1887

Chapter 40 : Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap40-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap40-2.gif

Abstract:

Termination is beginning to resemble a typical translation mechanism with parallels to other phases of protein synthesis. Concepts such as structural mimicry between the complexes formed at each stage of protein synthesis emphasize this change in perception. This chapter focuses on how the information gathered principally since the last ribosome meeting has enhanced one's understanding of the termination phase of protein synthesis. RF3 has been shown to enhance the efficiency of decoding of stop signals and in particular the signals that are used by highly expressed genes. This suggests that when bacteria require high rates of translation and efficient decoding of stop signals, RF3 makes an important contribution to the translational efficiency. The structure of IF1 has been determined by nuclear magnetic resonance spectroscopy and is classified as a member of an oligomer binding (OB)-fold family of proteins, based on the ability of this structure to bind oligosaccharides and oligonucleotides. The discovery of recoding provided examples of stop codons regularly failing to terminate protein synthesis, such as at the RF2 frameshift site. The discovery that RF3 was a translational G protein was puzzling, considering early work which examined the effect of guanine nucleotides on RF3 activity. The disassembly of the termination complex in prokaryotes was shown almost 30 years ago to involve two factors, a ribosome-releasing factor, now called ribosome-recycling factor (RRF), and EF-G.

Citation: Wilson D, Major L, Mansell J, Tate W, Dalphin M, Pel H. 2000. Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, p 495-508. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch40

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.4323811
0.4323811
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Sequence alignment of the region encompassing the RF type-specific sequences (positions 190 to 217) of selected prokaryotic RFs. Conserved (black boxes) and similar (light gray boxes with black text) residues between all RFs and conserved residues specific for each RF type (dark gray boxes with white text) are presented. Mutations (a to f) clustered within this region are documented in Table 1 . The abbreviations are defined in the legend to Fig. 2, except the following: Bfi, ; Hpy, ; Bbu, ; and Tth, .

Citation: Wilson D, Major L, Mansell J, Tate W, Dalphin M, Pel H. 2000. Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, p 495-508. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Similarity between prokaryotic and organellar IF1s and class I RFs. The two types of class I RFs, RF1 and RF2, have been considered as separate families, since their stop codon specificities (UAA and UAG for RF1; UAA and UGA for RF2) suggest that significant deviations may exist in their interactions with mRNA and the decoding site. (A) Positions of amino acids identical among all currently available prokaryotic and organellar RFs (all RFs), RF1s (RF1), RF2s (RF2), and IF1s (IF1) are indicated by vertical bars. The alignments were accomplished with the PILEUP program (GCG package, University of Wisconsin Genetics Computer Group). (B) Alignment of distantly related members of the IF1 and RF families. IF1 and RF amino acid residues that are identical or functionally related in at least three IF1s and three RF1s or two RF2s are indicated. The following sets of amino acids are considered to be functionally related: A and G; S, T, and C; L, I, V, M, and F; F, Y, W, and H; K and R; D and E; D and N; and E and Q. Abbreviations: Bsu, ; Cbu, ; Ctr, ; Eco, ; Hin, ; Lla, ; Mbo, ; Mca, ; Mge, ; Mle, ; Mpn, ; Mpo, ; Mtu, . cZma, cSol, cNta, cOsa, cEvi, and cPth are chloroplast IF1s of , , , , , and , respectively.

Citation: Wilson D, Major L, Mansell J, Tate W, Dalphin M, Pel H. 2000. Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, p 495-508. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Dot blot of IF1 against RF2 and RF3 against EFG. The full sequences of IF1 (positions 1 to 71) and RF2 (1 to 366) (A) and RF3 (1 to 527) and EF-G (1 to 703) (B) were compared to determine regions of similarity by using the Genetics Computer Group programs Compare and Dotplot. Dotplot was run at a density of 306.67. The alignments were performed with a stringency value of 15.

Citation: Wilson D, Major L, Mansell J, Tate W, Dalphin M, Pel H. 2000. Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, p 495-508. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Predicted structure of RF3 based on threading analyses with EF-G. The predicted structure of RF3 is compared with the known three-dimensional structure of EF-G. Threading of RF3 sequences onto EF-G was performed with Swiss-Model ( ).

