1887

Chapter 27 : Ternary Complex of EF-Tu and Its Action on the Ribosome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Ternary Complex of EF-Tu and Its Action on the Ribosome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap27-2.gif

Abstract:

This chapter describes the advances made in the structural studies of elongation factor EF-Tu during the last decade, and shows that the structural transition between the active, aa-tRNA binding form and the inactive form of EF-Tu is surprisingly large. Most of the various functional states of EF-Tu have been illustrated by structural results over the last few years. Very recently the authors had finished the refinement of the structure of bovine mitochondrial EF-Tu·GDP at a resolution of 1.94 Å in a collaboration with Linda Spremulli, University of North Carolina. The modes by which EF-G and the ternary complex of EF-Tu interact with the ribosome have been elegantly demonstrated by cryo-electron microscopy (EM) reconstructions. The structure of the ternary complex on the ribosome is blocked with kirromycin. The mechanism of the GTPase reaction of EF-Tu has been exceedingly difficult to pin down. The nucleotide exchange mechanism of EF-Ts is not well understood in structural terms. We know the structure of the nucleotide-free complex of EF-Tu·EF-Ts, but we do not know the structure of the intact free form of EF-Ts, although the structure of a fragment of EF-Ts from has been determined. The GTP hydrolysis reactions of the G proteins of translation are all highly stimulated during interaction with the ribosome.

