1887

Chapter 10 : Introduction to the Myxobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Introduction to the Myxobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap10-2.gif

Abstract:

The myxobacteria are the epitome of prokaryotic multicellular complexity. In particular, efforts have focused on understanding the nature, function, and regulation of the signals that play a role in the characteristic social behavior of the myxobacteria. The process of aggregation is correlated with a massive lysis of the population. The fruiting body is the culmination of myxobacterial development. The author presumes that it represents the housing for the resting cells, called myxospores. The peculiar ecological habitat of each myxobacterium may dictate a particular myxospore-packaging requirement and thus a characteristic fruiting body morphology. The myxospores are the resting cells of the myxobacteria and are found within the fruiting body. One of the functions of the fruiting body may be rationalized in a similar fashion. The fruiting body may be viewed as a device whereby the cells, prior to entering the resting stage, aggregate and are concentrated at a high cell density. Understanding fruiting body morphogenesis is among the most difficult and challenging aspects of myxobacterial biology. Most of the studies directed toward the properties of fruiting body myxospores have focused on various cell surface proteins. Bacteria have traditionally been thought of as exemplifying the concept of the unicellular organism.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagram of the life cycle of ( ). The fruiting body is not drawn to scale but is a few hundredths of a millimeter in diameter. The vegetative cells are about 5 to 7 by 0.7 μm.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Fruiting bodies of myxobacteria. (A) (bar, 50 μm); (B) (bar, 100 μm) ( ); (C) (bar, 100 μm) ( ); (D) (bar, 100 μm) ( ); (E) (fruiting body is about 170 μm high); (F) sp. strain Hp (fruiting body is about 40 μm high); (G) (bar, 50 μm); (H) (bar, 100 μm). (All photos taken by Hans Reichenbach.)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Phase-contrast photomicrograph of vegetative cells of , illustrative of the cellular morphology of the suborder . Bar, 10 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phase-contrast photomicrographs of vegetative cells of the suborder . (a) ; (b) ; (c) ; (d) ; (e) . Bar, 10 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Phase-contrast photomicrographs of myxospores of the suborder . (a) ; (b) ; (c) ; (d) ; (e) . Bar, 10 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Phylogenetic tree showing the position of the myxobacteria within the δ group of the and other major lines of radiation within the domain . The tree was constructed using the neighbor-joining algorithm from a matrix of pairwise genetic distances as calculated by the Kimura two-parameter method. A total of 1,321 aligned positions, corresponding to positions 125 to 1446, were used in the analysis. , a member of the domain was used as the outgroup. The scale bar represents 0.10 substitutions per base position. The numbers at the nodes of the tree indicate the number of times the group consisting of the species listed to the right of that fork occurred among 1,000 boot-strapped resamplings (values below 500 are not shown). (Courtesy of Mark Wise and Larry Shimkets.)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Swarming colonies of myxobacteria of the suborder on agar surfaces, (a) ; (b) ; (c) ; (d) ; (e) . Bars, 100 μm (panel a) and 2,000 μm (all others). Note the ripples in panels b and c. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Diagram of the A signaling circuit ( ). The question marks reflect the lack of information as to the nature of the secretory mechanism for the protease and the receptors for the signal amino acids.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Electron micrograph of a negatively stained cell of illustrating the polar piliation. Bar, 250 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Low-voltage scanning electron micrograph of fibrils on vegetative cells of , grown on a solid surface in submerged culture. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Model for the role of ADP ribosylation by fibrils as the sensors of tactile interactions ( ). The model proposes that physical proximity of two cells is detected by an interaction between a cellular fibril and a fibril receptor on an apposing cell. The interaction triggers the ADP ribosylation of a fibril protein, mediated by fibril ADP-ribosyl transferase. That is somehow transduced into a signal that is bilaterally transmitted along the fibril and to the apposing cell.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap10
1. Arnold, J. W.,, and L. J. Shimkets. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170: 5771 5777.
2. Barreaud, J.-P.,, S. Bourgerie,, R. Julien,, J. F. Guespin-Michel,, and Y. Karamanos. 1995. An endo-N-acetyl-3-D-glucosaminidase acting on the di-N-acetylchitobiosyl part of N-linked glycans is secreted during sporulation of Myxococcus xanthus. J. Bacteriol 177: 916 920.