Citation: Wilson D, Major L, Mansell J, Tate W, Dalphin M, Pel H. 2000. Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, p 495-508. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The 3A' reporter system was used to analyze the upstream and downstream context effects on translations termination. (A) Sequences that were predicted to provide a strong or weak context were placed upstream (5') and downstream (3') of the stop codon (in this case, UGA). The termination signals were placed between the second and third A' domains in the 3A' reporter plasmid. Expression from this plasmid generates two potential products, a termination product (14 kDa) and a readthrough product (21 kDa), which can be separated on the basis of size. (B) Expression of the 3A' reporter plasmid containing UGA stop signals in wild-type (white) and suppressor (black) tRNA strains is presented as percent readthrough. Combinations of strong (S) and weak (W) upstream and downstream contexts are illustrated (for example, a strong upstream and weak downstream signal is S-UGA-W). The error bars indicate standard errors of the mean.

Citation: Wilson D, Major L, Mansell J, Tate W, Dalphin M, Pel H. 2000. Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, p 495-508. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap40
1. Adamski, F. M.,, K. K. McCaughan,, F. Jorgensen,, C. G. Kurland,, and W. P. Tate. 1994. The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli. J. Mol. Biol. 238:302308.
2. Askarian-Amiri, M. E.,, H. J. Pel,, and W. P. Tate. Unpublished data.
3. Björnsson, A.,, S. Mottagui-Tabar,, and L. A. Isaksson. 1996. Structure of the C-terminal end of the nascent peptide influences translation termination. EMBO J. 15:16961704.
4. Brock, S.,, K. Szkaradkiewicz,, and M. Sprinzl. 1998. Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol. Microbiol. 29:409417.
5. Brown, C. M.,, and W. P. Tate. 1994. Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor 2. J. Biol. Chem. 269:3316433170.
6. Brown, C. M.,, M. E. Dalphin,, P. A. Stockwell,, and W. P. Tate. 1993. The translational termination signal database. Nucleic Acids Res. 21:31193123.
7. Caskey, C. T.,, R. Tompkins,, E. Scolnick,, T. Caryk,, and M. Nirenberg. 1968. Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science 162: 135138.
8. Crawford, D.-J. G.,, K. Ito,, Y. Nakamura,, and W. P. Tate. 1999. Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3. EMBO J. 18: 727732.
9. Culbertson, M. R. 1999. RNA surveillance—unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet. 15:7480.
10. Czaplinski, K.,, M. J. Ruiz-Echevarria,, S. V. Paushkin,, X. Han,, Y. M. Weng,, H. A. Perlick,, H. C. Dietz,, M. D. Ter-Avanesyan,, and S. W. Peltz. 1998. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12:16651677.
11. Dalphin, M. E.,, and W. P. Tate. Unpublished data.
12. Dalphin, M. E.,, C. M. Brown,, P. A. Stockwell,, and W. P. Tate. 1998. The translational signal database, TransTerm, is now a relational database. Nucleic Acids Res. 26:335337.
13. Doel, S. M.,, S. J. McCready,, C. R. Nierras,, and B. S. Cox. 1994. The dominant PNM2−mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659670.
14. Donly, B. C.,, C. D. Edgar,, F. M. Adamski,, and W. P. Tate. 1990. Frameshift autoregulation in the gene for Escherichia coli release factor 2—partly functional mutants result in frameshift enhancement. Nucleic Acids Res. 18:65176522.
15. Eaglestone, S. S.,, B. S. Cox,, and M. F. Tuite. 1999. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18:19741981.
16. Elliott, T.,, and X. H. Wang. 1991. Salmonella typhimurium prfA mutants defective in release factor 1. J. Bacteriol. 173:41444154.
