1887

Chapter 8 : Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap08-2.gif

Abstract:

It has long been recognized that a complete understanding of the mechanism of translation ultimately depends on determining the molecular structure of the ribosome. The past 4 years have seen a number of exciting advances in ribosome research, and this daunting task is now considered a real possibility. This chapter summarizes the findings of the researchers from the past 4 years. The four ribosomal proteins, S4, S7, S8, and S15, together with S17, control the initial stages of the folding of the 16S rRNA molecule and are crucial determinants of the 30S architecture. There are two putative RNA binding sites located on S8. The first is located at the top of the N-terminal domain at the C-terminal end of helix α1 and is flanked by regions of positive potential. The second site is on the lower surface of the C-terminal domain. The overall dumbbell-shaped architecture of the putative S15 RNA binding surface suggests that the protein may interact with two adjacent RNA sites. Steadily accumulating biochemical and biophysical data have increased one’s understanding of the structure and mechanism of the bacterial ribosome, and contemporary data have been used periodically to construct models of the subunits, which then form the basis for subsequent experimentation. The chapter describes the pertinent information that are identified for each of the protein structures determined during the past 7 years.

Citation: White S, Clemons, Jr. W, Davies C, Ramakrishnan V, Wimberly B. 2000. Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome, p 73-84. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch8

Key Concept Ranking

Bacterial Proteins
0.6094234
HU Protein
0.46767896
0.6094234
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structure of ribosomal protein S4 from . (a) Cartoon showing locations of the -helices (orange), -strands (yellow), and loops (yellow). The N and C termini are indicated. (b) Locations of functionally and biochemically important amino acids. Blue, putative RNA binding residues; magenta, conserved surface hydrophobic residues; red, site of point mutation conferring a phenotype. (c) Surface charge potential as calculated by the program GRASP ( ). Blue, positive; red, negative; white, hydrophobic.

Citation: White S, Clemons, Jr. W, Davies C, Ramakrishnan V, Wimberly B. 2000. Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome, p 73-84. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of ribosomal protein S7 from . (a) Cartoon showing locations of -helices (orange), -strands (yellow), and loops (yellow). The N and C termini are indicated. (b) Locations of functionally and biochemically important amino acids. Blue, putative RNA binding residues; magenta, conserved surface hydrophobic residues; green, residue cross-linked to RNA. (c) Surface charge potential as calculated by the program GRASP ( ). Blue, positive; red, negative; white, hydrophobic.

Citation: White S, Clemons, Jr. W, Davies C, Ramakrishnan V, Wimberly B. 2000. Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome, p 73-84. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure of ribosomal protein S8 from . (a) Cartoon showing locations of -helices (orange), -strands (yellow), and loops (yellow). The N and C termini are indicated. (b) Locations of functionally and biochemically important amino acids. Blue, putative RNA binding residues; magenta, conserved surface hydrophobic residues; green, residue cross-linked to RNA (bottom right) and ribosomal protein S5 (top left). (c) Surface charge potential as calculated by the program GRASP ( ). Blue, positive; red, negative; white, hydrophobic

Citation: White S, Clemons, Jr. W, Davies C, Ramakrishnan V, Wimberly B. 2000. Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome, p 73-84. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structure of ribosomal protein S15 from . (a) Cartoon showing locations of -helices (orange) and loops (yellow). The N and C termini are indicated. Note that the N-terminal helix belongs to a neighbor in the unit cell, but its location on the molecule appears to be correct. (b) Locations of putative RNA binding residues (blue). (c) Surface charge potential as calculated by the program GRASP ( ). Blue, positive; red, negative; white, hydrophobic.

Citation: White S, Clemons, Jr. W, Davies C, Ramakrishnan V, Wimberly B. 2000. Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome, p 73-84. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap8
1. Adamski, F. M.,, J. F. Atkins,, and R. F. Gesteland. 1996. Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. J. Mol. Biol. 261: 357 371.