3. Behmlander, R. M.,, and M. Dworkin. 1991. Extracellular fibrils and contact-mediated interactions in Myxococcus xanthus. J. Bacteriol. 173: 7810 7821.
4. Behmlander, R. M.,, and M. Dworkin. 1994. Biochemical and structural analysis of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176: 6295 6303.
5. Benaïssa, M.,, J. Vieyres-Lubochinsky,, R. Odeide, andB. Lubochinsky. 1994. Stimulation of inositide degradation in Stigmatella aurantiaca. J. Bacteriol. 176: 1390 1393.
6. Bender, H. 1963. Untersuchungen an Myxococcus xanthus. I. Bildungsbedingungen, Isolierung und Eigenschaften eines bakteriolytisches Enzymsys-tems. Arch. Mikrobiol. 43: 262 279.
7. Bourgerie, S.,, Y. Karamanos,, T. Grard,, and R. Julien. 1994. Purification and characterization of an endo-N-acetyl-3-D-glucosaminidase from the culture medium of Stigmatella aurantiaca DW4. J. Bacteriol. 176: 6170 6174.
8. Burchard, R. P., 1984. Gliding motility and taxes, p. 139 161. In E. Rosenberg (ed.), The Myxobacteria. Springer-Verlag, New York, N.Y..
9. Burnham, J. C.,, S. A. Collart,, and B. W. Highi-son. 1981. Entrapment and lysis of the cyanobac-terium Phormidium luridum by aqueous colonies of Myxococcus xanthus PC02. Arch. Microbiol. 129: 285 294.
10. Burnham, J. C.,, S. A. Collart,, and M. J. Daft. 1984. Myxococcal predation of the cyanobacter-ium Phormidium luridum in aqueous environments. Arch. Miaobiol. 137: 220 225.
11. Chang, B.-Y.,, and M. Dworkin. 1984. Isolated fibrils rescue cohesion and development in the dsp mutant of Myxococcus xanthus. J. Bacteriol. 176: 7190 7196.
12. Chang, B.-Y.,, and M. Dworkin. 1996. Mutants of Myxococcus xanthus dsp defective in fibril binding. J. Bacteriol. 178: 697 700.
13. Cheng, Y.,, and D. Kaiser. 1989a. dsg, a gene required for cell-cell interaction early in Myxococcus development. J Bacteriol. 171: 3719 3726.
14. Cheng, Y.,, and D. Kaiser. 1989b. dsg, a gene required for Myxococcus development, is necessary for cell viability. J. Bacteriol. 171: 3727 3731.
15. Cheng, Y.,, L. V. Kalman,, and D. Kaiser. 1994. The dsg gene of Myxococcus xanthus encodes a protein similar to translation initiation factor IF3. J. Bacteriol. 176: 1427 1433.
16. Couche, P. 1969. Morphology and morphogenesis of Sorangium compositum. J. Appl. Bacteriol. 32: 24 29.
17. Davis, J. M.,, J. Mayor,, and L. Plamann. 1995. A missense mutation in rpdD results in an A-signaling defect in Myxococcus xanthus. Mol. Microbiol. 18: 943 952.
18. Downard, J.,, and D. Toal. 1995. Branched-chain fatty acids—the case for a novel form of cell-cell signaling during Myxococcus xanthus development. Mol. Microbiol. 16: 171 175.
19. Dworkin, M. 1973. Cell-cell interactions in the myx-obacteria. Symp. Soc. Gen. Miaobiol. 23: 125 147.
20. Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154: 452 459.
21. Dworkin, M. 1986. Developmental Biology of the Bacteria. The Benjamin/Cummings Publishing Co., Inc., Menlo Park, Calif..
22. Dworkin, M., 1993. Cell surfaces and appendages, p. 63 83. In M. Dworkin, and D. Kaiser (ed.), Myxo-bacteria II. American Society for Microbiology, Washington, D.C..
