1887

Chapter 39 : Translation Initiation in Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Translation Initiation in Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap39-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap39-2.gif

Abstract:

This chapter summarizes the most important advances concerning structural and mechanistic aspects of translation initiation in bacteria which have occurred since the appearance of the last reviews on this subject. The small ribosomal subunit (30S) interacts with mRNA and fMet-tRNA in stochastic order to yield a bona fide 30S initiation complex through the rearrangement, kinetically controlled by the three initiation factors, of an unstable kinetic intermediate called the pre-ternary complex. Systematic variations of the translation initiation region (TIR) elements in the in vivo translation of reporter genes in and have produced similar results in two similar analyses. The differences observed in a study between heterologous and homologous proteins and the sometimes contradictory conclusions reached by similar studies concerning the relevance of specific TIR elements and the consequent criteria for optimization of translation remind us once again that each gene (mRNA) might be endowed with particular, not easily predictable properties. The dispensable nature of the Shine-Dalgarno (SD) sequence is evidenced by the existence of leaderless mRNAs which begin directly with an AUG initiation triplet. The recognition and binding of fMet-tRNA by IF2 play crucial roles in the translation initiation pathway of bacteria. The understanding of the translation initiation pathway cannot be considered satisfactory without full elucidation of the role played in this process by GTP and by the IF2-dependent GTPase.

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39

Key Concept Ranking

Translation Initiation
0.6157662
Initiation Complex
0.517878
Leaderless mRNA
0.43845126
Chemicals
0.4199772
0.6157662
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Scheme illustrating the cross-linking patterns of 4N/–3 mRNA (an mRNA with a 4-nucleotide spacer and a U residue at position –3) in its binary complex with the 30S ribosomal subunit in the presence of IF1, IF2, and IF3 and in the presence of IFs and fMet-tRNA. Compared to the simplest case of the 30S-mRNA complex (A), in which the mRNA is cross-linked almost exclusively to 1530 of 16S rRNA through its +2 position and to r-proteins S18 and S21 through its –3 position, the cross-linking pattern becomes much more complex in the presence of IFs (B): new, strong cross-links appear between S7 and both +2 and –3, and between S9 and +11, 1395 and +11, and 1360 and –3, while cross-linking of 1530 is partially shifted from +2 to –3. All these changes suggest a "leftward" shift of the mRNA with respect to the 30S subunit. A further rearrangement of the mRNA on the 30S subunit took place in the complete 30S initiation complex (C). Position +11 of the mRNA was no longer cross-linked to S9 and only marginally to 1395 but moved further leftward to cross-link to position 532 of 16S rRNA. Also, position +2 moved away from S7 and 1530, since cross-linking to these two elements was reduced, while +2 and –3 approached S9, with which a weak yet significant cross-linking was established. It should be noted that, in the course of the mRNA shift, the central base of the initiation triplet moves away from 1530 towards 1395, i.e., towards the P site of the subunit. The approximate relative positions of the relevant ribosomal components in the head or body of the 30S ribosomal subunit are shown. In the mRNA (solid bar), the initiation triplet and the positions of the potential cross-linking sites are indicated. Thick lines, major RNA-RNA cross-links; thin lines, major RNA-protein crosslinks; dotted lines, quantitatively minor cross-links of either type. The enclosure of 665 within a dotted box indicates the minor nature of this cross-link. (Taken from )

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) Secondary structure of E. coli IF1 (taken from ). (B) Comparison of the 3-D structures of E. coli IF1 (gray) and cold shock protein CspA (white).

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

IF1 residues involved in 30S binding. Drawing of IF1 indicating the residues whose signals are broadened (dark gray) or shifted (black) upon binding to the 30S subunit. Residues whose mutagenesis affects ribosome binding are shown in light gray. (From )

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Summary of the results obtained following site-directed mutagenesis of B. stearothermophilus IF2. The residual activity in fMet-tRNA binding displayed by each mutant is shown according to the indicated code.

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

fMet-tRNA binding site of IF2. The locations of the amino acid residues essential (red) and nonessential (yellow) for the interaction of IF2 with fMet-tRNA identified by site-directed mutagenesis are shown within the 3-D structure of IF2 C-2 (blue) determined by multidimensional heteronuclear NMR spectroscopy ( ).

