1887

Chapter 41 : rRNA Functional Sites and Structures for Peptide Chain Termination

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

rRNA Functional Sites and Structures for Peptide Chain Termination, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap41-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap41-2.gif

Abstract:

This chapter provides an overview of recent work that has demonstrated the roles of two rRNA functional sites, one in 16S rRNA (the small subunit) and the other in 23S rRNA (the large subunit), in release factor (RF) binding and in catalysis of peptidyl-tRNA hydrolysis and has implicated five other regions in termination, with one (in 23S rRNA) being a likely part of the hydrolytic center. The results thus far verify the validity of trying to isolate termination-defective mutants of rRNA by searching for nonsense suppressors that exhibit specificity for one or two of the termination codons, at least under some conditions. The major defect in RF2dependent termination caused by G1093A in vitro was consistent with the specific suppression of UGA (RF2-specific stop codon) seen in vivo in the presence of the mutation. In addition to G1093, other nucleotides in the GTPase center have been implicated in RF2-dependent termination based on UGA-specific suppressor mutations. After finding the G1093A mutation in the GTPase center of 23S rRNA, the authors asked whether they could find other codon-specific suppressors in 23S rRNA, particularly in the vicinity of nt 1093. The authors have suggested that an effective operational phenotype for potential termination-defective mutants is codon-specific nonsense suppression, at least under some conditions. It should be emphasized, however, that such a phenotype can be explained in other ways, less likely but indicative of other classes of very interesting mutants.

Citation: Murgola E, Arkov A, Chernyaeva N, Hedenstierna K, Pagel F. 2000. rRNA Functional Sites and Structures for Peptide Chain Termination, p 509-518. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch41

Key Concept Ranking

Point Mutation
0.7182745
Frameshift Mutation
0.7123383
Deletion Mutation
0.64726716
Missense Mutation
0.5279713
0.7182745
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

rRNA regions implicated in translation termination. (A) (Top) Secondary structure of 16S rRNA (small subunit). Indicated in boldface are helix 34; the base of helix 44, the major part of which is involved in the A site; a large unpaired region of helix 44 comprising nt 1431 to 1434 and 1467 to 1469; and the GAAA tetraloop at nt 159 to 162. (Bottom left) Detail of helix 34, with nucleotides implicated in termination circled. (Bottom right) Detail of the base, or A-site, portion of helix 44 (upper) and detail of the nonconserved internal loop in helix 44 (lower), with nucleotides implicated in termination circled. (B) (Top) Secondary structure of 23S rRNA (large subunit). Indicated in boldface are the GTPase center and the two UGA suppressor fragment-associated sites, nt 74 to 136 in domain I and nt 735 to 766 in domain II. A suggested general location of the RNA component of peptidyltransferase in domains IV and V ( ) is indicated (PT). The location of the 2-nt deletion that apparently compensates for termination defects caused by the mutation G1093A in the GTPase center is shown (ΔG2046 C2047). (Bottom) Detail of the GTPase center. The apparent RF2- interactive sites in the GTPase center RNA, based on UGA suppressor mutational analyses ( ) and analyses of the mutation G1093A in realistic in vitro termination assays ( ), are circled.

Citation: Murgola E, Arkov A, Chernyaeva N, Hedenstierna K, Pagel F. 2000. rRNA Functional Sites and Structures for Peptide Chain Termination, p 509-518. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Possible functional interactions during transmission of a stop signal in the presence of RF2. The approximate ribosome locations of rRNA regions implicated in RF2-dependent termination are shown as either hatched rectangles (helix 34 and helix 44 of 16S rRNA) or hatched circles (23S rRNA regions, namely, the GTPase center and the hydrolytic center). A complete ribosome assembled from a 30S and a 50S subunit is viewed from the solvent side of the 30S subunit. Outlines of the 30S and 50S subunits are according to . Locations of helix 34, helix 44, and the A-site UGA codon were deduced from their proximities to the anticodon of the A-site tRNA, whose ribosome location has been presented ( ). The GTPase center is shown according to . The hydrolytic center is assumed to be situated near the acceptor end of the P-site tRNA, whose location has been presented ( ). Functional interactions between RF2 and RNA elements strongly suggested by the studies referred to in the text are shown as continuous arrows originating from RF2. Other interactions, for which there are few data available, are shown as dashed arrows.

