1887

Chapter 36 : Antibiotics and the Peptidyltransferase Center

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Antibiotics and the Peptidyltransferase Center, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap36-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap36-2.gif

Abstract:

The peptidyltransferase center is the ribosomal site where peptide bond formation occurs and the site where many antibiotics of diverse structures act. By definition, the peptidyltransferase cavity must be able to accommodate any of the diverse hydrophobic and hydrophilic side chains of the amino acids, which suggests that it exhibits a high degree of structural complexity and/or conformational flexibility. An early model for the mechanisms of antibiotic inhibition at the peptidyltransferase center was based on molecular mimicry occurring between the antibiotics and the 3' termini of either aminoacylor peptidyl-tRNAs. Many lines of evidence, including mutational studies and rRNA footprinting and cross-linking studies with antibiotics and tRNAs, strongly suggest that the peptidyltransferase loop of 23S rRNA constitutes the main component of the peptidyltransferase cavity. Some of the cross-linked nucleotides may lie in intermediate states that are occupied while entering or leaving the P' site of the peptidyltransferase center on (otherwise) free ribosomes. Several peptidyltransferase antibiotics, including puromycin, reduced the yield of the sparsomycinribosomal cross-link; the only exceptions were erythromycin and a streptogramin B, both of which belong to the MLS ntibiotics, which do not primarily act on peptide bond formation. Consideration of the synergistic effects observed with streptogramin A and B antibiotics, which potentially represent the two classes of drugs described in this chapter, may yield further insight into their inhibitory mechanisms.

Citation: Porse B, Kirillov S, Garrett R. 2000. Antibiotics and the Peptidyltransferase Center, p 441-450. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch36

Key Concept Ranking

Fusidic Acid
0.5053961
Escherichia coli
0.47021368
Cryo-Electron Microscopy
0.4450077
Antibiotics
0.42413154
0.5053961
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Secondary structure of the peptidyltransferase loop region (E. coli sequence) showing the sites of drug resistance (solid circles, base changes; solid triangle, lack of modification) and the nucleotides displaying altered chemical reactivities in the presence of drugs (boxed bases). The data are from Moazed and Noller, 1987; Garrett and Rodriguez-Fonseca, 1995; Rodriguez-Fonseca et al., 1995, and references therein; La′zaro et al., 1996; Tan et al., 1996; Porse and Garrett, 1999b; and Leviev et al., 1994.

Citation: Porse B, Kirillov S, Garrett R. 2000. Antibiotics and the Peptidyltransferase Center, p 441-450. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch36
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of sparsomycin.

Citation: Porse B, Kirillov S, Garrett R. 2000. Antibiotics and the Peptidyltransferase Center, p 441-450. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch36
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of a streptogramin A (pristinamycin IIA) (a) and a streptogramin B (pristinamycin IA) (b).

Citation: Porse B, Kirillov S, Garrett R. 2000. Antibiotics and the Peptidyltransferase Center, p 441-450. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch36
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structure of a putative antibiotic binding motif ( sequence) within the peptidyltransferase center. The newly structured region is shaded, and the alternative base pairing at U2506 with A/G2058 or A2059 is considered in the text. The G occurring at position 2058 in archaeal and eukaryotic rRNAs is shown in italics.

