1887

Chapter 10 : Introduction to the Myxobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Introduction to the Myxobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap10-2.gif

Abstract:

The myxobacteria are the epitome of prokaryotic multicellular complexity. In particular, efforts have focused on understanding the nature, function, and regulation of the signals that play a role in the characteristic social behavior of the myxobacteria. The process of aggregation is correlated with a massive lysis of the population. The fruiting body is the culmination of myxobacterial development. The author presumes that it represents the housing for the resting cells, called myxospores. The peculiar ecological habitat of each myxobacterium may dictate a particular myxospore-packaging requirement and thus a characteristic fruiting body morphology. The myxospores are the resting cells of the myxobacteria and are found within the fruiting body. One of the functions of the fruiting body may be rationalized in a similar fashion. The fruiting body may be viewed as a device whereby the cells, prior to entering the resting stage, aggregate and are concentrated at a high cell density. Understanding fruiting body morphogenesis is among the most difficult and challenging aspects of myxobacterial biology. Most of the studies directed toward the properties of fruiting body myxospores have focused on various cell surface proteins. Bacteria have traditionally been thought of as exemplifying the concept of the unicellular organism.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagram of the life cycle of ( ). The fruiting body is not drawn to scale but is a few hundredths of a millimeter in diameter. The vegetative cells are about 5 to 7 by 0.7 μm.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Fruiting bodies of myxobacteria. (A) (bar, 50 μm); (B) (bar, 100 μm) ( ); (C) (bar, 100 μm) ( ); (D) (bar, 100 μm) ( ); (E) (fruiting body is about 170 μm high); (F) sp. strain Hp (fruiting body is about 40 μm high); (G) (bar, 50 μm); (H) (bar, 100 μm). (All photos taken by Hans Reichenbach.)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Phase-contrast photomicrograph of vegetative cells of , illustrative of the cellular morphology of the suborder . Bar, 10 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phase-contrast photomicrographs of vegetative cells of the suborder . (a) ; (b) ; (c) ; (d) ; (e) . Bar, 10 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Phase-contrast photomicrographs of myxospores of the suborder . (a) ; (b) ; (c) ; (d) ; (e) . Bar, 10 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Phylogenetic tree showing the position of the myxobacteria within the δ group of the and other major lines of radiation within the domain . The tree was constructed using the neighbor-joining algorithm from a matrix of pairwise genetic distances as calculated by the Kimura two-parameter method. A total of 1,321 aligned positions, corresponding to positions 125 to 1446, were used in the analysis. , a member of the domain was used as the outgroup. The scale bar represents 0.10 substitutions per base position. The numbers at the nodes of the tree indicate the number of times the group consisting of the species listed to the right of that fork occurred among 1,000 boot-strapped resamplings (values below 500 are not shown). (Courtesy of Mark Wise and Larry Shimkets.)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Swarming colonies of myxobacteria of the suborder on agar surfaces, (a) ; (b) ; (c) ; (d) ; (e) . Bars, 100 μm (panel a) and 2,000 μm (all others). Note the ripples in panels b and c. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Diagram of the A signaling circuit ( ). The question marks reflect the lack of information as to the nature of the secretory mechanism for the protease and the receptors for the signal amino acids.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Electron micrograph of a negatively stained cell of illustrating the polar piliation. Bar, 250 μm. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Low-voltage scanning electron micrograph of fibrils on vegetative cells of , grown on a solid surface in submerged culture. (From .)

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Model for the role of ADP ribosylation by fibrils as the sensors of tactile interactions ( ). The model proposes that physical proximity of two cells is detected by an interaction between a cellular fibril and a fibril receptor on an apposing cell. The interaction triggers the ADP ribosylation of a fibril protein, mediated by fibril ADP-ribosyl transferase. That is somehow transduced into a signal that is bilaterally transmitted along the fibril and to the apposing cell.