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27

Key Concept Ranking

Bacterial Proteins
0.7252581
Amino Acids
0.54027915
Protein G
0.5360023
Saccharomyces cerevisiae
0.53571427
0.7252581
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structures of EF-Tu. To the left is shown EF-Tu•GDP, in the middle EF-Tu in the EF-Tu•EF-Ts complex, and to the right EF-Tu•GDPNP. Domain 1 is yellow, domains 2 and 3 are green, and switch region I is red. The magnesium ion is shown as a gray ball. Note the differences in the relative orientations of the two parts of EF-Tu and of the structural change of switch region I as a function of the nature of the nucleotide. (The figure was produced with the program MOLSCRIPT [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Details of nucleotide binding to mitochondrial EFTu •GDP. The electron density of the coordination of the Mg ion of this 1.94-Å-resolution structure is shown, which indicates the quality of the structural model obtained. (The figure was produced with the program O [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The EF-Tu•EF-Ts complexes from (a) and (b). EF-Ts is shown in magenta, while the coloring of EF-Tu is as in Fig. 1 . The structure is shown with a vertical pseudo-twofold symmetry axis in the plane of the paper. Note that the two molecules of EF-Tu are on the same side of the pseudodimer of EF-Ts. The structure is shown with a twofold symmetry axis perpendicular to the plane of the paper. Here the two molecules of EF-Tu are on opposite sides of the true homodimer of EF-Ts. Note also that the homodimer of this complex is about half the size of the pseudodimer of EF-Ts in the structure. (The figure was produced with the program MOLSCRIPT [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Ternary complexes of EF-Tu. Shown are the ternary complexes of Phe-tRNA, EF-Tu, and GDPNP (left) and of Cys-tRNA, EF-Tu, and GDPNP (right). The coloring of EF-Tu is the same as in Fig. 1 , and tRNAs are shown in magenta. Note the overall similarity of the structures of the two ternary complexes. However, in the structure of Cys-tRNA the angle between the two parts of the L-shape is slightly larger, and the major groove of the helix in contact with EF-Tu is a little wider. (The figure was produced with the program MOLSCRIPT [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap27
1. Abdulkarim, F.,, L. Liljas,, and D. Hughes. 1994. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu•GTP. FEBS Lett. 352:118122.
2. Abel, K.,, and F. Jurnak. 1996. A complex profile of protein elongation: translating chemical energy into molecular movement. Structure 4:229238.
3. Abel, K.,, M. D. Yoder,., R. Hilgenfeld, , and F. Jurnak. 1996. An α to β conformational switch in EF-Tu. Structure 4:11531159.
4. Ævarsson, A. 1995. Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation. J. Mol. Evol. 41:10961104.
5. Agrawal, R. K.,, P. Penczek,, R. A. Grassucci,, and J. Frank. 1998. Visualization of the elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95:61346138.
6. Andersen, G. R. 1999. Unpublished data.
7. Ban, N.,, B. Freeborn,, P. Nissen,, P. Penczek,, R. A. Grassucci,, R. Sweet,, J. Frank,, P. B. Moore,, and T. A. Steitz. 1998. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93:11051115.
8. Berchtold, H.,, L. Reshetnikova,, C. O. A. Reiser,, N. K. Schirmer,, M. Sprinzl,, and R. Hilgenfeld. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126132.
9. Bilgin, N.,, M. Ehrenberg,, C. Ebel,, G. Zaccai,, Z. Sayers,, M. H. J. Koch,, D. Svergun,, C. Barberato,, V. Volkov,, P. Nissen,, and J. Nyborg. 1998. The solution structure of the ternary complex between aminoacyl-tRNA, EF-Tu and GTP. Biochemistry 37: 81638172.
10. Cavarelli, J.,, and D. Moras. 1993. Recognition of tRNAs by aminoacyl- tRNA synthetases. FASEB J. 7:7986.
11. Coleman, D. E., , A. M. Berghuis, , E. Lee, , M. E. Linder, , A. G. Gilman, , and S. R. Sprang. 1994. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265:14051412.
12. Cool, R. H.,, and A. Parmeggiani. 1990. Substitution of His84 and the GTPase mechanism of elongation factor Tu. Biochemistry 30:362366.
13. Ito, K.,, K. Ebihara,, M. Uno,, and Y. Nakamura. 1996. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc. Natl. Acad. Sci. USA 93:54435448.
14. Jack, A.,, J. E. Ladner,, and A. Klug. 1976. Crystallographic refinement of yeast phenylalanine transfer RNA at 2.5Å resolution. J. Mol. Biol. 108:619649.
15. Jiang, Y.,, S. Nock,, M. Nesper,, M. Sprinzl,, and P. B. Sigler. 1996. Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus. Biochemistry 35: 1026910278.
16. Jones, T. A.,, S. Cowan,, J.-Y. Zou,, and M. Kjeldgaard. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. Sect. A 47:110119.
17. Kawashima, T.,, C. Berthet-Colominas,, M. Wulff,, S. Cusack,, and R. Leberman. 1996. The structure of the Escherichia coli EFTu: EF-Ts complex at 2.5 Å resolution. Nature 379:511518.
18. Kjeldgaard, M.,, P. Nissen,, S. Thirup,, and J. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1:3550.
