molecular movement inside the translational engine. Cell 92: 337 349.
96. Wower, J.,, S. S. Hixson,, and R. A. Zimmermann. 1989. Labeling the peptidyltransferase center of the E. coli ribosome with photoreactive tRNAPhe derivatives containing azidoadenosine at the 3′ end of the acceptor arm: a model of the tRNA-ribosome complex. Proc. Natl. Acad. Sci. USA 86: 5232 5236.
97. Wower, J.,, L. A. Sylvers,, K. V. Rosen,, S. S. Hixson,, and R. A. Zimmermann,. 1993. A model of the tRNA binding sites on the E. coli ribosome , p. 455 464. In K. H. Nierhaus, , F. Franceschi, , A. R. Subramanian, , V. A. Erdmann, and B. Wittmann-Liebold (ed.), The Translation Apparatus. Plenum, New York, N.Y.
98. Wower, J.,, I. K. Wower,, S. V. Kirillov,, K. V. Rosen,, S. S. Hixson,, and R. A. Zimmermann. 1995. Peptidyl transferase and beyond. Biochem. Cell Biol. 73: 1041 1047.
99. Yonath, A.,, and F. Franceschi. 1998. Functional universality and evolutionary diversity: insights from the structure of the ribosome. Structure 6: 679 684.

Tables

Generic image for table
Table 1

Site-specific cross-links from PHONTs for 23S rRNA

Citation: Cooperman B, Vladimirov S, Druzina Z, Seo H, Bukhtiyarov Y, Wang R. 2000. Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center, p 271-286. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error