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap10
1. Arnold, J. W.,, and L. J. Shimkets. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170:57715777.
2. Barreaud, J.-P.,, S. Bourgerie,, R. Julien,, J. F. Guespin-Michel,, and Y. Karamanos. 1995. An endo-N-acetyl-3-D-glucosaminidase acting on the di-N-acetylchitobiosyl part of N-linked glycans is secreted during sporulation of Myxococcus xanthus. J. Bacteriol 177:916920.
3. Behmlander, R. M.,, and M. Dworkin. 1991. Extracellular fibrils and contact-mediated interactions in Myxococcus xanthus. J. Bacteriol. 173:78107821.
4. Behmlander, R. M.,, and M. Dworkin. 1994. Biochemical and structural analysis of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176: 62956303.
5. Benaïssa, M.,, J. Vieyres-Lubochinsky,, R. Odeide, andB. Lubochinsky. 1994. Stimulation of inositide degradation in Stigmatella aurantiaca. J. Bacteriol. 176:13901393.
6. Bender, H. 1963. Untersuchungen an Myxococcus xanthus. I. Bildungsbedingungen, Isolierung und Eigenschaften eines bakteriolytisches Enzymsys-tems. Arch. Mikrobiol. 43:262279.
7. Bourgerie, S.,, Y. Karamanos,, T. Grard,, and R. Julien. 1994. Purification and characterization of an endo-N-acetyl-3-D-glucosaminidase from the culture medium of Stigmatella aurantiaca DW4. J. Bacteriol. 176:61706174.
8. Burchard, R. P., 1984. Gliding motility and taxes, p. 139161. In E. Rosenberg (ed.), The Myxobacteria. Springer-Verlag, New York, N.Y..
9. Burnham, J. C.,, S. A. Collart,, and B. W. Highi-son. 1981. Entrapment and lysis of the cyanobac-terium Phormidium luridum by aqueous colonies of Myxococcus xanthus PC02. Arch. Microbiol. 129: 285294.
10. Burnham, J. C.,, S. A. Collart,, and M. J. Daft. 1984. Myxococcal predation of the cyanobacter-ium Phormidium luridum in aqueous environments. Arch. Miaobiol. 137:220225.
11. Chang, B.-Y.,, and M. Dworkin. 1984. Isolated fibrils rescue cohesion and development in the dsp mutant of Myxococcus xanthus. J. Bacteriol. 176: 71907196.
12. Chang, B.-Y.,, and M. Dworkin. 1996. Mutants of Myxococcus xanthus dsp defective in fibril binding. J. Bacteriol. 178:697700.
13. Cheng, Y.,, and D. Kaiser. 1989a. dsg, a gene required for cell-cell interaction early in Myxococcus development.J Bacteriol. 171:37193726.
14. Cheng, Y.,, and D. Kaiser. 1989b. dsg, a gene required for Myxococcus development, is necessary for cell viability.J. Bacteriol. 171:37273731.
15. Cheng, Y.,, L. V. Kalman,, and D. Kaiser. 1994. The dsg gene of Myxococcus xanthus encodes a protein similar to translation initiation factor IF3. J. Bacteriol. 176:14271433.
16. Couche, P. 1969. Morphology and morphogenesis of Sorangium compositum. J. Appl. Bacteriol. 32:2429.
17. Davis, J. M.,, J. Mayor,, and L. Plamann. 1995. A missense mutation in rpdD results in an A-signaling defect in Myxococcus xanthus. Mol. Microbiol. 18: 943952.
18. Downard, J.,, and D. Toal. 1995. Branched-chain fatty acids—the case for a novel form of cell-cell signaling during Myxococcus xanthus development. Mol. Microbiol. 16:171175.
19. Dworkin, M. 1973. Cell-cell interactions in the myx-obacteria. Symp. Soc. Gen. Miaobiol. 23:125147.
20. Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154:452459.
21. Dworkin, M. 1986. Developmental Biology of the Bacteria. The Benjamin/Cummings Publishing Co., Inc., Menlo Park, Calif..
22. Dworkin, M., 1993. Cell surfaces and appendages, p. 6383. In M. Dworkin, and D. Kaiser (ed.), Myxo-bacteria II. American Society for Microbiology, Washington, D.C..