Citation: Murgola E, Arkov A, Chernyaeva N, Hedenstierna K, Pagel F. 2000. rRNA Functional Sites and Structures for Peptide Chain Termination, p 509-518. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap41
1. Allen, P.,, and H. F. Noller. 1991. A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translation errors. Cell 66:141148.
2. Arkov, A. L.,, and E. J. Murgola. Unpublished data.
3. Arkov, A. L.,, S. V. Korolev,, and L. L. Kisselev. 1993. Termination of translation in bacteria may be modulated via specific interaction between peptide chain release factor 2 and the last peptidyl- tRNASer / Phe. Nucleic Acids Res. 21:28912897.
4. Arkov, A. L.,, D. V. Freistroffer,, M. Ehrenberg,, and E. J. Murgola. 1998a. Mutations in RNAs of both ribosomal subunits cause defects in translation termination. EMBO J. 17:15071514.
5. Arkov, A. L.,, A. Mankin,, and E. J. Murgola. 1998b. An rRNA fragment and its antisense can alter decoding of genetic information. J. Bacteriol. 180:27442748.
6. Arkov, A. L.,, D. V. Freistroffer,, M. Y. Pavlov,, M. Ehrenberg,, and E. J. Murgola. Mutations in conserved regions of ribosomal RNAs decrease the productive association of peptide-chain release factors with the ribosome during translation termination. Submitted for publication.
7. Bogdanov, A. A.,, O. A. Dontsova,, S. S. Dokudovskaya,, and I. N. Lavrik. 1995. Structure and function of 5S rRNA in the ribosome. Biochem. Cell Biol. 73:869876.
8. Brown, C. M.,, K. K. McCaughan,, and W. P. Tate. 1993. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. Nucleic Acids Res. 21:21092115.
9. Buckingham, R. H.,, P. Sörensen,, F. T. Pagel,, K. A. Hijazi,, B. H. Mims,, D. Brechemier-Baey,, and E. J. Murgola. 1990. Third position base changes in codons 5′ and 3′ adjacent UGA codons affect UGA suppression in vivo. Biophys. Biochim. Acta 1050: 259262.
10. Buckingham, R. H.,, G. Grentzmann,, and L. Kisselev. 1997. Polypeptide chain release factors. Mol. Microbiol. 24:449456.
11. Caskey, C. T.,, and A. L. Beaudet,. 1972. Antibiotic inhibitors of peptide chain termination, p. 326336. In E. Muñoz, , F. García-Ferrandiz, , and D. Vazquez (ed.), Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
12. Caskey, C. T.,, A. L. Beaudet,, E. M. Scolnick,, and M. Rosman. 1971. Hydrolysis of fMet-tRNA by peptidyl transferase. Proc. Natl Acad. Sci. USA 68:31633167.
13. Caskey, C. T.,, L. Bosch,, and D. S. Konecki. 1977. Release factor binding to ribosome requires an intact 16S rRNA 3′ terminus. J. Biol. Chem. 252:44354437.
14. Chernyaeva, N. S.,, and E. J. Murgola. Unpublished data.
15. Chernyaeva, N. S.,, E. J. Murgola,, and A. S. Mankin. 1999. Suppression of nonsense mutations induced by expression of an RNA complementary to a conserved segment of 23S rRNA. J. Bacteriol. 181:52575262.
16. Conn, G. L.,, D. E. Draper,, E. E. Lattman,, and P. G. Gittis. 1999. Crystal structure of a conserved ribosomal protein-RNA complex. Science 284:11711174.
17. De Rijk, P.,, A. Caers,, Y. Van de Peer,, and R. De Wachter. 1998. Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res. 26:183186.
18. Dontsova, O.,, S. Dokudovskaya,, A. Kopylov,, A. Bogdanov,, J. Rinke-Appel,, N. Jünke,, and R. Brimacombe. 1992. Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site-directed cross-linking study with mRNA analogues. EMBO J. 11:31053115.