23. Dworkin, M. 1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev. 60: 70 102.
24. Dworkin, M., 1999a. Common themes in pathogene-sis and development in Myxococcus xanthus, p. 5 16. In E. Rosenberg (ed.), Microbial Ecology and Infectious Disease. American Society for Microbiology, Washington, D.C..
25. Dworkin, M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. Bioessays 20: 590 595.
26. Dworkin, M.,, and S. M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146: 243 244.
27. Dworkin, M.,, and D. J. Niederpruem. 1964. Electron transport system in vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 87: 316 322.
28. Fluegel, W. 1963a. Fruiting chemotaxis in Myxococcus fulvus (myxobacteria). Proc. Minn. Acad. Sci. 30: 120 123.
29. Fluegel, W. 1963b. Simple method for demonstrating myxobacterial slime. J. Bacteriol. 85: 1173 1174.
30. Frasch, S. C.,, and M. Dworkin. 1996. Tyrosine kinase in Myxococcus xanthus, a multicellular pro-karyote. J. Bacteriol. 178: 4084 4088.
31. Freese, A.,, H. Reichenbach,, and H. Ltinsdorf. 1997. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus. J. Bacteriol. 179: 1246 1252.
32. Gerth, K.,, and H. Reichenbach. 1978. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales). Arch. Microbiol. 117: 173 182.
33. Gill, R. E.,, M. Karlok,, and D. Benton. 1993. Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J. Bacteriol. 175: 4538 4544.
34. Glaessner, M. F. 1976. Early phanerozoic worms and their geological and biological significance. J Geol. Soc. Lond. 132: 259 275.
35. Hagen, T. J.,, and L. J. Shimkets. 1990. Nucleotide sequence and transcriptional products of the csg locus of 'Myxococcus xanthus. J. Bacteriol. 172: 15 23.
36. Hartzell, P. L.,, and P. Youderian. 1995. Genetics of gliding motility and development in Myxococcus xanthus. Arch. Microbiol. 164: 309 323.
37. Herzer, P. J.,, S. Inouye,, M. Inouye,, and T. S. Whittam. 1990. Phylogenetic distribution of branched RNA-linked multicopy, single-stranded DNA among natural isolates of Escherichia coli. J. Bacteriol. 172: 6175 6181.
38. Hildebrandt, K.,, D. Eastman,, and M. Dworkin. 1997. ADP-ribosylation by the extracellular fibrils of Myxococcus xanthus. Mol. Microbiol. 23: 231 235.
39. Hodgkin, J.,, and D. Kaiser. 1977. Cell-to-cell stimulation of movement in non-motile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74: 2938 2942.
40. Iizuka, T.,, Y. Jojima,, R. Fudou,, and S. Yamanaka. 1998. Isolation of myxobacteria from the marine environment. FEMS Microbiol. Lett. 169: 317 322.
41. Inouye, M.,, S. Inouye,, and D. R. Zusman. 1979. Biosynthesis and self-assembly of protein S, a development specific protein of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 209 213.
42. Inouye, S.,, and M. Inouye,. 1993. Development-specific gene expression: protein serine/threonine kinases and sigma factors, p. 201 212. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C.
43. Inouye, S.,, M.-Y. Hsu,, S. Eagle,, and M. Inouye. 1989. Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56: 709 717.
44. Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 5952 5956.
45. Kaiser, D. 1986. Control of multicellular development: Dictyostelium and Myxococcus. Annu. Rev. Genet. 20: 539 566.
46. Kaiser, D.,, andL. Kroos. 1993. Intercellular signaling, p. 257 283. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
47. Kalman, L. V.,, Y. L. Cheng,, and D. Kaiser. 1994. The Myxococcus xanthus dsg gene product performs functions of translation initiation factor IF3 in vivo. J. Bacteriol. 176: 1434 1442.
48. Kaplan, H. B.,, and L. Plamann. 1996. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol. Lett. 139: 89 95.
49. Kearns, D. B.,, and L. J. Shimkets. 1998. Chemo-taxis in a gliding bacterium. Proc. Natl. Acad. Sci. USA 95: 11957 11962.