23. Dworkin, M. 1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev. 60:70102.
24. Dworkin, M., 1999a. Common themes in pathogene-sis and development in Myxococcus xanthus, p. 516. In E. Rosenberg (ed.), Microbial Ecology and Infectious Disease. American Society for Microbiology, Washington, D.C..
25. Dworkin, M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. Bioessays 20: 590595.
26. Dworkin, M.,, and S. M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146:243244.
27. Dworkin, M.,, and D. J. Niederpruem. 1964. Electron transport system in vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 87: 316322.
28. Fluegel, W. 1963a. Fruiting chemotaxis in Myxococcus fulvus (myxobacteria). Proc. Minn. Acad. Sci. 30: 120123.
29. Fluegel, W. 1963b. Simple method for demonstrating myxobacterial slime. J. Bacteriol. 85:11731174.
30. Frasch, S. C.,, and M. Dworkin. 1996. Tyrosine kinase in Myxococcus xanthus, a multicellular pro-karyote.J. Bacteriol. 178:40844088.
31. Freese, A.,, H. Reichenbach,, and H. Ltinsdorf. 1997. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus.J. Bacteriol. 179:12461252.
32. Gerth, K.,, and H. Reichenbach. 1978. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales). Arch. Microbiol. 117:173182.
33. Gill, R. E.,, M. Karlok,, and D. Benton. 1993. Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J. Bacteriol. 175: 45384544.
34. Glaessner, M. F. 1976. Early phanerozoic worms and their geological and biological significance.J Geol. Soc. Lond. 132:259275.
35. Hagen, T. J.,, and L. J. Shimkets. 1990. Nucleotide sequence and transcriptional products of the csg locus of'Myxococcus xanthus.J. Bacteriol. 172:1523.
36. Hartzell, P. L.,, and P. Youderian. 1995. Genetics of gliding motility and development in Myxococcus xanthus. Arch. Microbiol. 164:309323.
37. Herzer, P. J.,, S. Inouye,, M. Inouye,, and T. S. Whittam. 1990. Phylogenetic distribution of branched RNA-linked multicopy, single-stranded DNA among natural isolates of Escherichia coli. J. Bacteriol. 172:61756181.
38. Hildebrandt, K.,, D. Eastman,, and M. Dworkin. 1997. ADP-ribosylation by the extracellular fibrils of Myxococcus xanthus. Mol. Microbiol. 23:231235.
39. Hodgkin, J.,, and D. Kaiser. 1977. Cell-to-cell stimulation of movement in non-motile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74: 29382942.
40. Iizuka, T.,, Y. Jojima,, R. Fudou,, and S. Yamanaka. 1998. Isolation of myxobacteria from the marine environment. FEMS Microbiol. Lett. 169: 317322.
41. Inouye, M.,, S. Inouye,, and D. R. Zusman. 1979. Biosynthesis and self-assembly of protein S, a development specific protein of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:209213.
42. Inouye, S.,, and M. Inouye,. 1993. Development-specific gene expression: protein serine/threonine kinases and sigma factors, p. 201212. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C.
43. Inouye, S.,, M.-Y. Hsu,, S. Eagle,, and M. Inouye. 1989. Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56:709717.
44. Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:59525956.
45. Kaiser, D. 1986. Control of multicellular development: Dictyostelium and Myxococcus. Annu. Rev. Genet. 20:539566.
46. Kaiser, D.,, andL. Kroos. 1993. Intercellular signaling, p. 257283. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
47. Kalman, L. V.,, Y. L. Cheng,, and D. Kaiser. 1994. The Myxococcus xanthus dsg gene product performs functions of translation initiation factor IF3 in vivo. J. Bacteriol. 176:14341442.
48. Kaplan, H. B.,, and L. Plamann. 1996. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol. Lett. 139:8995.
49. Kearns, D. B.,, and L. J. Shimkets. 1998. Chemo-taxis in a gliding bacterium. Proc. Natl. Acad. Sci. USA 95:1195711962.