17. Fraser, C. M.,, J. D. Gocayna,, O. White,, M. D. Adams,, R. A. Clayton,, R. D. Fleischmann,, C. J. Bult,, A. R. Kerlavage,, G. Sutton,, J. M. Kelley,, J. L. Fritchman,, J. F. Weidman,, K. V. Small,, M. Sandusky,, J. Fuhrman,, D. Nguyen,, T. R. Utterback,, D. M. Saudek,, C. A. Phillips,, J. M. Merrick,, J.-F. Tomb,, B. A. Dougherty,, K. F. Bott,, P.-C. Hu,, T. S. Lucier,, S. N. Peterson,, H. O. Smith,, C. A. Hutchison III,, and J. C. Venter. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397403.
18. Frolova, L. Y.,, M. E. Dalphin,, J. Justesen,, R. J. Powell,, G. Drugeon,, K. K. McCaughan,, L. L. Kisselev,, W. P. Tate,, and A. L. Haenni. 1993. Mammalian polypeptide chain release factor and tryptophanyl-transfer RNA synthetase are distinct proteins. EMBO J. 12:40134019.
19. Frolova, L.,, X. Le Goff,, H. H. Rasmussen,, S. Cheperegin,, G. Drugeon,, M. Kress,, I. Arman,, A. L. Haenni,, J. E. Celis,, M. Philippe,, J. Justesen,, and L. Kisselev. 1994. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701703.
20. Frolova, L.,, X. Le Goff,, G. Zhouravleva,, E. Davydova,, M. Philippe,, and L. Kisselev. 1996. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2:334341.
21. Grentzmann, G.,, and P. J. Kelly. 1997. Ribosomal binding site of release factors RF1 and RF2—a new translational termination assay in vitro. J. Biol. Chem. 272:1230012304.
22. Grentzmann, G.,, D. Brechemierbaey,, V. Heurgue-Hamard,, L. Mora,, and R. H. Buckingham. 1994. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc. Natl. Acad. Sci. USA 91:58485852.
23. Guex, N.,, and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss- PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:27142723.
24. He, F.,, A. H. Brown,, and A. Jacobson. 1997. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17:15801594.
25. Heider, J.,, C. Baron,, and A. Bock. 1992. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 11:37593766.
26. Hirashima, A.,, and A. Kaji. 1970. Factor dependent breakdown of polysomes. Biochem. Biophys. Res. Comm. 41:877883.
27. Hirashima, A.,, and A. Kaji. 1972. Factor-dependent release of ribosomes from mRNA. Requirement for two heat-stable factors. J. Mol. Biol. 65:4358.
28. Hoshino, S.,, H. Miyazawa,, T. Enomoto,, F. Hanaoka,, Y. Kikuchi,, A. Kikuchi,, and M. Ui. 1989. A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 8:38073814.
29. Hüttenhofer, A.,, and A. Böck. 1998. Selenocysteine inserting RNA elements modulate GTP hydrolysis of elongation factor SelB. Biochemistry 37:885890.
30. Ito, K.,, K. Ebihara,, M. Uno,, and Y. Nakamura. 1996. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc. Natl. Acad. Sci. USA 93:54435448.
31. Ito, K.,, K. Ebihara,, and Y. Nakamura. 1998a. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4:958972.
32. Ito, K.,, M. Uno,, and Y. Nakamura. 1998b. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc. Natl. Acad. Sci. USA 95:81658169.
33. Janosi, L.,, R. Ricker,, and A. Kaji. 1996. Dual functions of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors. Biochimie 78:959969.
34. Janosi, L.,, S. Mottagui-Tabar,, L. A. Isaksson,, Y. Sekine,, E. Ohtsubo,, S. Zhang,, S. Goon,, S. Nelken,, M. Shuda,, and A. Kaji. 1998. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 17:11411151.
35. Kaji, A.,, E. Teyssier,, and G. Hirokawa. 1998. Disassembly of the post-termination complex and reduction of translational error by ribosome recycling factor (RRF)—a possible new target for antibacterial agents. Biochem. Biophys. Res. Commun. 250:14.
36. Kawakami, K.,, and Y. Nakamura. 1990. Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2. Proc. Natl. Acad. Sci. USA 87:84328436.
37. Konecki, D. S.,, K. C. Aune,, W. P. Tate,, and C. T. Caskey. 1977. Characterization of reticulocyte release factor. J. Biol. Chem. 252:45144520.
38. Lee, C. C.,, K. M. Timms,, C. N. A. Trotman,, and W. P. Tate. 1987. Isolation of a rat mitochondrial release factor. Accommodation of the changed genetic code for termination. J. Biol. Chem. 262:35483552.
39. Lee, C. C.,, W. J. Craigen,, D. M. Muzny,, E. Harlow,, and C. Caskey. T. 1990. Cloning and expression of a mammalian peptide chain release factor with sequence similarity to tryptophanyltRNA synthetases. Proc. Natl. Acad. Sci. USA 87:35083512.
