1887

Chapter 11 : Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap11-2.gif

Abstract:

This chapter discusses what is perhaps the most unique facet of myxobacterial morphogenesis, the formation of multicellular aggregates and fruiting bodies by the cooperative action of tens of thousands of individual cells. The induction of fruiting body formation presumably requires two separate events. First, individual cells must monitor their own nutrient status. Second, each cell must evaluate the nutritional status and size of the entire population. Both mutants show identical developmental aggregation defects, suggesting that the Dif proteins probably do constitute a new signal transduction pathway necessary for aggregation during fruiting body formation, although no biochemical evidence is yet available to show that these proteins participate in such a pathway. Temporal aspects of fruiting body formation in have received little direct attention, although the conversion of vegetative cells into spores is certainly delayed under normal starvation conditions until the cells are within developmental aggregates. Several genes that may be involved with regulating the timing of fruiting body formation itself have also been identified. Cells which cannot synthesize protein myxobacterial Hemagglutinin (MBHA) show delayed aggregation, suggesting that MBHA may be required to increase the efficiency of cell-cell interactions and fruiting body formation. Studies of development suggest that temperature could play an important role in the developmental aggregation process. In recent years many advances have been made to our understanding of the developmental aggregation process.

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 2
FIGURE 2

Gene organizations within motility- and directed-motility-associated loci. (A) locus (GenBank accession no. AF076485); (B) locus (accession no. AF049107, U47814, J04157, M35192, M35200, and U44437); (C) locus (accession no. AF047554); (D) locus (accession no. AF003632, L39904, and L78131). Genes which when mutated result in the frizzy aggregation phenotype during development are shown in dark gray. Restriction enzyme sites: B, HI; C, I (shown for the region only); P, I; and S, I. Arrows designate direction of transcription of genes.

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Information flow through the enteric chemotaxis system. Chemical stimuli are sensed by the transmembrane MCP receptor proteins. Excitation signals are relayed via CheW to the histidine protein kinase CheA. CheA can both autophosphorylate and, when stimulated by the MCPs, phosphorylate CheY. CheY-P then interacts with the switch proteins of the flagellar motor, regulating the direction of flagellar rotation. Dephosphorylation of CheY-P is stimulated by CheZ, while adaptation to stimuli requires methylation and demethylation of the MCPs by CheR and CheB, respectively.

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Alignment of CheY-like proteins from with CheY from . (a) Alignment of the CheY homologies in the DifD ( ), FrzE ( ), and FrzZ ( ) proteins against CheY ( ). The phosphorylation site ( Asp57) and associated amino acids are marked with “*.” Amino acids proposed to be involved with switch protein interactions are indicated with “” (b) Dendrogram created from the CheY protein alignment.

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1
FIGURE 1

Wild-type and mutant developmental-aggregation phenotypes. (a) Strain DZ2 (wild type), shown developing at high cell numbers (2 × 10 CFU/ml) after 48 h of incubation at 34°C; (b) SW505 (; signal transduction mutant), showing formation of only small mounds after 48 h of incubation; (c) DK2630 (; extracellular-signaling mutant), showing formation of only small mounds after 24 h of development; (d) DZF3558 ( Δ; signal transduction mutant), showing the characteristic frizzy phenotype in the strain FB background after 72 h of incubation; (e) DZF1 (; ECF sigma factor mutant), showing trails of aggregates rather than discrete mounds after 24 h of development; (f) DZF1 (; signal transduction mutant), showing many small, closely spaced aggregates (photo courtesy of K. Cho); (g) DZ2 (; temperature-dependent aggregation mutant), showing no aggregation at 34°C (provided by K. O'Connor); (h) DZ2 () showing wild-type aggregation at 28°C (provided by K. O'Connor). All cells were plated on CF starvation agar ( ).

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Model showing the proposed interactions within the Frz signal transduction pathway during developmental aggregation. Components of the pathway that when mutated result in cells displaying the frizzy aggregation phenotype are colored dark gray. The FrzZ and AbcA proteins are suggested to act upstream of the central components, FrzCD, FrzA, and FrzE, and may regulate the export of a developmentally important molecule. This molecule might be modified or might modify a signal associated with late developmental aggregation. The histidine protein kinase (HPK) that phosphorylates FrzZ is unknown. However, FrzZ is proposed to potentially interact with the RpoEl protein to regulate gene expression. Inputs to the FrzCD receptor may be associated with the C-signaling pathway as well as with the AbcA-associated pathway. Other, unknown inputs may also occur. The role of FrzB is unknown, although the protein is suggested to interact with FrzCD. The FrzF and FrzG proteins methylate and demethylate FrzCD. It is also suggested that FrzF may interact with an unknown regulatory protein. The FrzS protein may be phosphorylated by FrzE and interact directly with the S-motility system. Likely pathways or interactions are shown connected by black arrows. More speculative interactions are shown connected by gray arrows.