Citation: Porse B, Kirillov S, Garrett R. 2000. Antibiotics and the Peptidyltransferase Center, p 441-450. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch36
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap36
1. Arévalo, M. A.,, F. Tejedor,, F. Polo,, and J. P. G. Ballesta. 1989. Synthesis and biological activity of photoactive derivatives of erythromycin. J. Med. Chem. 32:22002204.
2. Bocchetta, M.,, L. Xiong,, and A. S. Mankin. 1998. 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc. Natl. Acad. Sci. USA 95:35253530.
3. Contreras, A.,, and D. Va′zquez. 1977. Synergistic interaction of the streptogramins with the ribosome. Eur. J. Biochem. 74:549551.
4. Cundliffe, E., 1986. Involvement of specific portions of rRNA in defined ribosomal functions: a study utilizing antibiotics, p. 586604. In B. Hardesty, and G. Kramer (ed.), Structure, Function, and Genetics of Ribosomes. Springer-Verlag, New York, N.Y.
5. Egebjerg, J.,, N. Larsen,, and R. A. Garrett,. 1990. Structural map of 23S rRNA, p. 168179. In W. Hill, , A. Dahlberg, , R. A. Garrett, , P. Moore, , D. Schlessinger, , and J. Warner (ed), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
6. Garrett, R. A.,, and C. Rodriguez-Fonseca,. 1995. The peptidyltransferase center, p. 327355. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA—Structure, Evolution, Processing and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
7. Green, R.,, R. R. Samaha,, and H. F. Noller. 1997. Mutations at nucleotides G2251 and U2585 of 23S rRNA perturb the peptidyltransferase center of the ribosome. J. Mol. Biol. 266:4050.
8. Green, R.,, C. Switzer,, and H. F. Noller. 1998. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S rRNA. Science 280:286289.
9. Harris, R. J.,, and R. H. Symons. 1973a. On the molecular mechanism of action of certain substrates and inhibitors of ribosomal peptidyltransferase. Bioorg. Chem. 2:266285.
10. Harris, R. J.,, and R. H. Symons. 1973b. A detailed model of the active center of E. coli peptidyltransferase. Bioorg. Chem. 2: 286292.
11. Hornig, H.,, P. Woolley,, and R. Lührmann. 1987. Decoding at the ribosomal A-site: antibiotics, misreading and energy of aminoacyl- tRNA binding. Biochimie 69:803813.
12. Kirillov, S.,, B. T. Porse,, B. Vester,, P. Woolley,, and R. A. Garrett. 1997. Movement of the 3′-end of tRNA through the peptidyltransferase center and its inhibition by antibiotics. FEBS Lett. 406:223233.
13. Kirillov, S. V.,, B. T. Porse,, M. Awayez,, and R. A. Garrett. 1999. Peptidyltransferase antibiotics perturb the relative positioning of the 3′-terminal adenosine of P/P′-site-bound tRNA and 23S rRNA in the ribosome. RNA 5:10031013.
14. Kirillov, S. V.,, B. T. Porse,, and R. A. Garrett. Unpublished data.
15. Lázaro E.,, L. A. G. M. Van den Broek,, L. A. G. M. Van den Broek,, H. C. J. Ottenheijm,, and J. P. G. Ballesta. 1991. Biochemical and kinetic characteristics of the interaction of the antitumor antibiotic sparsomycin with prokaryotic and eukaryotic ribosomes. Biochemistry 30:96429648.
16. Lázaro, E.,, C. Rodriguez-Fonseca,, B. Porse,, D. Uren˜a,, R. A. Garrett,, and J. P. G. Ballesta. 1996. A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase center of 23S rRNA. J. Mol. Biol. 261:231238.
17. Leviev, I. G.,, C. Rodriguez-Fonseca,, H. Phan,, R. A. Garrett,, G. Heilek,, H. F. Noller,, and A. S. Mankin. 1994. A conserved secondary structural motif in 23S rRNA defines the site of interaction of amicetin, a universal inhibitor of peptide bond formation. EMBO J. 13:16821686.
18. Leviev, I.,, S. Levieva,, and R. A. Garrett. 1995. Role for the highly conserved region of domain IV of 23S-like rRNA in subunitsubunit interactions at the peptidyl transferase center. Nucleic Acids Res. 11:15121517.
19. Mankin, A. S.,, I. Leviev,, and R. A. Garrett. 1994. Crosshypersensitivity effects of mutations in 23S rRNA yield insight into aminoacyl-tRNA binding. J. Mol. Biol. 244:151157.
20. Moazed, D.,, and H. F. Noller. 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S rRNA. Biochimie 69: 879884.
21. Moazed, D.,, and H. F. Noller. 1989. Interaction of tRNA with 23 S rRNA in the ribosomal A, P, and E sites. Cell 57:585597.
22. Moazed, D.,, and H. F. Noller. 1991. Sites of interaction of the -CCA end of peptidyl-tRNA with 23S rRNA. Proc. Natl. Acad. Sci. USA 88:37253728.
23. Monro, R. E.,, and D. Va′zquez. 1967. Ribosome-catalyzed peptidyl transfer: effects of some inhibitors of protein synthesis. J. Mol. Biol. 28:161165.