50. Keller, K. H.,, M. Grady,, and M. Dworkin. 1983. Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J. Bacteriol. 155: 1358 1366.
51. Kim, S. K.,, and D. Kaiser. 1990a. Cell alignment required in differentiation of Myxococcus xanthus. Science 249: 926 928.
52. Kim, S. K.,, and D. Kaiser. 1990b. C-factor: a cell signaling protein required for fruiting body morphogenesis. Cell 61: 19 26.
53. Kim, S. K.,, and D. Kaiser. 1990c. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natl. Acad. Sci. USA 87: 3635 3639.
54. Kim, S. K.,, and D. Kaiser. 1990d. Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis in Myxococcus xanthus. Genes Dev. 4: 896 905.
55. Kohl, W.,, A. Gloe,, and H. Reichenbach. 1983. Steroids from the myxobacterium Nannocystis exe-dens. J. Gen. Miaobiol. 129: 1629 1635.
56. Konijn, T. M.,, J. G. C. Van De Meene,, J. T. Bonner,, and D. S. Barkley. 1967. The acrasin activity of adenosine 3',5'-cyclic phosphate. Proc. Natl. Acad. Sci. USA 82: 8540 8544.
57. Kroos, L.,, and D. Kaiser. 1987. Expression of many developmentally regulated genes in Myxococcus xanthus depends on a sequence of cell interactions. Genes Dev. 1: 840 854.
58. Kroos, L.,, P. Hartzell,, K. Stephens,, and D. Kaiser. 1988. A link between cell movement and gene expression argues that cell motility is required for cell-cell signaling during fruiting body development. Genes Dev. 2: 1677 1685.
59. Kroos, L.,, A. Kuspa,, and D. Kaiser. 1990. Defects in fruiting body development caused by TnJ-/ac insertions in Myxococcus xanthus. J. Bacteriol. 172: 484 487.
60. Kuspa, A.,, L. Plamann,, and D. Kaiser. 1992a. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174: 3319 3326.
61. Kuspa, A.,, L. Plamann,, and D. Kaiser. 1992b. A-signaling and the cell density requirement for Myxococcus xanthus development. J. Bacteriol. 174: 7360 7369.
62. Lee, B.-U.,, K. Lee,, J. Robles,, and L. J. Shimkets. 1995. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P) """-containing protein. Genes Dev. 9: 2964 2973.
63. Lee, K.,, and L. J. Shimkets. 1996. Suppression of a signaling defect during Myxococcus xanthus development./ Bacteriol. 178: 977 984.
64. Li, S.-F.,, B.-U. Lee,, and L. J. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6: 401 410.
65. Li, Y.,, and L. Plamann. 1996. Purification and in vitro phosphorylation of Myxococcus xanthus AsgA protein. J. Bacteriol. 178: 289 292.
66. Ludwig, W.,, K. H. Schleifer,, H. Reichenbach,, and E. Stackebrandt. 1983. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stig-matella aurantiaca, Cystobacterfuscus, Sorangium cellu-losum and Nannocystis exedens. Arch. Microbiol. 135: 58 62.
67. Lünsdorf, H.,, and H. Reichenbach. 1989. Ultra-structural details of the apparatus of gliding motility ofMyxoioccHS^M/fMs(Myxobacterales). J. Gen. Microbiol. 135: 1633 1641.
68. MacRae, T. H.,, and H. D. McCurdy. 1975. Ultra-structural studies of Chondromyces crocatus vegetative cells. Can.J. Microbiol. 21: 1815 1826.
69. MacRae, T. H.,, W. J. Dobson,, and H. D. McCurdy. 1977. Fimbriation in gliding bacteria. Can.J. Microbiol. 23: 1096 1108.
70. Mayer, H., andH. Reichenbach. 1978. Restriction endonucleases: general survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708 713.