2. Alexander, R. W.,, P. Muralikrishna,, and B. S. Cooperman. 1994. Ribosomal components neighboring the conserved 518-533 loop of 16S rRNA in 30S subunits. Biochemistry 33: 12109 12118.
3. Allen, G.,, R. Capasso,, and C. Gualerzi. 1979. Identification of the amino acid residues of proteins S5 and S8 adjacent to each other in the 30S ribosomal subunit of Escherichia coli. J. Biol. Chem. 254: 9800 9806.
4. Allen, P. N.,, and H. F. Noller. 1989. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16S ribosomal RNA . J. Mol. Biol. 208: 457 468.
5. Allmang, C.,, M. Mougel,, E. Westhof,, B. Ehresmann,, and C. Ehresmann. 1994. Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8. Nucleic Acids Res. 22: 3708 3714.
6. Ban, N.,, B. Freeborn,, P. Nissen,, P. Penczek,, R. A. Grassucci,, R. Sweet,, J. Frank,, P. B. Moore,, and T. A. Steitz. 1998. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93: 1105 1115.
7. Batey, R.,, and J. Williamson. 1996a. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16S rRNA. I. Defining the minimal RNA site. J. Mol. Biol. 261: 536 549.
8. Batey, R. T.,, and J. R. Williamson. 1996b. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16S rRNA. II. Specificity determinants of RNA-protein recognition. J. Mol. Biol. 261: 550 567.
9. Berglund, H.,, A. Rak,, A. Serganov,, M. Garber,, and T. Härd. 1997. Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus. Nat. Struct. Biol. 4: 20 23.
10. Brimacombe, R.,, J. Atmadja,, W. Stiege,, and D. Schüler. 1988. A detailed model of the three-dimensional structure of E. coli 16S ribosomal RNA in situ in the 30S subunit. J. Mol. Biol. 199: 115 136.
11. Bycroft, M.,, S. Grunert,, A. G. Murzin,, M. Proctor,, and D. St. Johnston. 1995. NMR solution structure of a double-stranded RNA-binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 14: 3563 3571.
12. Capel, M. S.,, D. M. Engelman,, B. R. Freeborn,, N. Kjeldgaard,, J. A. Langer,, V. Ramakrishnan,, D. G. Schindler,, D. K. Schneider,, B. P. Schoenborn,, I.-Y. Sillers,, S. Yabuki,, and P. B. Moore. 1987. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238: 1403 1406.
13. Cerretti, D. P.,, L. C. Mattheakis,, K. R. Kearney,, L. Vu,, and M. Nomura. 1988. Translational regulation of the spc operon in Escherichia coli. Identification and structural analysis of the target site for S8 repressor protein. J. Mol. Biol. 204: 309 329.
14. Changchien, L.-M.,, and G. R. Craven. 1976. The function of the N-terminal region of ribosomal protein S4. J. Mol. Biol. 108: 381 401.
15. Clemons, W. M., Jr.,, C. Davies,, S. W. White,, and V. Ramakrishnan. 1998. Conformational variability of the N-terminal helix in the structure of ribosomal protein S15. Structure 6: 429 438.
16. Dabbs, E. R., 1986. Mutant studies on the prokaryotic ribosome, p. 733 748. In B. Hardesty, and G. Kramer (ed.), Structure, Function and Genetics of Ribosomes. Springer-Verlag, New York, N.Y.
17. Davies, C.,, V. Ramakrishnan,, and S. W. White. 1996a. Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 Å resolution. Structure 4: 1093 1104.
18. Davies, C.,, S. W. White,, and V. Ramakrishnan. 1996b. The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. Structure 4: 55 66.
19. Davies, C.,, R. G. Gerstner,, D. E. Draper,, V. Ramakrishnan,, and S. W. White. 1998a. The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNAbinding surface: one domain shows structural homology to the ETS DNA-binding motif. EMBO J. 17: 4545 4558.
20. Davies, C.,, D. E. Bussiere,, B. L. Golden,, S. J. Porter,, V. Ramakrishnan,, and S. W. White. 1998b. Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance. J. Mol. Biol. 279: 873 888.