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Differential intensity change of the backbone amide resonances of E. coli IF3 upon addition of 30S ribosomal subunits. The position of each amino acid in the primary sequence of IF3 is indicated in the abscissa; the ordinate presents the relative intensity change, (V – V0)/V0, of each assigned cross peak caused by the addition of E. coli 30S ribosomal subunits at a stoichiometric ratio, 30S/ IF3, of 0.2%. (From )

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Active sites of E. coli IF3. The amino acid residues of the C domain (A and B) and N domain (C and D) of IF3 implicated in the interaction with the 30S ribosomal subunit as identified by NMR (A and C) and by site-directed mutagenesis and chemical modifications (B and D) are indicated with different colors (from blue to red according to relative NMR intensity changes, where red indicates the strongest effects) in the ribbon diagrams of the two domains. The coordinates of the structures were obtained from the Protein Data Bank (PDB). For the C domain, the NMR structure of the E. coli protein was used (PDB entry, 1IFE [ ]), and for the N domain, the X-ray structure of B. stearothermophilus protein was used (PDB entry, 1TIG [ ]). (From )

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

IF3 docking on the 30S ribosomal subunit. The portions of the 16S rRNA helices are shown in black, but those which have been cross-linked to IF3 are shown in white. These are helix 45 in the upper part and helices 25 and 26 in the lower part of the diagram. The other nucleotides indicated are those protected by IF3 from kethoxal (yellow) and CMCT {N-cyclo-hexyl-N′-[2-(N-methylmorpholinio)ethyl]carbodiimide-p-toluene-sulfonate} (orange); G791 (pink) is partially protected from kethoxal and is functionally implicated by mutagenesis in IF3 binding. Also indicated are the nucleotides hyperreactive to dimethyl sulfate (green) and kethoxal (turquoise) and hypersensitive to RNase V1 (red) in the presence of IF3. The figure is taken from Sette et al., 1999, where additional information can be found.