50. Keller, K. H.,, M. Grady,, and M. Dworkin. 1983. Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J. Bacteriol. 155: 13581366.
51. Kim, S. K.,, and D. Kaiser. 1990a. Cell alignment required in differentiation of Myxococcus xanthus. Science 249:926928.
52. Kim, S. K.,, and D. Kaiser. 1990b. C-factor: a cell signaling protein required for fruiting body morphogenesis. Cell 61:1926.
53. Kim, S. K.,, and D. Kaiser. 1990c. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natl. Acad. Sci. USA 87:36353639.
54. Kim, S. K.,, and D. Kaiser. 1990d. Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis in Myxococcus xanthus. Genes Dev. 4: 896905.
55. Kohl, W.,, A. Gloe,, and H. Reichenbach. 1983. Steroids from the myxobacterium Nannocystis exe-dens. J. Gen. Miaobiol. 129:16291635.
56. Konijn, T. M.,, J. G. C. Van De Meene,, J. T. Bonner,, and D. S. Barkley. 1967. The acrasin activity of adenosine 3',5'-cyclic phosphate. Proc. Natl. Acad. Sci. USA 82:85408544.
57. Kroos, L.,, and D. Kaiser. 1987. Expression of many developmentally regulated genes in Myxococcus xanthus depends on a sequence of cell interactions. Genes Dev. 1:840854.
58. Kroos, L.,, P. Hartzell,, K. Stephens,, and D. Kaiser. 1988. A link between cell movement and gene expression argues that cell motility is required for cell-cell signaling during fruiting body development. Genes Dev. 2:16771685.
59. Kroos, L.,, A. Kuspa,, and D. Kaiser. 1990. Defects in fruiting body development caused by TnJ-/ac insertions in Myxococcus xanthus. J. Bacteriol. 172: 484487.
60. Kuspa, A.,, L. Plamann,, and D. Kaiser. 1992a. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174:33193326.
61. Kuspa, A.,, L. Plamann,, and D. Kaiser. 1992b. A-signaling and the cell density requirement for Myxococcus xanthus development. J. Bacteriol. 174: 73607369.
62. Lee, B.-U.,, K. Lee,, J. Robles,, and L. J. Shimkets. 1995. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P) """-containing protein. Genes Dev. 9:29642973.
63. Lee, K.,, and L. J. Shimkets. 1996. Suppression of a signaling defect during Myxococcus xanthus development./ Bacteriol. 178:977984.
64. Li, S.-F.,, B.-U. Lee,, and L. J. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6:401410.
65. Li, Y.,, and L. Plamann. 1996. Purification and in vitro phosphorylation of Myxococcus xanthus AsgA protein. J. Bacteriol. 178:289292.
66. Ludwig, W.,, K. H. Schleifer,, H. Reichenbach,, and E. Stackebrandt. 1983. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stig-matella aurantiaca, Cystobacterfuscus, Sorangium cellu-losum and Nannocystis exedens. Arch. Microbiol. 135: 5862.
67. Lünsdorf, H.,, and H. Reichenbach. 1989. Ultra-structural details of the apparatus of gliding motility ofMyxoioccHS^M/fMs(Myxobacterales).J. Gen. Microbiol. 135:16331641.
68. MacRae, T. H.,, and H. D. McCurdy. 1975. Ultra-structural studies of Chondromyces crocatus vegetative cells. Can.J. Microbiol. 21:18151826.
69. MacRae, T. H.,, W. J. Dobson,, and H. D. McCurdy. 1977. Fimbriation in gliding bacteria. Can.J. Microbiol. 23:10961108.
70. Mayer, H., andH. Reichenbach. 1978. Restriction endonucleases: general survey procedure and survey of gliding bacteria. J. Bacteriol. 136:708713.