21. Daya-Grosjean, L.,, R. A. Garrett,, O. Pongs,, G. Stöffler,, and H. G. Wittmann. 1972. Properties of the interaction of ribosomal protein S4 and 16S RNA in Escherichia coli revertants from streptomycin dependence to independence. Mol. Gen. Genet. 119: 277 286.
22. Dontsova, O. A.,, K. V. Rosen,, S. L. Bogdanova,, E. A. Skripkin,, A. M. Kopylov,, and A. A. Bogdanov. 1992. Identification of the Escherichia coli 30S ribosomal subunit protein neighboring messenger RNA during initiation of translation. Biochimie 74: 363 371.
23. Döring, T.,, P. Mitchell,, M. O βwald,, D. Bochkariov,, and R. Brimacombe. 1994. The decoding region of 16S RNA: a crosslinking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. EMBO J. 13: 2677 2685.
24. Dragon, F.,, and L. Brakier-Gingras. 1993. Interaction of Escherichia coli ribosomal protein S7 with 16S rRNA. Nucleic Acids Res. 21: 1199 1203.
25. Dragon, F.,, C. Payant,, and L. Brakier-Gingras. 1994. Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7. J. Mol. Biol. 244: 74 85.
26. Frank, J. 1998. How the ribosome works. Am. Sci. 86: 428 439.
27. Frank, J.,, J. Zhu,, P. Penczek,, Y. Li,, S. Srivistava,, A. Verschoor,, M. Radermacher,, R. Grassucci,, R. K. Lata,, and R. K. Agrawal. 1995. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376: 441 444.
28. Geyl, D.,, A. Bock,, and H. G. Wittmann. 1977. Cold-sensitive growth of a mutant of Escherichia coli with an altered ribosomal protein S8: analysis of revertants. Mol. Gen. Genet. 152: 331 336.
29. Golden, B. L.,, D. W. Hoffman,, V. Ramakrishnan,, and S. W. White. 1993a. Ribosomal protein S17: characterization of the three-dimensional structure by 1H- and 15N-NMR. Biochemistry 32: 12812 12820.
30. Golden, B. L.,, V. Ramakrishnan,, and S. W. White. 1993b. Ribosomal protein L6: structural evidence of gene duplication from a primitive RNA-binding protein. EMBO J. 12: 4901 4908.
31. Green, M.,, and C. G. Kurland. 1971. Mutant ribosomal protein with defective RNA binding site. Nat. New Biol. 234: 273 275.
32. Greuer, B.,, M. O βwald,, R. Brimacombe,, and G. Stöffler. 1987. RNA-protein cross-linking in Escherichia coli 30S ribosomal subunits; determination of sites on 16S RNA that are crosslinked to proteins S3, S4, S7, S9, S10, S11, S17, S18 and S21 by treatment with bis-(2-chloroethyl)-methylamine. Nucleic Acids Res. 15: 3241 3255.
33. Heilek, G. M.,, and H. F. Noller. 1996. Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science 272: 1659 1662.
34. Heilek, G. M.,, R. Marusak,, C. F. Meares,, and H. F. Noller. 1995. Directed hydroxyl radical mapping of 16S rRNA using Fe(II) tethered to ribosomal protein S4. Proc. Natl. Acad. Sci. USA 92: 1113 1116.
35. Herold, M.,, and K. N. Nierhaus. 1987. Incorporation of six additional proteins to complete the assembly map of the 50S subunit from Escherichia coli ribosomes. J. Biol. Chem. 262: 8826 8833.
36. Hoffman, D. W.,, C. Davies,, S. E. Gerchman,, J. H. Kycia,, S. J. Porter,, S. W. White,, and V. Ramakrishnan. 1994. Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNAbinding protein. EMBO J. 13: 205 212.
37. Hoffman, D. W.,, C. S. Cameron,, C. Davies,, S. W. White,, and V. Ramakrishnan. 1996. Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J. Mol. Biol. 264: 1058 1071.