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Electron micrograph of an cell showing the polar associated type IV pili. A strain DZ2 (wild-type) cell is shown negatively stained with uranyl acetate.

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap11
1. Acuna, G.,, W. Shi,, K. Trudeau,, and D. R. Zusman. 1995. The 'CheA' and 'CheY' domains of Myxococcus xanthus FrzE function independently in vitro as an autokinase and a phosphate acceptor, respectively. FEBS Lett. 358:3133.
2. Alm, R. A.,, J. P. Hallinan,, A. A. Watson,, and J. S. Mattick. 1996. Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilYl encodes a gonococcal PilC homologue. Mol. Microbiol. 22:161173.
3. Armitage, J. P.,, and R. Schmitt. 1997. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme? Microbiology 143:36713682.
4. Arnold, J. W.,, and L.J. Shimkets. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170:57715777.
5. Astling, D. P.,, M. J. Ward,, and D. R. Zusman. Unpublished data.
6. Barber, C. E.,, J. L. Tang,, J. X. Feng,, M. Q. Pan,, T.J. G. Wilson,, H. Slater,, J. M. Dow,, P. Williams,, and M. J. Daniels. 1997. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol. 24:555566.
7. Behmlander, R. M.,, and M. Dworkin. 1994a. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus.J. Bacteriol. 176: 62956303.
8. Behmlander, R. M.,, and M. Dworkin. 1994b. Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:63046311.
9. Blackhart, B. D.,, and D. R. Zusman. 1985. "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82:87678770.
10. Blair, D. F. 1995. How bacteria sense and swim. Annu. Rev. Microbiol. 49:489522.
11. Bork, P.,, N. P. Brown,, H. Hegyi,, and J. Schultz. 1996. The protein phosphatase 2C (PP2C) super-family: detection of bacterial homologues. Prot. Sci. 5:14211425.
12. Bowden, M. G.,, and H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30:275284.
13. Chang, B.-Y.,, and M. Dworkin. 1996. Mutants of Myxococcus xanthus dsp defective in fibril binding. J. Bacteriol. 178:697700.
14. Cho, K.,, and D. R. Zusman. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol, in press.
15. Darzins, A.,, and M. A. Russell. 1997. Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system—a review. Gene 192:109115.
16. Hagen, D. C.,, A. P. Bretscher,, and D. Kaiser. 1978. Synergism between morphogenic mutants of Myxococcus xanthus. Dev. Biol. 64:284296.
17. Hanlon, W. A.,, M. Inouye,, and S. Inouye. 1997. Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol. Microbiol. 23:459471.
18. Harris, B. Z.,, D. Kaiser,, and M. Singer. 1998. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev. 12:10221035.
19. Hartzell, P. L.,, and P. Youderian. 1995. Genetics of gliding motility and development in Myxococcus xanthus. Arch. Microbiol. 164:309323.
20. Hodgkin, J.,, and D. Kaiser. 1979a. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167176.
21. Hodgkin, J.,, and D. Kaiser. 1979b. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171:177191.
22. Hodgson, D. A.,, and F.J. Murillo,. 1993. Genetics of regulation and pathway of synthesis of carotenoids, p. 157181. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
23. Jelsbak, L.,, and L. Segaard-Andersen. 1999. The cell-surface associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proc. Natl. Acad. Sci. USA 96:50315036.
24. Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:59525956.
25. Kaiser, D.,, and C. Crosby. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3:227245.
26. Kashefi, K.,, and P. L. Hartzell. 1995. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF∼ defect. Mol. Microbiol. 15: 483494.
27. Kearns, D. B.,, and L.J. Shimkets. 1998. Chemotaxis in a gliding bacterium. Proc. Natl. Acad. Sci. USA 95:1195711962.
28. Kroos, L.,, A. Kuspa,, and D. Kaiser. 1990. Defects in fruiting body development caused by Tn5lac insertions in Myxococcus xanthus. J. Bacteriol. 172: 484487.
29. Kuhn, L. C. 1994. Molecular regulation of iron proteins. Baillieres Clin. Haematol. 7:763785.
30. Kuspa, A.,, and D. Kaiser. 1989. Genes required for developmental signalling in Myxococcus xanthus: three asg loci.J. Bacteriol. 171:27622772.
31. Kuspa, A.,, L. Plamann,, and D. Kaiser. 1992a. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174:33193326.
