1887

Chapter 29 : The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap29-2.gif

Abstract:

This chapter summarizes the current knowledge and proposes a structural model for the function of elongation factor G (EF-G). The large number of mutations associated with fusidic acid resistance are an essential ingredient in this analysis. Recent investigations of a mutant EF-G with a different crystal packing have led to a complete interpretation of domain III at relatively low resolution. The functional cycle of EF-G can be described as a number of states both on and off the ribosome. The different states of EF-G may not necessarily be associated with different conformations of EF-G, but to the extent that there are different conformations, they will be related to different states. The density of EF-G could be identified with difference methods and compared to the crystallographic GDP conformation. The mutant G16V is fusidic acid sensitive compared to wt EF-G, which is relatively resistant to the antibiotic. During one of the subsequent steps, EF-G adopts an open conformation like the one observed by cryo-EM. Since it overlaps the A-site tRNA, translocation must already have occurred, as is well known from studies of fusidic acid inhibition of protein synthesis. When EF-G has dissociated, it has the intermediate GDP conformation.

Citation: Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D, Nagaev I. 2000. The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, p 359-365. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch29

Key Concept Ranking

Fusidic Acid
0.66666675
Elongation Factor Tu
0.5022329
0.66666675
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Representation of some of the possible functional states of EF-G according to the classical model (a) and the model of (b). The white boxes represent the ribosome, the gray symbols represent EF-G in different states, and the black triangles represent GTP (base down) or GDP (base up).

Citation: Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D, Nagaev I. 2000. The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, p 359-365. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Comparison of the two main conformations of EF-G observed crystallographically. The broad ribbon represents domains G, G′, and II, which here are fixed. The narrow tube represents domains III to V. The GDP conformation is shown in orange, and the new bent conformation of mutant H573A is shown in green. The red bar indicates the axis around which the rotation of about 10° occurs.

Citation: Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D, Nagaev I. 2000. The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, p 359-365. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Comparison of the structures of domains III and V. The same fold is observed. This fold, the RNA recognition motif (RRM), has also been observed in many ribosomal proteins.

Citation: Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D, Nagaev I. 2000. The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, p 359-365. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Locations of fusidic acid-resistant mutations in EF-G (indicated in pink). The six most resistant mutants are shown in red. The right panel is an enlargement of the central region of the left panel.

Citation: Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D, Nagaev I. 2000. The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, p 359-365. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Superposition of EF-G (van der Waals surface) in complex with GDP and the ternary complex of EF-Tu with tRNA and GDPNP (atomic model). The ternary complex has been found to have a somewhat more open conformation.

Citation: Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D, Nagaev I. 2000. The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, p 359-365. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Comparison of the observed conformations of EF-G with those of the ternary complex of EF-Tu. Fus, fusidic acid; kirr, kirromycin; aa-tRNA, aminoacyl-tRNA.

Citation: Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D, Nagaev I. 2000. The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G, p 359-365. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap29
1. Abdulkarim, F.,, L. Liljas,, and D. Hughes. 1994. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu•GTP. FEBS Lett. 352:118122.
2. Abel, K.,, M. D. Yoder,, R. Hilgenfeldt,, and F. Jurnak. 1996. An α to β conformational switch in EF-Tu from Escherichia coli. Structure 4:11531159.
3. Ævarsson, A.,, E. Brashnikov,, M. Garber,, J. Zheltonosova,, Y. Chirgadze,, S. Al-Karadaghi,, L. A. Svensson,, and A. Liljas. 1994. Three-dimensional structure of the ribosomal translocase: elongation G from Thermus thermophilus. EMBO J. 13:36693677.
4. Agrawal, R. K.,, P. Penczek,, R. A. Grassucci,, and J. Frank. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95:61346138.
5. Al-Karadaghi, S.,, A. Ævarsson,, M. Garber,, J. Zheltonosova,, and A. Liljas. 1996. The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4:555565.
6. Berchtold, H.,, L. Reshetnikova,, C. O. Reiser,, N. K. Schirmer,, M. Sprinzl,, and R. Hilgenfeldt. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126132.
7. Berendsen, S.,, and H. J. C. Hayvard. 1998. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthetase and T4 lysozyme. Proteins 30:144154.
8. Bourne, H. R.,, D. A. Sanders,, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 248:125132.
9. Czworkowski, J.,, and P. B. Moore. 1997. The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry 36:1032710334.
10. Czworkowski, J.,, and P. B. Moore. Personal communication.
11. Czworkowski, J.,, J. Wang,, T. A. Steitz,, and P. B. Moore. 1994. The crystal structure of elongation factor G complexed with GDP, at 2.7Å resolution. EMBO J. 13:36613668.
12. Johanson, U.,, A. Ævarsson,, A. Liljas,, and D. Hughes. 1996. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258:420432.
13. Kaziro, Y. 1978. The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta 505:95127.
14. Kjeldgaard, M.,, and J. Nyborg. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223: 721742.
15. Kjeldgaard, M.,, P. Nissen,, S. Thirup,, and J. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1:3550.
16. Kraulis, P. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24:946950.
17. Laurberg, M.,, O. Kristensen,, S. Al-Karadaghi,, K. Martemyanov,, A. T. Gudkov,, and A. Liljas. Unpublished data.
18. Liljas, A.,, and S. Al-Karadaghi. 1997. Structural aspects of protein synthesis. Nat. Struct. Biol. 4:767771.
19. Liljas, A.,, A. Ævarsson,, S. Al-Karadaghi,, M. Garber,, J. Zheltonosova,, and E. Brazhnikov. 1995. Crystallographic studies of elongation factor G. Biochem. Cell Biol. 73:12091216.
20. Macvanin, M.,, U. Johanson,, M. Ehrenberg,, and D. Hughes. Fusidic acid resistant EF-G reduces the accumulation of (p)ppGpp. Submitted for publication.
21. Martemyanov, K. A.,, A. S. Yarunin,, A. Liljas,, and A. S. Gudkov. Unpublished data.
22. Nagaev, I.,, J. Björkman,, D. I. Andersson,, and D. Hughes. Unpublished data.
23. Nissen, P.,, M. Kjeldgaard,, S. Thirup,, L. Polekhina,, L. Reshetnikova,, B. F. C. Clark,, and J. Nyborg. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:14641472.
24. Nissen, P.,, S. Thirup,, M. Kjeldgaard,, and J. Nyborg. 1999. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7:143156.
25. Polekhina, G.,, S. Thirup,, M. Kjeldgaard,, P. Nissen,, C. Lippmann,, and J. Nyborg. 1996. Helix unwinding in the effector region of elongation factor EF-Tu•GDP. Structure 4:11411151.
26. Ramakrishnan, V.,, and S. W. White. 1998. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem. Sci. 23:208212.
27. Rodnina, M. V.,, T. Pape,, R. Fricke,, L. Kuhn,, and W. Wintermeyer. 1996. Initial binding of the elongation factor Tu•GTP • aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271:646652.
28. Rodnina, M. V.,, A. Savelsbergh,, V. I. Katunin,, and W. Wintermeyer. 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385:3741.
29. Stark, H.,, M. V. Rodnina,, J. Rinke-Appel,, R. Brimacombe,, W. Wintermeyer,, and M. van Heel. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389: 403406.
30. Willie, G. R.,, N. Richman,, W. O. Godtfredsen,, and J. W. Bodley. 1975. Some characteristics and structural requirements for the interaction of 24,25-dihydrofusidic acid with ribosome elongation factor G complexes. Biochemistry 14:17131718.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error