24. Müller, F.,, I. Sommer,, P. Baranov,, H. Stark,, M. van Heel,, M. Rodnina,, W. Wintermeyer,, and R. Brimacombe. The 3D arrangement of the RNA in the E. coli 50S ribosomal subunit. II. Distribution of functionally important sites. J. Mol. Biol., in press.
25. Nyborg, J.,, and A. Liljas. 1998. Protein biosynthesis: structural studies of the elongation cycle. FEBS Lett. 430:9599.
26. Osswald M., , B. Greuer, , and R. Brimacombe. 1990. Localization of a series of RNA-protein-crosslink sites in the 23S and 5S rRNA from E. coli, induced by treatment of 50S subunits with three different bi-functional reagents. Nucleic Acids Res. 18: 67556760.
27. Østergaard, P.,, H. Phan,, L. B. Johansen,, J. Egebjerg,, L. Østergaard,, B. T. Porse,, and R. A. Garrett. 1998. Assembly of pro teins and 5S rRNA to transcripts of the major structural domains of 23S rRNA. J. Mol. Biol. 284:227240.
28. Panet, A.,, N. de Groot,, and Y. Lapidot. 1970. Substrate specificity of Escherichia coli peptidyltransferase. Eur. J. Biochem. 15:222225.
29. Parfait, R.,, and C. Cocito. 1980. Lasting damage to bacterial ribosomes by reversibly bound virginiamycin M. Proc. Natl. Acad. Sci. USA 77:54925496.
30. Parfenov, D. V.,, and E. M. Saminsky. 1993. Poly(U)-dependent interaction of yeast tRNAPhe and its fragments with E. coli ribosomes. II. Location of P-site-binding tRNA centers. Mol. Biol. 27:507510.
31. Porse, B. T.,, and R. A. Garrett. 1999a. Ribosomal mechanics, antibiotics and GTP hydrolysis. Cell 97:423426.
32. Porse, B. T.,, and R. A. Garrett. 1999b. Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23S rRNA and the synergism of their inhibitory mechanisms. J. Mol. Biol. 286:375387.
33. Porse, B. T.,, C. Rodriguez-Fonseca,, I. Leviev,, and R. A. Garrett. 1995. Antibiotic inhibition of the movement of tRNA substrates through a peptidyltransferase cavity. Biochem. Cell. Biol. 73: 877885.
34. Porse, B. T.,, H. P. Thi-Ngoc,, and R. A. Garrett. 1996. The donor substrate site within the peptidyl transferase loop of 23 S rRNA and its putative interactions with the CCA-end of N-blocked aminoacyl-tRNAPhe. J. Mol. Biol. 264:472483.
35. Porse, B. T.,, I. Leviev,, A. S. Mankin,, and R. A. Garrett. 1998. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase center. J. Mol. Biol. 276: 391404.
36. Porse, B. T.,, E. Cundliffe,, and R. A. Garrett. 1999a. The antibiotic micrococcin acts on protein L11 in the ribosomal GTPase center. J. Mol. Biol. 287:3345.
37. Porse, B. T.,, S. V. Kirillov,, M. J. Awayez,, and R. A. Garrett. 1999b. UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on the binding of the streptogramin B antibiotic, pristinamycin IA. RNA 5:585595.
38. Porse, B. T.,, S. V. Kirillov,, M. Awayez,, H. C. J. Ottenheijm,, and R. A. Garrett. 1999c. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase centre of 23S-like rRNA within ribosome-tRNA complexes. Proc. Natl. Acad. Sci. USA 96:90039008.
39. Rodriguez-Fonseca, C.,, R. Amils,, and R. A. Garrett. 1995. Fine structure of the peptidyl transferase centre on 23S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J. Mol. Biol. 247:224235.
40. Rodriguez-Fonseca, C.,, H. Phan,, B. T. Porse,, S. V. Kirillov,, K. Long,, R. Amils,, and R. A. Garrett. Unpublished data.
41. Spirin, A. 1968. How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome. Curr. Mod. Biol. 2:115127.
42. Tan, G. T.,, A. DeBlasio,, and A. S. Mankin. 1996. Mutations in the peptidyl transferase center of 23S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. J. Mol. Biol. 261:222230.
43. Wimberly, B. T.,, R. Guymon,, J. P. McCutcheon,, S. White,, and V. Ramakrishnan. 1999. A detailed view of a ribosomal active site: the structure of the L11-rRNA complex. Cell 97:491502.
44. Woese, C. 1970. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature 226:817820.
45. Woese, C. R., 1979. Just so stories and Rube Goldberg machines: speculations on the origin of the protein synthetic machinery, p. 357373. In G. Chambliss, , G. R. Craven, , J. Davies, , K. Davis, , L. Kahan, , and M. Nomura (ed.), Ribosomes: Structure, Function and Genetics. University Park Press, Baltimore, Md.
46. Wower, J.,, I. K. Wower,, S. V. Kirillov,, K. V. Rosen,, S. S. Hixon,, and R. A. Zimmermann. 1995. Peptidyl transferase and beyond. Biochem. Cell Biol. 73:10411047.
47. Wower, J.,, I. K. Wower,, S. V. Kirillov,, K. V. Rosen,, S. S. Hixon,, and R. A. Zimmermann. Transit of tRNA through the E. coli ribosome: crosslinking of the 3′-end of tRNA to specific nucleotides of the 23S rRNA at the A, P and E sites. Unpublished data.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error