Citation: Gualerzi C, Brandi L, Caserta E, La Teana A, Spurio R, Tomšic J, Pon C. 2000. Translation Initiation in Bacteria, p 475-494. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap39
1. Ævarsson, A.,, E. Brazhnikov,, M. Garber,, J. Zheltonosova,, Y. Chirgadze,, S. Al-Karadaghi,, L. A. Svensson,, and A. Liljas. 1994. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13: 3669 3677.
2. André, A.,, A. Puca,, F. Sansone,, A. Brandi,, G. Antico,, and R. A. Calogero. Reinitiation of protein synthesis in Escherichia coli can be induced by mRNA cis-elements unrelated to canonical translation initiation signals. Submitted for publication.
3. Asai, T.,, D. Zaporojets,, C. Squires,, and C. L. Squires. 1999. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc. Natl. Acad. Sci. USA 96: 1971 1976.
4. Biou, V.,, F. Shu,, and V. Ramakrishnan. 1995. X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha / beta domains linked by an alpha-helix. EMBO J. 14: 4056 4064.
5. Boni, I. V.,, D. M. Isaeva,, M. I. Musychenko,, and N. V. Tzareva. 1991. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res. 19: 155 162.
6. Brandi, A.,, P. Pietroni,, C. O. Gualerzi,, and C. L. Pon. 1996. Posttranscriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol. 19: 231 240.
7. Brandt, R.,, and C. O. Gualerzi. 1991. Ribosome-mRNA contact sites at different stages of translation initiation as revealed by cross-linking of model mRNAs. Biochimie 73: 1543 1549.
8. Canonaco, M. A.,, C. O. Gualerzi,, and C. L. Pon. 1989. Alternative occupancy of a dual ribosomal binding site by mRNA affected by translation initiation factors. Eur. J. Biochem. 182: 501 506.
9. Cole, J. R.,, C. L. Olsson,, J. W. Hershey,, M. Grunberg-Manago,, and M. Nomura. 1987. Feedback regulation of rRNA synthesis in Escherichia coli. Requirement for initiation factor IF2. J. Mol. Biol. 198: 383 392.
10. Dubnoff, J. S.,, A. H. Lockwood,, and U. Maitra. 1972. Studies on the role of guanosine triphosphate in polypeptide chain initiation in Escherichia coli. J. Biol. Chem. 247: 2884 2894.
11. Etchegaray, J. P.,, and M. Inouye. 1999. Translational enhancement by an element downstream of the initiation codon in Escherichia coli. J. Biol. Chem. 274: 10079 10085.
12. Fargo, D. C.,, M. Zhang,, N. W. Gillham,, and J. E. Boynton. 1998. Shine-Dalgarno-like sequences are not required for translation of chloroplast mRNAs in Chlamydomonas reinhardtii chloroplasts or in Escherichia coli. Mol. Gen. Genet. 257: 271 282.
13. Firpo, M. A.,, and A. E. Dahlberg. 1998. The importance of base pairing in the penultimate stem of Escherichia coli 16S rRNA for ribosomal subunit association. Nucleic Acids Res. 26: 2156 2160.
14. Fortier, P. L.,, J. M. Schmitter,, C. Garcia,, and F. Dardel. 1994. The N-terminal half of initiation factor IF3 is folded as a stable independent domain. Biochimie 76: 376 383.
15. Garcia, C.,, P. L. Fortier,, S. Blanquet,, J. Y. Lallemand,, and F. Dardel. 1995a. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. J. Mol. Biol. 254: 247 259.
16. Garcia, C.,, P. L. Fortier,, S. Blanquet,, J. Y. Lallemand,, and F. Dardel. 1995b. 1H and 15N resonance assignments and structure of the N-terminal domain of Escherichia coli initiation factor 3. Eur. J. Biochem. 228: 395 402.
17. Goldenberg, D.,, I. Azar,, A. B. Oppenheim,, A. Brandi,, C. L. Pon,, and C. O. Gualerzi. 1997. Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol. Gen. Genet. 256: 282 290.
18. Gualerzi, C. O.,, and C. L. Pon. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29: 5881 5889.
19. Gualerzi, C. O.,, and C. L. Pon,. 1996. mRNA-ribosome interaction during initiation of protein synthesis , p. 259 276. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA. Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
20. Gualerzi, C. O.,, A. La Teana,, R. Spurio,, M. A. Canonaco,, M. Severini,, and C. L. Pon,. 1990. Initiation of protein biosynthesis in procaryotes: recognition of mRNA by ribosomes and molecular basis for the function of initiation factors, p. 281 291. In W. E. Hill, , A. E. Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.) , The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
21. Guennegues, M. Unpublished data.
22. Guillon J. M., , Y. Mechulam, , J. M. Schmitter, , S. Blanquet, , and G. Fayat. 1992a. Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J. Bacteriol. 174: 4294 4301.