32. Kuspa, A.,, L. Plamann,, and D. Kaiser. 1992b. A-signalling and the cell density requirement for Myxococcus xanthus development. J. Bacteriol. 174: 73607369.
33. Lev, M. 1954. Demonstration of a diffusible fruiting factor in myxobacteria. Nature (London) 173:501.
34. Manoil, C.,, and D. Kaiser. 1980. Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J. Bacteriol. 141:305315.
35. McBride, M. J.,, R. A. Weinberg,, and D. R. Zusman. 1989. 'Frizzy' aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc. Natl. Acad. Sci. USA 86:424428.
36. McBride, M. J.,, T. Kohler,, and D. R. Zusman. 1992. Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior. J. Bacterid. 174: 42464257.
37. McCleary, W. R.,, and D. R. Zusman. 1990. FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 87:58985902.
38. McVittie, A.,, and S. A. Zahler. 1962. Chemotaxis in Myxococcus. Nature (London) 194:12991300.
39. Morrison, C. E.,, and D. R. Zusman. 1979. Myxococcus xanthus mutants with temperature-sensitive, stage-specific defects: evidence for independent pathways in development. J. Bacteriol. 140: 10361042.
40. Munoz-Dorado, J.,, S. Inouye,, and M. Inouye. 1991. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67: 9951006.
41. O'Connor, K. A. Personal communication.
42. O'Connor, K. A. Unpublished data.
43. O'Connor, K. A.,, and D. R. Zusman. 1989. Patterns of cellular interactions during fruiting-body formation in Myxococcus xanthus. J. Bacteriol. 171: 60136024.
44. O'Connor, K. A.,, and D. R. Zusman. 1990. Genetic analysis of tag mutants of Myxococcus xanthus provides evidence for two developmental aggregation systems. J. Bacteriol. 172:38683878.
45. O'Connor, K. A.,, and D. R. Zusman. 1991. Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J. Bacteriol. 173:33183333.
46. Ogawa, M.,, S. Fujitani,, X. Mao,, S. Inouye,, and T. Komano. 1996. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22:757767.
47. Reichenbach, H., 1984. Myxobacteria: a most peculiar group of social prokaryotes, p. 150. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer-Verlag, Berlin, Germany.
48. Reichenbach, H., 1993. Biology of the Myxobacteria: ecology and taxonomy, p. 1362. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, D.C..
49. Reichenbach, H.,, and M. Dworkin,. 1981. The order Myxobacterales, p. 328355. In M. P. Starr,, H. Stolp,, H. G. Truper,, A. Balows,, and H. G. Schlegel (ed.), The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria. Springer-Verlag, Berlin, Germany.
50. Rodriguez-Soto, J. P.,, and D. Kaiser. 1997. The tgl gene: social motility and stimulation in Myxococcus xanthus. J. Bacteriol. 179:43614371.
51. Roman, S. J.,, M. Meyers,, K. Volz,, and P. Matsumura. 1992. A chemotactic signaling surface on Che Y defined by suppressors of flagellar switch mutations. J. Bacteriol. 174:62476255.
52. Romeo, J. M.,, and D. R. Zusman. 1987. Cloning of the gene for myxobacterial hemagglutinin and isolation and analysis of structural gene mutations. J. Bacteriol. 169:38013808.
53. Rudel, T.,, I. Scheurerpflug,, and T. F. Meyer. 1995. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature (London) 373: 357359.
54. Ryll, R. R.,, T. Rudel,, I. Scheurerpflug,, R. Barten,, and T. F. Meyer. 1997. PilC of Neisseria meningitidis is involved in class II pilus formation and restores pilus assembly, natural transformation competence and adherence to epithelial cells in PilC-deficient gonococci. Mol. Microbiol. 23: 879892.
55. Shi, W.,, and D. R. Zusman. 1993. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90:33783382.
56. Shi, W.,, T. Kohler,, and D. R. Zusman. 1993. Chemotaxis plays a role in the social behavior of Myxococcus xanthus. Mol. Microbiol. 9:601611.
57. Shi, W.,, F. Ngok,, and D. R. Zusman. 1996. Cell density regulates cellular reversal frequency in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 93: 41424146.
58. Shimkets, L.J. 1986. Role of cell cohesion in Myxococcus xanthus fruiting body formation. J. Bacteriol. 166:842848.
59. Shimkets, L.J. 1990. Social and developmental biology of the Myxobacteria. Microbiol. Rev. 54: 473501.
60. Shimkets, L. J.,, and M. Dworkin. 1981. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev. Biol. 84:5160.