38. Jaishree, T. N.,, V. Ramakrishnan,, and S. W. White. 1996. Solution structure of prokaryotic ribosomal protein S17 by highresolution NMR spectroscopy. Biochemistry 35: 2845 2853.
39. Kurland, C. G.,, F. Jörgensen,, A. Richter,, M. Ehrenberg,, N. Bilgin,, and A.-M. Rojas,. 1990. Through the accuracy window, p. 513 526. In W. E. Hill, , A. Dahlberg, , R. A. Garrett, , P. B. Moore, , D. Schlessinger, , and J. R. Warner (ed.) , The Ribosome: Structure, Function and Evolution. American Society for Microbiology, Washington, D.C.
40. Lambert, J. M.,, G. Boileau,, J. A. Cover,, and R. R. Traut. 1983. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits. Biochemistry 22: 3913 3920.
41. Lillemoen, J.,, and D. W. Hoffman. 1998. An investigation of the dynamics of ribosomal protein L9 using heteronuclear NMR relaxation measurements. J. Mol. Biol. 281: 539 551.
42. Lillemoen, J.,, C. S. Cameron,, and D. W. Hoffman. 1997. The stability and dynamics of ribosomal protein L9: investigations of a molecular strut by amide proton exchange and circular dichroism. J. Mol. Biol. 268: 482 493.
43. Lodmell, J. S.,, and A. E. Dahlberg. 1997. A conformational switch in E. coli 16S ribosomal RNA during decoding of messenger RNA. Science 277: 1262 1267.
44. Malhotra, A.,, P. Penczek,, R. K. Agrawal,, I. S. Gabashvili,, R. A. Grassucci,, R. Junemann,, N. Burkhardt,, K. H. Nierhaus,, and J. Frank. 1998. Escherichia coli 70S ribosome at 15 Å resolution by cryo-electron microscopy-localization of fmet-tRNAfmet and fitting of L1 protein. J. Mol. Biol. 280: 103 116.
45. Markus, M. A.,, R. B. Gerstner,, D. E. Draper,, and D. A. Torchia. 1998. The solution structure of ribosomal protein S4_41 reveals two subdomains and a positively charged surface that may interact with RNA. EMBO J. 17: 4559 4571.
46. Melançon, P.,, W. E. Tapprich,, and L. Brakier-Gingras. 1992. Single-base mutations at position 2661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading. J. Bacteriol. 174: 7896 7901.
47. Mueller, F.,, and R. Brimacombe. 1997a. A new model for the three-dimensional folding of Escherichia coli 16S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 Å. J. Mol. Biol. 271: 524 544.
48. Mueller, F.,, and R. Brimacombe. 1997b. A new model for the three-dimensional folding of Escherichia coli 16S ribosomal RNA. II. The RNA-protein interaction data. J. Mol. Biol. 271: 545 565.
49. Mueller, F.,, H. Stark,, M. van Heel,, J. Rinke-Appel,, and R. Brimacombe. 1997. A new model for the three-dimensional folding of Escherichia coli 16S ribosomal RNA. III. The topography of the functional centre. J. Mol. Biol. 271: 566 587.
50. Muralikrishna, P.,, and B. S. Cooperman. 1994. A photolabile oligodeoxyribonucleotide probe of the decoding site in the small subunit of the Escherichia coli ribosome: identification of neighbouring ribosomal components. Biochemistry 33: 1392 1398.
51. Nag, B.,, S. S. Akella,, P. A. Cann,, D. W. Tewari,, D. G. Glitz,, and R. R. Traut. 1991. Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit. J. Biol. Chem. 266: 22129 22135.
52. Nicholls, A.,, K. A. Sharp,, and B. Honig. 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11: 281 296.
53. Noller, H. F.,, V. Hoffarth,, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416 1419.
54. Nowotny, V.,, and K. H. Nierhaus. 1988. Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7. Biochemistry 27: 7051 7055.