40. Lim, V. I.,, and A. S. Spirin. 1986. Stereochemical analysis of ribosomal transpeptidation. Conformation of nascent peptide. J. Mol. Biol. 188:565574.
41. Major, L. L.,, L. A. Isaksson,, and W. P. Tate. Unpublished data.
42. Major, L. L.,, E. S. Poole,, M. E. Dalphin,, S. A. Mannering,, and W. P. Tate. 1996. Is the in-frame termination signal of the Escherichia coli release factor 2 frameshift site weakened by a particularly poor context? Nucleic Acids Res. 24:26732678.
43. Mansell, J. B.,, and W. P. Tate. Unpublished data.
44. McCaughan, K. K.,, M. J. Berry,, and W. P. Tate. Unpublished data.
45. McCaughan, K. K.,, E. S. Poole,, H. J. Pel,, J. B. Mansell,, S. A. Mannering,, and W. P. Tate. 1998. Efficient in vitro translational termination in Escherichia coli is constrained by the orientations of the release factor, stop signal and peptidyl-tRNA within the termination complex. Biol. Chem. 379:857866.
46. Merkulova, T. I.,, L. Y. Frolova,, M. Lazar,, J. Camonis,, and L. L. Kisselev. 1999. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443:4147.
47. Mikuni, O.,, K. Kawakami,, and Y. Nakamura. 1991. Sequence and functional analysis of mutations in the gene encoding peptidechain- release factor 2 of Eschericia coli. Biochimie 73:15091516.
48. Mikuni, O.,, K. Ito,, J. Moffat,, K. Matsumura,, K. McCaughan,, T. Nobukuni,, W. Tate,, and Y. Nakamura. 1994. Identification of the prfC gene, which encodes peptide-chain release factor 3 of Escherichia coli. Proc. Natl. Acad. Sci. USA 91:57985802.
49. Moffat, J. G.,, and W. P. Tate. 1994. A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. J. Biol. Chem. 269:1889918903.
50. Mottagui-Tabar, S.,, A. Bjornsson,, and L. A. Isaksson. 1994. The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J. 13:249257.
51. Murzin, A. G. 1993. OB (oligonucleotide / oligosaccharide binding)- fold: common structural and functional solution for nonhomologous sequences. EMBO J. 12:861867.
52. Muto, A.,, C. Ushida,, and H. Himeno. 1998. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem. Sci. 23:2529.
53. Nakamura, Y.,, and K. Ito. 1998. How protein reads the stop codon and terminates translation. Genes Cells 3:265278.
54. Nierhaus, K. H. 1990. The allosteric three-site model for the ribosomal elongation cycle—features and future. Biochemistry 29: 49975008.
55. Nierhaus, K. H.,, D. Beyer,, M. Dabrowski,, M. A. Schäfer,, C. M. T. Spahn,, J. Wadzack,, K.-U. Bittner,, N. Burkhardt,, G. Diedrich,, R. Jünemann,, D. Kamp,, H. Voss,, and H. B. Stuhrmann. 1995. The elongating ribosome: structural and functional aspects. Biochem. Cell. Biol. 73:10111021.
56. Nyborg, J.,, P. Nissen,, M. Kjeldgaard,, S. Thirup,, G. Polekhina,, B. F. C. Clark,, and L. Reshetnikova. 1996. Structure of the ternary complex of EF-Tu: macromolecular mimicry in translation. Trends Biochem. Sci. 21:8182.
57. Olafsson, O.,, J. U. Ericson,, R. Vanbogelen,, and G. R. Björk. 1996. Mutation in the structural gene for release factor 1 (RF-1) of Salmonella typhimurium inhibits cell division. J. Bacteriol. 178: 38293839.
58. Patino, M. M.,, J. J. Liu,, J. R. Glover,, and S. Lindquist. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622626.
59. Paushkin, S. V.,, V. V. Kushnirov,, V. N. Smirnov,, and M. D. Ter-Avanesyan. 1996. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15:31273134.
60. Pavlov, M. Y.,, and M. Ehrenberg. 1996. Rate of translation of natural mRNAs in an optimized in vitro system. Arch. Biochem. Biophys. 328:916.
61. Pel, H. J.,, and W. P. Tate. Unpublished data.
62. Pel, H. J.,, C. Maat,, M. Rep,, and L. A. Grivell. 1992a. The yeast nuclear gene MRF1 encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. Nucleic Acids Res. 20:63396346.