71. McVittie, A.,, and S. A. Zahler. 1962. Chemotaxis in Myxococcus. Nature 194:12991300.
72. Morris, D. W.,, and J. H. Parish. 1976. Restriction in Myxococcus xanthus. Arch. Mikrobiol. 108: 227230.
73. O'Connor, K. A.,, and D. R. Zusman. 1989. Patterns of cellular interactions during fruiting body formation in Myxococcus xanthus. J. Bacteriol. 171: 60136024.
74. Pate, J. L.,, and L.-Y. E. Chang. 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr. Microbiol. 2:5964.
75. Pinoy, P. E. 1921. Surles Myxobacteries. Ann. Inst. Pasteur 35:487495.
76. Plamann, L.,, J. M. Davis,, B. Cantwell,, and J. Mayor. 1994. Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J. Bacteriol. 176: 20132020.
77. Plamann, L.,, Y. Li,, B. Cantwell,, and J. Mayor. 1995. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for mul-ticellular development. J. Bacteriol. 177: 20142020.
78. Ramaswamy, S.,, M. Dworkin, andj. Downard. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J. Bacteriol. 79:28632871.
79. Reichenbach, H., 1984. Myxobacteria: a most peculiar group of social prokaryotes, p. 150. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, NY.
80. Reichenbach, H., 1993. Biology of the myxobacteria: ecology and taxonomy, p. 1362. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
81. Reichenbach, H.,, and M. Dworkin. 1970. Induction of myxospore formation in Stigmatella auranti-aca (Myxobacterales) by monovalent cations. J. Bacteriol. 101:325326.
82. Reichenbach, H.,, and M. Dworkin,. 1992. The myxobacteria, p. 34163487. In A. Balows,, H. G. Triiper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed. Springer-Verlag, New York, NY.
83. Reichenbach, H.,, and G. Hofle. 1993. Biologically active secondary metabolites from myxobacteria. Biotechnol. Adv. 11:219277.
84. Reichenbach, H.,, H. H. Huenert,, and H. Kucz-ka. 1965. Schwarmentwicklung und Morphogeneses bei MyxobakterienArchangium, Myxococcus, Chon-drotnyces. Film C893. Institut fur Wissenschaft-lichen Film, Gottingen, Germany.
85. Rice, S.,, J. Bleber,, J.-Y. Chun,, G. Stacey,, and B. C. Lampson. 1993. Diversity of retron elements among a population of rhizobia and other gram-negative bacteria. J. Bacteriol. 175:42504254.
86. Rice, S. A.,, and B. C. Lampson. 1995. Phyloge-netic comparison of retron elements among the myxobacteria: evidence for vertical inheritance. J. Bacteriol. 177:3745.
87. Rosenberg, E.,, and M. Dworkin. 1996. Autocides and a paracide, antibiotic TA, produced by Myxococcus xanthus. J. Ind. Microbiol. 17:424431.
88. Rosenberg, E.,, and M. Varon,. 1984. Antibiotics and lytic enzymes, p. 109127. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, NY.
89. Rosenberg, E.,, K. H. Keller,, and M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129:770777.
90. Rosenbluh, A.,, and E. Rosenberg. 1989. Autocide AMI rescues development in dsg mutants of Myxococcus xanthus. J. Bacteriol. 171:15131518.
91. Sadler, W.,, and M. Dworkin. 1966a. Induction of cellular morphogenesis in Myxococcus xanthus. I. General description. J. Bacteriol. 91:15161519.
92. Sadler, W.,, and M. Dworkin. 1966b. Induction of cellular morphogenesis in Myxococcus xanthus. II. Macromolecular synthesis and mechanism of indu-cer action. J. Bacteriol. 91:15201525.
93. Sager, B.,, and D. Kaiser. 1993a. Two cell-density domains within the Myxococcus xanthus fruiting body. Proc. Natl. Acad. Sci. USA 90:36903694.
94. Sager, B.,, and D. Kaiser. 1993b. Spatial restriction of cellular differentiation. Genes Dev. 7:16451653.
95. Seilacher, A.,, P. K. Bose,, and F. Pfluger. 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:8083.
96. Shapiro, J. A.,, and M. Dworkin (ed). 1997. Bacteria as Multicellular Organisms. Oxford University Press, New York, N.Y..