61. Shimkets, L. J.,, and D. Kaiser. 1982. Induction of coordinated movement in Myxococcus xanthus cells. J. Bacteriol. 152:451461.
62. Shimkets, L. J.,, and H. Rafiee. 1990. CsgA, an extracellular protein essential for Myxococcus xanthus development. J. Bacteriol. 172:52995306.
63. Singer, M.,, and D. Kaiser. 1995. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev. 9:16331644.
64. Sogaard-Andersen, L.,, and D. Kaiser. 1996. C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 93:26752679.
65. Sourjik, V., andR. Schmitt. 1996. Different roles of CheYl and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol. 22:427436.
66. Stock, A.,, D. E. Koshland, Jr.,, and J. Stock. 1985. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis and sporulation. Proc. Natl. Acad. Sci. USA 82: 79897993.
67. Thaxter, R. 1892. On the Myxobacteriaceae, a new order of Schizomycetes. Bot. Gaz. 17:389406.
68. Treuner-Lange, A.,, M. J. Ward,, and D. R. Zusman. Unpublished data.
69. Trudeau, K. G.,, M.J. Ward,, and D. R. Zusman. 1996. Identification and characterization of FrzZ, a novel response regulator necessary for swarming and fruiting-body formation in Myxococcus xanthus. Mol. Microbiol. 20:645655.
70. Udo, H.,, M. Inouye,, and S. Inouye. 1996. Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus. J. Bacteriol. 178:66476649.
71. Wall, D.,, P. E. Kolenbrander,, and D. Kaiser. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for the type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181:2433.
72. Ward, M.J.,, and D. R. Zusman. 1997. Regulation of directed motility in Myxococcus xanthus. Mol. Microbiol. 24:885893.
73. Ward, M. J.,, H. Lew,, and D. R. Zusman. Unpublished data.
74. Ward, M. J.,, H. Lew,, A. Treuner-Lange,, and D. R. Zusman. 1998a. Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor. J. Bacteriol. 180: 56685675.
75. Ward, M. J.,, K. C. Mok,, D. P. Astling,, H. Lew,, and D. R. Zusman. 1998b. An ABC transporter plays a developmental aggregation role in Myxococcus xanthus. J. Bacteriol. 180:56975703.
76. Ward, M. J.,, K. C. Mok,, and D. R. Zusman. 1998c. Myxococcus xanthus displays Frz-dependent chemokinetic behavior during vegetative swarming. J. Bacteriol. 180:440443.
77. Weimer, R. M.,, C. Creighton,, A. Stassino-poulos,, P. Youderian,, and P. L. Hartzell. 1998. A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus. J. Bacteriol. 180:53575368.
78. Wilson, T.J. G.,, N. Bertrand,, J.-L. Tang,, J.-X. Feng,, M.-Q. Pan,, C. E. Barber,, J. M. Dow,, and M.J. Daniels. 1998. The rpJA gene ofXanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol. Microbiol. 28:961970.
79. Wireman, J. W.,, and M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189:516523.
80. Wu, S. S.,, and D. Kaiser. 1995. Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547558.
81. Wu, S. S.,, and D. Kaiser. 1996. Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J. Bacteriol. 178:58175821.
82. Wu, S. S.,, and D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 178:77487758.
83. Wu, S. S.,, J. Wu,, and D. Kaiser. 1997. The Myxococcus xanthus pilTlocus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23:109121.
84. Wu, S. S.,, J. Wu,, Y. L. Cheng,, and D. Kaiser. 1998. The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol. Microbiol. 29:12491261.
85. Yang, Z.,, Y. Geng,, and W. Shi. 1998a. A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation. J. Bacteriol. 180:218224.
86. Yang, Z.,, Y. Geng,, D. Xu,, H. B. Kaplan,, and W. Shi. 1998b. A new set of chemotaxis homologs is essential for Myxococcus xanthus social motility. Mol. Microbiol. 30:11231130.
87. Zhang, W.,, M. Inouye,, and S. Inouye. 1996. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol. Microbiol. 20: 435447.
88. Zusman, D. R. 1982. 'Frizzy' mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J. Bacteriol. 150:14301437.

Tables

Generic image for table
Untitled

TABLE 1 Homologues and proposed functions of components of and Dif systems

Citation: Ward M, Zusman D. 2000. Developmental Aggregation and Fruiting Body Formation in the Gliding Bacterium , p 243-262. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error