63. Pel, H. J.,, M. Rep,, and L. A. Grivell. 1992b. Sequence comparison of new prokaryotic and mitochondrial members of the polypeptide chain release factor family predicts a 5-domain model for release factor structure. Nucleic Acids Res. 20:44234428.
64. Pel, H. J.,, M. Rep,, H. J. Dubbink,, and L. A. Grivell. 1993. Single point mutations in domain-II of the yeast mitochondrial release factor mRF-1 affect ribosome binding. Nucleic Acids Res. 21: 53085315.
65. Pel, H. J.,, J. G. Moffat,, K. Ito,, Y. Nakamura,, and W. P. Tate. 1998. Escherichia coli release factor 3: resolving the paradox of a typical G protein structure and atypical function with guanine nucleotides. RNA 4:4754.
66. Poole, E. S.,, and W. P. Tate. Unpublished data.
67. Poole, E. S.,, R. Brimacombe,, and W. P. Tate. 1997. Decoding the translational termination signal: the polypeptide chain release factor in Escherichia coli crosslinks to the base following the stop codon. RNA 3:974982.
68. Poole, E. S.,, L. L. Major,, S. A. Mannering,, and W. P. Tate. 1998. Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res. 26:954960.
69. Ruiz-Echevarria, M. J.,, C. I. Gonzalez,, and S. W. Peltz. 1998. Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J 17:575589.
70. Ryden, S. M.,, and L. A. Isaksson. 1984. A temperature sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol. Gen. Genet. 193:3845.
71. Sette, M.,, P. van Tilborg,, R. Spurio,, R. Kaptein,, M. Paci,, C. O. Gualerzi,, and R. Boelens. 1997. The structure of the translational initiation factor IF1 from Escherichia coli contains an oligomer-binding motif. EMBO J. 16:14361443.
72. Stansfield, I.,, G. M. Grant, Akhmaloka, and M. F. Tuite. 1992. Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination. Mol. Microbiol. 6:34693478.
73. Tate, W. P.,, and S. A. Mannering. 1996. Three, four or more: the translational stop signal at length. Mol. Microbiol. 21:213219.
74. Ter-Avanesyan, M. D.,, A. R. Dagkesamanskaya,, V. V. Kushnirov,, and V. N. Smirnov. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671676.
75. Tu, G. F.,, G. E. Reid,, J. G. Zhang,, R. L. Moritz,, and R. J. Simpson. 1995. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J. Biol. Chem. 270:93229326.
76. Uno, M.,, K. Ito,, and Y. Nakamura. 1996. Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2. Biochimie 78:935943.
77. Urbero, B.,, L. Eurwilaichitr,, I. Stansfield,, J. P. Tassan,, X. Le Goff,, M. Kress,, and M. F. Tuite. 1997. Expression of the release factor eRF1 (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues. Biochimie 79:2736.
78. Weng, Y. M.,, K. Czaplinski,, and S. W. Peltz. 1996. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol. Cell. Biol. 16:54915506.
79. Williams, K. P. 1999. The tmRNA website. Nucleic Acids Res. 27: 165166.
80. Wilson, D. N. 1999. A conformation switch region between functional domains regulates activity of RF2. Ph.D. thesis. University of Otago, Dunedin, New Zealand.
81. Wilson, K. S.,, and H. F. Noller. 1998. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92:131139.
82. Wilson, K. S.,, and W. P. Tate. Unpublished data.
83. Wu, E. D.,, H. Inokuchi,, and H. Ozeki. 1990. Identification of the mutations in the prfB gene of Escherichia coli K12, which confer UGA suppressor activity. Jpn. J. Genet. 65:115119.
84. Zhang, S. P.,, M. Ryden-Aulin,, and L. A. Isaksson. 1996. Functional interaction between release factor 1 and P site peptidyl-tRNA on the ribosome. J. Mol. Biol. 261:98107.
85. Zhouravleva, G.,, L. Frolova,, X. Le Goff,, R. Leguellec,, S. Inge-Vechtomov,, L. Kisselev,, and M. Philippe. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14: 40654072.

Tables

Generic image for table
Table 1

Characterized mutations in bacterial RF1 and RF2

Citation: Wilson D, Major L, Mansell J, Tate W, Dalphin M, Pel H. 2000. Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation, p 495-508. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch40

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error