71. McVittie, A.,, and S. A. Zahler. 1962. Chemotaxis in Myxococcus. Nature 194: 1299 1300.
72. Morris, D. W.,, and J. H. Parish. 1976. Restriction in Myxococcus xanthus. Arch. Mikrobiol. 108: 227 230.
73. O'Connor, K. A.,, and D. R. Zusman. 1989. Patterns of cellular interactions during fruiting body formation in Myxococcus xanthus. J. Bacteriol. 171: 6013 6024.
74. Pate, J. L.,, and L.-Y. E. Chang. 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr. Microbiol. 2: 59 64.
75. Pinoy, P. E. 1921. Surles Myxobacteries. Ann. Inst. Pasteur 35: 487 495.
76. Plamann, L.,, J. M. Davis,, B. Cantwell,, and J. Mayor. 1994. Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J. Bacteriol. 176: 2013 2020.
77. Plamann, L.,, Y. Li,, B. Cantwell,, and J. Mayor. 1995. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for mul-ticellular development. J. Bacteriol. 177: 2014 2020.
78. Ramaswamy, S.,, M. Dworkin, andj. Downard. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J. Bacteriol. 79: 2863 2871.
79. Reichenbach, H., 1984. Myxobacteria: a most peculiar group of social prokaryotes, p. 1 50. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, NY.
80. Reichenbach, H., 1993. Biology of the myxobacteria: ecology and taxonomy, p. 13 62. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
81. Reichenbach, H.,, and M. Dworkin. 1970. Induction of myxospore formation in Stigmatella auranti-aca (Myxobacterales) by monovalent cations. J. Bacteriol. 101: 325 326.
82. Reichenbach, H.,, and M. Dworkin,. 1992. The myxobacteria, p. 3416 3487. In A. Balows,, H. G. Triiper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed. Springer-Verlag, New York, NY.
83. Reichenbach, H.,, and G. Hofle. 1993. Biologically active secondary metabolites from myxobacteria. Biotechnol. Adv. 11: 219 277.
84. Reichenbach, H.,, H. H. Huenert,, and H. Kucz-ka. 1965. Schwarmentwicklung und Morphogeneses bei Myxobakterien Archangium, Myxococcus, Chon-drotnyces. Film C893. Institut fur Wissenschaft-lichen Film, Gottingen, Germany.
85. Rice, S.,, J. Bleber,, J.-Y. Chun,, G. Stacey,, and B. C. Lampson. 1993. Diversity of retron elements among a population of rhizobia and other gram-negative bacteria. J. Bacteriol. 175: 4250 4254.
86. Rice, S. A.,, and B. C. Lampson. 1995. Phyloge-netic comparison of retron elements among the myxobacteria: evidence for vertical inheritance. J. Bacteriol. 177: 37 45.
87. Rosenberg, E.,, and M. Dworkin. 1996. Autocides and a paracide, antibiotic TA, produced by Myxococcus xanthus. J. Ind. Microbiol. 17: 424 431.
88. Rosenberg, E.,, and M. Varon,. 1984. Antibiotics and lytic enzymes, p. 109 127. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, NY.
89. Rosenberg, E.,, K. H. Keller,, and M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770 777.
90. Rosenbluh, A.,, and E. Rosenberg. 1989. Autocide AMI rescues development in dsg mutants of Myxococcus xanthus. J. Bacteriol. 171: 1513 1518.
91. Sadler, W.,, and M. Dworkin. 1966a. Induction of cellular morphogenesis in Myxococcus xanthus. I. General description. J. Bacteriol. 91: 1516 1519.
92. Sadler, W.,, and M. Dworkin. 1966b. Induction of cellular morphogenesis in Myxococcus xanthus. II. Macromolecular synthesis and mechanism of indu-cer action. J. Bacteriol. 91: 1520 1525.
93. Sager, B.,, and D. Kaiser. 1993a. Two cell-density domains within the Myxococcus xanthus fruiting body. Proc. Natl. Acad. Sci. USA 90: 3690 3694.
94. Sager, B.,, and D. Kaiser. 1993b. Spatial restriction of cellular differentiation. Genes Dev. 7: 1645 1653.
95. Seilacher, A.,, P. K. Bose,, and F. Pfluger. 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282: 80 83.
96. Shapiro, J. A.,, and M. Dworkin (ed). 1997. Bacteria as Multicellular Organisms. Oxford University Press, New York, N.Y..