19. Kjeldgaard, M.,, J. Nyborg,, and B. F. C. Clark. 1996. The GTPbinding motif—variations on a theme. FASEB J. 10:13471368.
20. Kraal, B.,, L. A. Zeef,, J. R. Mesters,, K. Boon,, E. L. Vorstenbosch,, L. Bosch,, P. H. Anborgh,, A. Parmeggiani,, and R. Hilgenfeld. 1995. Antibiotic resistance mechanisms of mutant EF-Tu species in Escherichia coli. Biochem. Cell Biol. 73:11671177.
21. Krab, I. M.,, and A. Parmeggiani. 1998. EF-Tu, a GTPase odyssey. Biochim. Biophys. Acta 1443:122.
22. Krásny, L.,, J. R. Mesters,, L. N. Tieleman,, B. Kraal,, V. Fucík,, R. Hilgenfeld,, and J. Jonák. 1998. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J. Mol. Biol. 283:371381.
23. Kraulis, P. J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24:946950.
24. Kristensen, O.,, L. Reshetnikova,, P. Nissen,, G. Siboska,, S. Thirup,, and J. Nyborg. 1996. Isolation, crystallization and X-ray analysis of the quaternary complex of Phe-tRNAPhe, EF-Tu, a GTP analog and kirromycin. FEBS Lett. 399:5962.
25. Liljas, A. 1996. Protein synthesis: imprinting through molecular mimicry. Curr. Biol. 6:247249.
26. Liljas, A.,, and S. Al-Karadaghi. 1997. Structural aspects of protein synthesis. Nat. Struct. Biol. 4:767771.
27. Liljas, A.,, and M. Garber. 1995. Ribosomal proteins and elongation factors. Curr. Opin. Struct. Biol. 5:721727.
28. Moazed, D.,, and H. F. Noller. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142148.
29. Moore, P. B. 1995. Molecular mimicry in protein synthesis? Science 270:14531454.
30. Mueller, F.,, and R. Brimacombe. 1997a. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. J. Mol. Biol. 271:524544.
31. Mueller, F.,, and R. Brimacombe. 1997b. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J. Mol. Biol 271: 545565.
32. Mueller, F.,, H. Stark,, M. van Heel,, J. Rinke-Appel,, and R. Brimacombe. 1997. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J. Mol. Biol. 271:566587.
33. Nissen, P.,, M. Kjeldgaard,, S. Thirup,, G. Polekhina,, L. Reshetnikova,, B. F. C. Clark,, and J. Nyborg. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:14641472.
34. Nissen, P.,, S. Thirup,, M. Kjeldgaard,, and J. Nyborg. 1999. The crystal structure of Cys-tRNACys:EF-Tu:GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7:143156.
35. Nyborg, J.,, and M. Kjeldgaard. 1996. Elongation in bacterial protein biosynthesis. Curr. Opin. Biotechnol. 7:369375.
36. Nyborg, J.,, and A. Liljas. 1998. Protein biosynthesis: structural studies of the elongation cycle. FEBS Lett. 430:9599.
37. Pérez, J. M. J.,, G. Siegal,, J. Kriek,, K. Hård,, J. Dijk,, G. W. Canters,, and W. Möller. 1999. The solution structure of the guanine nucleotide exchange domain of elongation factor 1β reveals a striking resemblance to that of EF-Ts from Escherichia coli. Structure 7:217226.
38. Pingoud, A.,, W. Block,, A. Wittinghofer,, H. Wolf,, and E. Fischer. 1982. The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP. J. Biol. Chem. 257:1126111267.
39. Polekhina, G.,, S. Thirup,, M. Kjeldgaard,, P. Nissen,, C. Lippmann,, and J. Nyborg. 1996. Helix unwinding in the effector region of elongation factor EF-Tu:GDP. Structure 4:11411151.
40. Ramakrishnan, V.,, and S. W. White. 1998. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem. Sci. 23:208212.
41. Scheffzek, K.,, M. R. Ahmadian,, W. Kabsch,, L. Wiesmüller,, A. Lautwein,, F. Schmitz,, and A. Wittinghofer. 1997. The RasGAP complex: structural basis for the GTPase activation and its loss in oncogenic mutants. Science 277:333338.
42. Schweins, T.,, M. Geyer,, K. Scheffzek,, A. Warshel,, H. R. Kalbitzer,, and A. Wittinghofer. 1995. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of ras-p21 and other GTPbinding proteins. Nat. Struct. Biol. 2:3644.
43. Sondek, J.,, D. G. Lambright,, J. P. Noel,, H. E. Hamm,, and P. B. Sigler. 1994. GTPase mechanism of G-proteins from the 1.7 Å crystal structure of transducin α•GDP•AlF4 . Nature 372:276279.
44. Song, H.,, M. R. Parsons,, S. Rowsell,, G. Leonard,, and S. E. V. Philips. 1999. Crystal structure of intact elongation factor EFTu from Escherichia coli in GDP conformation at 2.05 Å resolution. J. Mol. Biol. 285:12451256.
45. Stark, H.,, M. V. Rodnina,, J. Rinke-Appel,, R. Brimacombe,, W. Wintermeyer,, and M. van Heel. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389: 403406.
46. Thirup, S. 1999. Unpublished data.
47. Wang, Y.,, Y. Jiang,, M. Meyering-Voss,, M. Sprinzl,, and P. B. Sigler. 1997. Crystal structure of the EF-Tu:EF-Ts complex from Thermus thermophilus. Nat. Struct. Biol. 4:650656.
48. Watanabe, Y.,, H. Tsurui,, T. Ueda,, R. Furushima,, S. Takamiya,, K. Kita,, K. Nishikawa,, and K. Watanabe. 1994. Primary and higher order structures of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J. Biol. Chem. 269:2290222906
49. Yonath, A.,, and F. Franceschi. 1998. Functional universality and evolutionary diversity: insights from the structure of the ribosome. Structure 6:679684.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error