97. Shi, W.,, and D. R. Zusman,. 1995. Thefrz signal transduction system controls multicellular behavior in Myxococcus xanthus, p. 419430. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C..
98. Shimkets, L. J., 1993. The myxobacterial genome, p. 85107. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
99. Shimkets, L. J.,, and E. W. Crawford, Jr. 1998. Personal communication.
100. Shimkets, L. J.,, and M. Dworkin. 1981. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev. Biol. 84:5160.
101. Shimkets, L. J.,, and H. Rafiee. 1990. CsgA, an extracellular protein essential for Myxococcus xanthus development.J. Bacteriol. 172:52995306.
102. Shimkets, L.,, and C. R. Woese. 1992. A phyloge-netic analysis of the myxobacteria: basis for their classification. Proc. Natl. Acad. Sci. USA 89: 94599463.
103. Singer, M.,, and D. Kaiser. 1995. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev. 9:16331644.
104. Singh, B. N. 1947. Myxobacteria in soils and composts: their distribution, number and lytic action on bacteria. J. Gen. Microbiol. 1:110.
105. Smith, D. R.,, and M. Dworkin. 1994. Territorial interactions between two Myxococcus species. J. Bacteriol. 176:12011205.
106. Smith, D. R.,, and M. Dworkin. 1997. A mutation that affects fibril protein, development, cohesion and gene expression in Myxococcus xanthus. Microbiology 143:36833692.
107. Søgaard-Andersen, L.,, F. J. Slack,, H. Kimsey,, and D. Kaiser. 1997. Intercellular signaling in Myxococcus xanthus involves a branched signal trans-duction pathway. Genes Dev. 10:740754.
108. Sørhaug, T. 1974. Glycerol ester hydrolase, lipase of Myxococcus xanthus fi. Can. J. Microbiol. 20: 611615.
109. Stackebrandt, E. 1998. Personal communication.
110. Sudo, S.,, and M. Dworkin. 1972. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110:236245.
111. Sudo, S. Z.,, and M. Dworkin. 1969. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 98:883887.
112. Temin, H. M. 1989. Retrons in bacteria. Nature 339: 254255.
113. Toal, D. R.,, S. W. Clifton,, B. A. Roe,, and J. Downard. 1995. The esg locus of Myxococcus xanthus encodes the Elot and ??? subunits of a branched-chain keto acid dehydrogenase. Mol. Miaobiol. 16:177189.
114. Tojo, N.,, S. Inouye,, and T. Komano. 1993. The lonD gene is homologous to the Ion gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J. Bacteriol. 175:45454549.
115. Varon, M.,, A. Teitz,, and E. Rosenberg. 1986. Myxococcus xanthus autocide AMI. J. Bacteriol. 167: 356361.
116. Vasquez, G. M.,, F. Quails,, and D. White. 1985. Morphogenesis of Stigmatella aurantiaca fruiting bodies. J. Bacteriol. 163:515521.
117. Wall, D.,, S. S. Wu,, and D. Kaiser. 1998. Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J. Bacteriol. 180:759761.
118. White, D., 1993>. Myxospore and fruiting body morphogenesis, p. 307332. In M. Dworkin and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
119. Wireman, J. W.,, and M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189:516523.
120. Wireman, J. W.,, and M. Dworkin. 1977. Develop-mentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129: 796802.
121. Wistow, G.,, L. Summers,, and T. Blundell. 1985. Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens ?, ?-crystallins. Nature 315:771773.
122. Wu, S. S.,, J. Wu,, and D. Kaiser. 1997. The Myxococcus xanthus piTT locus is required for social gliding motility although pili are still produced. Mol. Miaobiol. 23:109121.
123. Zusman, D. R., 1984. Developmental program of Myxococcus xanthus, p. 185213. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, N.Y.

Tables

Generic image for table
TABLE 1

Developmental signals in

Citation: Dworkin M. 2000. Introduction to the Myxobacteria, p 221-242. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error