55. O βwald, M.,, B. Greuer,, R. Brimacombe,, G. Stöffler,, H. Bäumert,, and H. Fasold. 1987. RNA-protein cross-linking in Escherichia coli 30S ribosomal subunits: determination of sites on 16S RNA that are cross-linked to proteins S3, S4, S5, S7, S8, S9, S11, S19 and S21 by treatment with methyl p-azidophenyl acetimidate. Nucleic Acids Res. 15: 3221 3240.
56. O βwald, M.,, B. Greuer,, and R. Brimacombe. 1990. Localization of a series of RNA-protein cross-link sites in the 23S and 5S ribosomal RNA from Escherichia coli, induced by treatment of 50S subunits with three different bifunctional reagents. Nucleic Acids Res. 18: 6755 6760.
57. Portier, C.,, L. Dondon,, and M. Grunberg-Manago. 1990. Translational autocontrol of the Escherichia coli ribosomal protein S15. J. Mol. Biol. 211: 407 414.
58. Powers, T.,, and H. F. Noller. 1991. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10: 2203 2214.
59. Powers, T.,, and H. F. Noller. 1995. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1: 194 209.
60. Ramakrishnan, V.,, and S. E. Gerchman. 1991. Cloning, sequencing and overexpression of genes for ribosomal proteins from Bacillus stearothermophilus. J. Biol. Chem. 266: 880 885.
61. Ramakrishnan, V.,, and S. W. White. 1992. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature 358: 768 771.
62. Ramakrishnan, V.,, and S. W. White. 1998. Ribosomal protein structures: insights into the architecture, mechanism and evolution of the ribosome. Trends Biochem. Sci. 23: 208 212.
63. Roth, H. E.,, and K. H. Nierhaus. 1980. Assembly map of the 50- S subunit from Escherichia coli ribosomes, covering the proteins present in the first reconstitution intermediate particle. Eur. J. Biochem. 103: 95 98.
64. Ryter, J. M.,, and S. C. Schultz. 1998. Molecular basis of doublestranded RNA-protein interactions: structure of a dsRNAbinding domain complexed with dsRNA. EMBO J. 17: 7505 7513.
65. Saito, K.,, and M. Nomura. 1994. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7. J. Mol. Biol. 235: 125 139.
66. Serganov, A. A.,, B. Masquida,, E. Westhof,, C. Cachia,, C. Portier,, M. Garber,, B. Ehresmann,, and C. Ehresmann. 1996. The 16S rRNA binding site of Thermus thermophilus ribosomal protein S15: comparison with Escherichia coli S15, minimum site and structure. RNA 2: 1124 1138.
67. Sköld, S.-E. 1982. Chemical cross-linking of elongation factor G to both subunits of the 70S ribosomes from Escherichia coli. Eur. J. Biochem. 127: 225 229.
68. Spedding, G., , and D. E. Draper. 1993. Allosteric mechanism for translational repression in the Escherichia coli α operon. Proc. Natl. Acad. Sci. USA 90: 4399 4403.
69. Stams, T.,, S. Niranjanakumari,, C. A. Fierke,, and D. W. Christianson. 1998. Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280: 7552 7555.
70. Stark, H.,, F. Mueller,, E. V. Orlova,, M. Schatz,, P. Dube,, T. Erdemir,, F. Zemlin,, R. Brimacombe,, and M. van Heel. 1995. The 70S Escherichia coli ribosome at 23 Å resolution: fitting the ribosomal RNA. Structure 3: 815 821.
71. Stark, H.,, E. V. Orlova,, J. Rinke-Appel,, N. Junke,, F. Mueller,, M. Rodnina,, W. Wintermeyer,, R. Brimacombe,, and M. van Heel. 1997a. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88: 19 28.
72. Stark, H.,, M. V. Rodnina,, J. Rinke-Appel,, R. Brimacombe,, W. Wintermeyer,, and M. van Heel. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389: 403 406.
73. Stern, S.,, B. Weiser,, and H. F. Noller. 1988. Model for the threedimensional folding of 16S ribosomal RNA. J. Mol. Biol. 204: 447 481.