97. Shi, W.,, and D. R. Zusman,. 1995. Thefrz signal transduction system controls multicellular behavior in Myxococcus xanthus, p. 419 430. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C..
98. Shimkets, L. J., 1993. The myxobacterial genome, p. 85 107. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
99. Shimkets, L. J.,, and E. W. Crawford, Jr. 1998. Personal communication.
100. Shimkets, L. J.,, and M. Dworkin. 1981. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev. Biol. 84: 51 60.
101. Shimkets, L. J.,, and H. Rafiee. 1990. CsgA, an extracellular protein essential for Myxococcus xanthus development. J. Bacteriol. 172: 5299 5306.
102. Shimkets, L.,, and C. R. Woese. 1992. A phyloge-netic analysis of the myxobacteria: basis for their classification. Proc. Natl. Acad. Sci. USA 89: 9459 9463.
103. Singer, M.,, and D. Kaiser. 1995. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev. 9: 1633 1644.
104. Singh, B. N. 1947. Myxobacteria in soils and composts: their distribution, number and lytic action on bacteria. J. Gen. Microbiol. 1: 1 10.
105. Smith, D. R.,, and M. Dworkin. 1994. Territorial interactions between two Myxococcus species. J. Bacteriol. 176: 1201 1205.
106. Smith, D. R.,, and M. Dworkin. 1997. A mutation that affects fibril protein, development, cohesion and gene expression in Myxococcus xanthus. Microbiology 143: 3683 3692.
107. Søgaard-Andersen, L.,, F. J. Slack,, H. Kimsey,, and D. Kaiser. 1997. Intercellular signaling in Myxococcus xanthus involves a branched signal trans-duction pathway. Genes Dev. 10: 740 754.
108. Sørhaug, T. 1974. Glycerol ester hydrolase, lipase of Myxococcus xanthus fi. Can. J. Microbiol. 20: 611 615.
109. Stackebrandt, E. 1998. Personal communication.
110. Sudo, S.,, and M. Dworkin. 1972. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110: 236 245.
111. Sudo, S. Z.,, and M. Dworkin. 1969. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 98: 883 887.
112. Temin, H. M. 1989. Retrons in bacteria. Nature 339: 254 255.
113. Toal, D. R.,, S. W. Clifton,, B. A. Roe,, and J. Downard. 1995. The esg locus of Myxococcus xanthus encodes the Elot and ??? subunits of a branched-chain keto acid dehydrogenase. Mol. Miaobiol. 16: 177 189.
114. Tojo, N.,, S. Inouye,, and T. Komano. 1993. The lonD gene is homologous to the Ion gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J. Bacteriol. 175: 4545 4549.
115. Varon, M.,, A. Teitz,, and E. Rosenberg. 1986. Myxococcus xanthus autocide AMI. J. Bacteriol. 167: 356 361.
116. Vasquez, G. M.,, F. Quails,, and D. White. 1985. Morphogenesis of Stigmatella aurantiaca fruiting bodies. J. Bacteriol. 163: 515 521.
117. Wall, D.,, S. S. Wu,, and D. Kaiser. 1998. Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J. Bacteriol. 180: 759 761.
118. White, D., 1993>. Myxospore and fruiting body morphogenesis, p. 307 332. In M. Dworkin and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
119. Wireman, J. W.,, and M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189: 516 523.
120. Wireman, J. W.,, and M. Dworkin. 1977. Develop-mentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129: 796 802.
121. Wistow, G.,, L. Summers,, and T. Blundell. 1985. Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens ?, ?-crystallins. Nature 315: 771 773.
122. Wu, S. S.,, J. Wu,, and D. Kaiser. 1997. The Myxococcus xanthus piTT locus is required for social gliding motility although pili are still produced. Mol. Miaobiol. 23: 109 121.
123. Zusman, D. R., 1984. Developmental program of Myxococcus xanthus, p. 185 213. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, N.Y.

Tables

Generic image for table
TABLE 1

Developmental signals in

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error