19. Frank, J.,, P. Penczek,, R. Grassucci,, and S. Srivastava. 1991. Threedimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA. J. Cell Biol. 115:597605.
20. Freistroffer, D. V.,, M. Y. Pavlov,, J. MacDougall,, R. H. Buckingham,, and M. Ehrenberg. 1997. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16:41264133.
21. Garrett, R. A.,, and C. Rodriguez-Fonseca,. 1996. The peptidyl transferase center, p. 327355. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
22. Hedenstierna, K. O. F.,, J. L. Siefert,, G. E. Fox,, and E. J. Murgola. Submitted for publication.
23. Huang, S.,, Y.-X. Wang,, and D. E. Draper. 1996. Structure of a hexanucleotide RNA hairpin loop conserved in ribosomal RNAs. J. Mol. Biol. 258:308321.
24. Jemiolo, D. K.,, F. T. Pagel,, and E. J. Murgola. 1995. UGA suppression by a mutant RNA of the large ribosomal subunit. Proc. Natl. Acad. Sci. USA 92:1230912313.
25. Moine, H.,, and A. E. Dahlberg. 1994. Mutations in helix 34 of Escherichia coli 16S ribosomal RNA have multiple effects on ribosome function and synthesis. J. Mol. Biol. 243:402412.
26. Mueller, F.,, and R. Brimacombe. 1997. A new model for the threedimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 Å. J. Mol. Biol. 271:524544.
27. Murgola, E. J. 1996. Ribosomal RNA in peptide chain termination, p. 357369. In R. A. Zimmermann and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
28. Murgola, E. J.,, K. A. Hijazi,, H. U. Göringer,, and A. E. Dahlberg. 1988. Mutant 16S ribosomal RNA: a codon-specific translational suppressor. Proc. Natl Acad. Sci. USA 85:41624165.
29. Murgola, E. J.,, F. T. Pagel,, K. A. Hijazi,, A. L. Arkov,, W. Xu,, and S. Q. Zhao. 1995. Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA. Biochem. Cell Biol. 73:925931.
30. Nakamura, Y.,, K. Ito,, and L. A. Isaksson. 1996. Emerging understanding of translation termination. Cell 87:147150.
31. Noller, H. F.,, V. Hoffarth,, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:14161419.
32. Pagel, F. T.,, and E. J. Murgola. Unpublished results.
33. Pagel, F. T.,, S. Q. Zhao,, K. A. Hijazi,, and E. J. Murgola. 1997. Phenotypic heterogeneity of mutational changes at a conserved nucleotide in 16S ribosomal RNA. J. Mol. Biol. 267:11131123.
34. Pavlov, M. Y.,, D. V. Freistroffer,, V. Dinçbas,, J. MacDougall,, R. H. Buckingham,, and M. Ehrenberg. 1998. A direct estimation of the context effect on the efficiency of termination. J. Mol. Biol. 284:579590.
35. Poole, E. S.,, L. L. Major,, S. A. Mannering,, and W. P. Tate. 1998. Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res. 26:954960.
36. Purohit, P.,, and S. Stern. 1994. Interaction of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370:659662.
37. Rosendahl, G.,, and S. Douthwaite. 1994. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res. 22:357363.
38. Saarma, U.,, J. Remme,, M. Ehrenberg,, and N. Bilgin. 1997. An A to U transversion at position 1067 of 23S rRNA from Escherichia coli impairs EF-Tu and EF-G function. J. Mol. Biol. 272: 327335.
39. Stiege, W.,, C. Glotz,, and R. Brimacombe. 1983. Localisation of a series of intra-RNA cross-links in the secondary and tertiary structure of 23S RNA, induced by ultraviolet irradiation of Escherichia coli 50S ribosomal subunits. Nucleic Acids Res. 11: 16871706.