23. Guillon, J. M.,, T. Meinnel,, Y. Mechulam,, C. Lazennec,, S. Blanquet,, and G. Fayat. 1992b. Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNA(fMet) formyltransferase. J. Mol. Biol. 224: 359 367.
24. Haggerty, T. J.,, and S. T. Lovett. 1993. Suppression of recJ mutations of Escherichia coli by mutations in translation initiation factor IF3. J. Bacteriol. 175: 6118 6125.
25. Hartz, D.,, J. Binkley,, T. Hollingsworth,, and L. Gold. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 4: 1790 1800.
26. Hershey, J. W., 1987. Protein synthesis, p. 613 647. In J. L. Ingraham, , K. B. Low, , B. Magasanik, , M. Schaechter, , and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
27. Janssen, G. R., 1993. Eubacterial, archaebacterial, and eukaryotic genes that encode leaderless mRNA, p. 59 67. In B. H. Baltz, , G. D. Hageman, , and P. L. Skatrud (ed.), Industrial Microorganisms: Basic and Applied Molecular Genetics. ASM Press, Washington, D.C.
28. Kaloyanova, D.,, J. Xu,, I. G. Ivanov,, and M. G. Abouhaidar. 1997. Gene expression evidence indicates that nucleotides 507-513 and 1434-1440 in 16S rRNA are organized in close proximity on the Escherichia coli 30S ribosomal subunit. Eur. J. Biochem. 248: 10 14.
29. La Teana, A.,, C. L. Pon,, and C. O. Gualerzi. 1993. Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression. Proc. Natl. Acad. Sci. USA 90: 4161 4165.
30. La Teana, A.,, C. O. Gualerzi,, and R. Brimacombe. 1995. From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1: 772 782.
31. La Teana, A.,, C. L. Pon,, and C. O. Gualerzi. 1996. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J. Mol. Biol. 256: 667 675.
32. La Teana, A.,, A. Brandi,, M. O’Connor,, and C. L. Pon. Translation during cold adaptation does not involve mRNA-rRNA basepairing through the downstream box. Submitted for publication.
33. Lee, K.,, C. A. Holland-Staley,, and P. R. Cunningham. 1996. Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2: 1270 1285.
34. Li, S.,, N. V. Kumar,, U. Varshney,, and U. L. RajBhandary. 1996. Important role of the amino acid attached to tRNA in formylation and in initiation of protein synthesis in Escherichia coli. J. Biol. Chem. 271: 1022 1028.
35. Loechel, S.,, J. M. Inamine,, and P. C. Hu. 1991. A novel translation initiation region from Mycoplasma genitalium that functions in Escherichia coli. Nucleic Acids Res. 18: 6905 6911.
36. Luchin, S.,, H. Putzer,, J. W. Hershey,, Y. Cenatiempo,, M. Grunberg- Manago,, and S. Laalami. 1999. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J. Biol. Chem. 274: 6074 6079.
37. Mandal, N.,, D. Mangroo,, J. J. Dalluge,, J. A. McCloskey,, and U. L. RajBhandary. 1996. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli. RNA 2: 473 482.
38. Martin-Farmer, J.,, and G. R. Janssen. 1999. A downstream CA repeat sequence increases translation from leadered and unleadered mRNA in Escherichia coli. Mol. Microbiol. 31: 1024 1038.
39. McCarthy, J. E.,, and R. Brimacombe. 1994. Prokaryotic translation: the interactive pathway leading to initiation. Trends Genet. 10: 402 407.
40. McCarthy, J. E.,, and C. Gualerzi. 1990. Translational control of prokaryotic gene expression. Trends Genet. 6: 78 85.
41. McCutcheon, J. P.,, R. K. Agrawal,, S. M. Philips,, R. A. Grassucci,, S. E. Gerchman,, W. M. J. Clemons,, V. Ramakrishnan,, and J. Frank. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96:4301-4306.
42. Meunier, S.,, R. Spurio,, M. Czisch,, R. Wechselberger,, M. Guenneugues,, C. O. Gualerzi,, and R. Boelens. Solution structure of the fMet-tRNA binding domain of Bacillus stearothermophilus translation initiation factor IF2. Submitted for publication.
43. Misselwitz, R.,, K. Welfe,, C. Krafft,, C. O. Gualerzi,, and H. Welfle. 1997. Translational initiation factor IF2 from Bacillus stearothermophilus: a spectroscopic and microcalorimetric study of the C-domain. Biochemistry 36: 3170 3178.
44. Mitta, M.,, L. Fang,, and M. Inouye. 1997. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol. Microbiol. 26: 321 335.
45. Moreau, M.,, E. de Cock,, P. L. Fortier,, C. Garcia,, C. Albaret,, S. Blanquet,, J. Y. Lallemand,, and F. Dardel. 1997. Heteronuclear NMR studies of E. coli translation initiation factor IF3. Evidence that the inter-domain region is disordered in solution. J. Mol. Biol. 266: 15 22.
46. Morita, M.,, M. Kanemori,, H. Yanagi,, and T. Yura. 1999. Heatinduced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J. Bacteriol. 181: 401 410.