74. Stöffler, G.,, and M. Stöffler-Meilicke. 1984. Immunoelectron microscopy of ribosomes. Annu. Rev. Biophys. Bioeng. 13: 303 330.
75. Svensson, P.,, L.-M. Changchien,, G. R. Craven,, and H. F. Noller. 1988. Interaction of ribosomal proteins, S6, S8, S15 and S18 with the central domain of 16S ribosomal RNA. J. Mol. Biol. 200: 301 308.
76. Sylvers, L. A.,, A. M. Kopylov,, J. Wower,, S. S. Hixson,, and R. A Zimmermann. 1992. Photochemical cross-linking of the anticodon loop of yeast tRNA Phe to 30S-subunit protein S7 at the ribosomal A and P sites. Biochimie 74: 381 389.
77. Tanaka, I.,, A. Nakagawa,, H. Hosaka,, S. Wakatsuki,, F. Mueller,, and R. Brimacombe. 1998. Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA. RNA 4: 542 550.
78. Tindall, S. H.,, and K. C. Aune. 1981. Assessment by sedimentation equilibrium analysis of a heterologous macromolecular interaction in the presence of self-association: interaction of S5 with S8. Biochemistry 20: 4861 4866.
79. Uchiumi, T.,, N. Sato,, A. Wada,, and A. Hachimori. 1999. Interaction of the sarcin / ricin domain of 23 S ribosomal RNA with proteins L3 and L6. J. Biol. Chem. 274: 681 686.
80. Urlaub, H.,, V. Kruft,, O. Bischof,, E. C. Muller,, and B. Wittmann-Liebold. 1995. Protein-rRNA binding features and their structural and functional implications in ribosomes as determined by cross-linking studies. EMBO J. 14: 4578 4588.
81. Urlaub, H.,, B. Thiede,, E. C. Muller,, R. Brimacombe,, and B. Wittmann-Liebold. 1997. Identification and sequence analysis of contact sites between ribosomal proteins and rRNA in Escherichia coli 30S subunits by a new approach using matrix-assisted laser desorption / ionization-mass spectrometry combined with N-terminal microsequencing. J. Biol. Chem. 272: 14547 14555.
82. Walleczek, J.,, D. Schüler,, M. Stöffler-Meilicke,, R. Brimacombe,, and G. Stöffler. 1988. A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO J. 7: 3571 3576.
83. Walleczek, J.,, B. Redl,, M. Stöffler-Meilicke,, and G. Stöffler. 1989. Protein-protein cross-linking of the 50S ribosomal subunit of Escherichia coli using 2-iminothiolane. J. Biol. Chem. 264: 4231 4237.
84. White, S. W.,, K. S. Wilson,, K. Appelt,, and I. Tanaka. 1999. The high-resolution structure of DNA-binding protein HU from Bacillus stearothermophilus. Acta Crystallogr. D 55: 801 809.
85. Wiener, L.,, D. Schüler,, and R. Brimacombe. 1988. Protein binding sites on Escherichia coli 16S ribosomal RNA; RNA regions that are protected by proteins S7, S9 and S19, and by proteins S8, S15 and S17. Nucleic Acids Res. 16: 1233 1250.
86. Wimberly, B. T.,, S. W. White,, and V. Ramakrishnan. 1997. The structure of ribosomal protein S7 reveals a β-hairpin motif that binds double-stranded nucleic acids. Structure 5: 1187 1198.
87. Wower, I.,, J. Wower,, M. Meineke,, and R. Brimacombe. 1981. The use of 2-iminothiolane as an RNA-protein crosslinking agent in Escherichia coli ribosomes, and the localization on 23S RNA of sites crosslinked to proteins L4, L6, L21, L23, L27 and L29. Nucleic Acids Res. 9: 4285 4302.
88. Wu, H.,, L. Jiang,, and R. A. Zimmermann. 1994. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction. Nucleic Acids Res. 22: 1687 1695.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error