40. Tate, W.,, B. Greuer,, and R. Brimacombe. 1990. Codon recognition in polypeptide chain termination: site directed crosslinking of termination codon to Escherichia coli release factor 2. Nucleic Acids Res. 18:65376544.
41. Tate, W. P.,, and C. M. Brown. 1992. Translational termination— "stop" for protein synthesis or "pause" for regulation of gene expression. Biochemistry 31:24432450.
42. Tate, W. P.,, H. Schulze,, and K. H. Nierhaus. 1983. The Escherichia coli ribosomal protein L11 suppresses release factor 2 but promotes the release factor 1 activities in peptide chain termination. J. Biol. Chem. 259:1281612820.
43. Tate, W. P.,, M. J. Dognin,, M. Noah,, M. Stöffler-Meilicke,, and G. Stöffler. 1984. The NH2-terminal domain of Escherichia coli ribosomal protein L11. J. Biol. Chem. 259:73177324.
44. Tate, W. P.,, K. K. McCaughan,, C. D. Ward,, V. G. Sumpter,, C. N. A. Trotman,, M. Sto¨ffler-Meilicke,, P. Maly,, and R. Brimacombe. 1986. The ribosomal binding domain of the Escherichia coli release factors. J. Biol. Chem. 261:22892293.
45. Tate, W. P.,, E. S. Poole,, and S. A. Mannering. 1996. Hidden infidelities of the translational stop signal. Prog. Nucleic Acids Res. Mol. Biol. 52:293335.
46. Tenson, T.,, A. DeBlasio,, and A. Mankin. 1996. A functional peptide encoded in the Escherichia coli 23S rRNA. Proc. Natl. Acad. Sci. USA 93:56415646.
47. Thompson, J., 1996. Ribosomal RNA, translocation, and elongation factor-associated GTP hydrolysis, p. 311325. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Inc., Boca Raton, Fla.
48. Van de Peer, Y.,, A. Caers,, P. De Rijk,, and R. De Wachter. 1998. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 26:179182.
49. Vogel, Z.,, A. Zamir,, and D. Elson. 1969. The possible involvement of peptidyl transferase in the termination step of protein biosynthesis. Biochemistry 8:51615168.
50. Wilms, C.,, J. W. Noah,, D. Zhong,, and P. Wollenzien. 1997. Exact determination of UV-induced crosslinks in 16S ribosomal RNA in 30S ribosomal subunits. RNA 3:602612.
51. Wilson, K. S.,, and H. F. Noller. 1998a. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92:131139.
52. Wilson, K. S.,, and H. F. Noller. 1998b. Molecular movement inside the translational engine. Cell 92:337349.
53. Wimberly, B. T.,, R. Guymon,, J. P McCutcheon,, S. W. White,, and V. Ramakrishnan. 1999. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97:491502.
54. Xing, Y.,, D. GuhaThakurta,, and D. E. Draper. 1997. The RNA binding domain of ribosomal protein L11 is structurally similar to homeodomains. Nat. Struct. Biol. 4:2427.
55. Xu, W.,, and E. J. Murgola. 1996. Functional effects of mutating the closing G•A base-pair of a conserved hairpin loop in 23S ribosomal RNA. J. Mol. Biol. 264:407411.
56. Xu, W.,, and E. J. Murgola. Unpublished data.
57. Xu, W.,, N. S. Chernyaeva,, and E. J. Murgola. Unpublished data.
58. Zhang, S.,, M. Rydén-Aulin,, and L. A. Isaksson. 1996. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome. J. Mol. Biol. 261:98107.
59. Zhao, S. Q.,, F. T. Pagel,, and E. J. Murgola. Unpublished data.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error