47. Mueller, F.,, and R. Brimacombe. 1997. A new model for the threedimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20Å. J. Mol. Biol. 271: 524 544.
48. Nagai, H.,, H. Yuzawa,, and T. Yura. 1991. Interplay of two cisacting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 10515 10519.
49. Nissen, P.,, M. Kjeldgaard,, S. Thirup,, G. Polekhina,, L. Reshetnikova,, B. F. C. Clark,, and J. Nyborg. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270: 1464 1472.
50. O’Connor, M.,, T. Asai,, C. L. Squires,, and A. E. Dahlberg. 1999. Enhancement of translation by the downstream box does not involve mRNA-rRNA base pairing. Proc. Natl. Acad. Sci. USA 96: 8973 8978.
51. Odjakova, M.,, A. Golshani,, G. Ivanov,, M. Abou Haidar,, and I. Ivanov. 1998. The low level expression of chloramphenicol acetyltransferase (CAT) mRNA in Escherichia coli is not dependent on either Shine-Dalgarno or the downstream boxes in the CAT gene. Microbiol. Res. 153: 173 178.
52. Olsson, C. L.,, M. Graffe,, M. Springer,, and J. W. Hershey. 1996. Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation in Escherichia coli. Mol. Gen. Genet. 250: 705 714.
53. Olsthoorn, R. C.,, S. Zoog,, and J. van Duin. 1995. Coevolution of RNA helix stability and Shine-Dalgarno complementarity in a translational start region. Mol. Microbiol. 15: 333 339.
54. Philippe, C.,, F. Eyermann,, L. Benard,, C. Portier,, B. Ehresmann,, and C. Ehresmann. 1993. Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc. Natl. Acad. Sci. USA 90: 4394 4398.
55. Pon, C. L.,, and C. Gualerzi. 1974. Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli. Proc. Natl. Acad. Sci. USA 71: 4950 4954.
56. Pon, C. L.,, R. T. Pawlik,, and C. Gualerzi. 1982. The topographical localization of IF3 on Escherichia coli 30 S ribosomal subunits as a clue to its way of functioning. FEBS Lett. 137: 163 167.
57. Pon, C. L.,, M. Paci,, R. T. Pawlik,, and C. O. Gualerzi. 1985. Structure-function relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides. J. Biol. Chem. 260: 8918 8924.
58. RajBhandary, U. L.,, and C. M. Chow,. 1995. Initiator tRNAs and initiation of protein synthesis, p. 511 528. In D. Söll, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C.
59. Resch, A.,, K. Tedin,, A. Grundling,, A. Mundlein,, and U. Blasi. 1996. Downstream box-anti-downstream box interactions are dispensable for translation initiation of leaderless mRNAs. EMBO J. 15: 4740 4748.
60. Ringquist, S.,, S. Shinedling,, D. Barrick,, L. Green,, J. Binkley,, G. D. Stormo,, and L. Gold. 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6: 1219 1229.
61. Ringquist, S.,, M. MacDonald,, T. Gibson,, and L. Gold. 1993. Nature of the ribosomal mRNA track: analysis of ribosome-binding sites containing different sequences and secondary structures. Biochemistry 32: 10254 10262.
62. Ringquist, S.,, T. Jones,, E. E. Snyder,, T. Gibson,, I. Boni,, and L. Gold. 1995. High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry 34: 3640 3648.
63. Romby, P.,, H. Wakao,, E. Westhof,, M. Grunberg-Manago,, B. Ehresmann,, C. Ehresmann,, and J. P. Ebel. 1990. The conformation of the initiator tRNA and of the 16S rRNA from Escherichia coli during the formation of the 30S initiation complex. Biochim. Biophys. Acta 1050: 84 92.
64. Sacerdot, C.,, G. Fayat,, P. Dessen,, M. Springer,, J. A. Plumbridge,, M. Grunberg-Manago,, and S. Blanquet. 1982. Sequence of a 1.26-kb DNA fragment containing the structural gene for E. coli initiation factor IF3: presence of an AUU initiator codon. EMBO J. 1: 311 315.
65. Sacerdot, C.,, C. Chiaruttini,, K. Engst,, M. Graffe,, M. Milet,, N. Mathy,, J. Dondon,, and M. Springer. 1996. The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli. Mol. Microbiol. 21: 331 346.
66. Santer, M.,, and A. E. Dahlberg,. 1996. Ribosomal RNA: an historical perspective, p. 3 20. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA. Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
67. Schmitt, E.,, M. Panvert,, S. Blanquet,, and Y. Mechulam. 1998. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J. 17: 6819 6826.
68. Schweisguth, D. C.,, and P. B. Moore. 1997. On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. J. Mol. Biol. 267: 505 519.
69. Seong, B.,, and U. L. RajBhandary. 1987. Escherichia coli formylmethionine tRNA: mutations of GGG:CCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation anticodon loop. Proc. Natl. Acad. Sci. USA 84: 334 338.
70. Sette, M.,, P. van Tilborg,, R. Spurio,, R. Kaptein,, M. Paci,, C. O. Gualerzi,, and R. Boelens. 1997. The structure of the translational initiation factor IF1 from E. coli contains an oligomerbinding motif. EMBO J. 16: 1436 1443.
71. Sette, M.,, R. Spurio,, P. van Tilborg,, C. O. Gualerzi,, and R. Boelens. 1999. Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA 5: 82 92.
72. Severini, M.,, R. Spurio,, A. La Teana,, C. L. Pon,, and C. O. Gualerzi. 1991. Ribosome-independent GTPase activity of translation initiation factor IF2 and of its G-domain. J. Biol. Chem. 266: 22800 22802.
73. Shean, C. S.,, and M. E. Gottesman. 1992. Translation of the prophage lambda cI transcript. Cell 70: 513 522.
74. Simmons, L. C.,, and D. G. Yansura. 1996. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629 634.
75. Sorensen, M. A.,, and J. P. S. Fricke. 1998. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J. Mol. Biol. 280: 561 569.
76. Sprengart, M. L.,, and A. G. Porter. 1997. Functional importance of RNA interactions in selection of translation initiation codons. Mol. Microbiol. 24: 19 28.
77. Sprengart, M. L.,, E. Fuchs,, and A. G. Porter. 1996. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 15: 665 674.
78. Sprinzl, M.,, C. Steegborn,, G. Hubel,, and S. Steinberg. 1996. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 24: 68 72.
79. Spurio, R.,, M. Severini,, A. La Teana,, M. A. Canonaco,, R. T. Pawlik,, C. O. Gualerzi,, and C. L. Pon,. 1993. Novel structural and functional aspects of translational initiation factor IF2, p. 241 252. In K. H. Nierhaus, , F. Franceschi, , A. R. Subramanian, , V. A. Erdmann, , and B. Wittmann-Liebold (ed.), The Translational Apparatus. Structure, Function, Regulation, Evolution. Plenum Press, New York, N.Y.
80. Spurio, R.,, L. Brandi,, E. Caserta,, C. L. Pon,, C. O. Gualerzi,, R. Misselwitz,, C. Krafft,, K. Welfle,, and H. Welfle. The C-terminal sub-domain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J. Biol. Chem., in press.
81. Sussman, J. K.,, E. L. Simons,, and R. W. Simons. 1996. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol. Microbiol. 21: 347 360.
82. Tedin, K.,, I. Moll,, S. Grill,, A. Resch,, A. Graschopf,, C. O. Gualerzi,, and U. Blaesi. 1999. Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol. Microbiol. 31: 67 77.
83. Tomšic, J.,, A. Smorlesi,, R. Spurio,, A. La Teana,, C. L. Pon,, and C. O. Gualerzi. Unpublished data.
84. Tomšic, J.,, L. A. Vitali,, T. Daviter,, A. Savelsbergh,, R. Spurio,, P. Striebeck,, W. Wintermeyer,, M. V. Rodnina,, and C. O. Gualerzi. The late events in the translation initiation pathway in eubacteria: a kinetic analysis. Submitted for publication.
85. Tzareva, N. V.,, V. I. Makhno,, and I. V. Boni. 1994. Ribosomemessenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett. 337: 189 194.
86. Van Etten, W. J.,, and G. R. Janssen. 1998. An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol. Microbiol. 27: 987 1001.
87. Vellanoweth, R. L.,, and J. C. Rabinowitz. 1992. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol. Microbiol. 6: 1105 1114.
88. Vitali, L. A.,, M. V. Rodnina,, R. Spurio,, P. Striebeck,, W. Wintermeyer,, and C. O. Gualerzi. Unpublished data.
89. Wakao, H.,, P. Romby,, S. Laalami,, J. P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1990. Binding of initiation factor 2 and initiator tRNA to the Escherichia coli 30S ribosomal subunit induces allosteric transitions in 16S rRNA. Biochemistry 29: 8144 8151.
90. Wakao, H.,, P. Romby,, J. P. Ebel,, M. Grunberg-Manago,, C. Ehresmann,, and B. Ehresmann. 1991. Topography of the Escherichia coli ribosomal 30S subunit-initiation factor 2 complex. Biochimie 73: 991 1000.
91. Wu, C. J.,, and G. R. Janssen. 1996. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli. J. Bacteriol. 179: 6824 6830.
92. Wu, X. Q.,, and U. L. RajBhandary. 1997. Effect of the amino acid attached to Escherichia coli initiator tRNA on its affinity for the initiation factor IF2 and on the IF2 dependence of its binding to the ribosome. J. Biol. Chem. 272: 1891 1895.
93. Wu, X. Q.,, P. Iyengar,, and U. L. RajBhandary. 1996. Ribosomeinitiator tRNA complex as an intermediate in translation initiation in Escherichia coli revealed by use of mutant initiator tRNAs and specialized ribosomes. EMBO J. 15: 4734 4739.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error