1887

Chapter 17 : Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap17-2.gif

Abstract:

Morphogenesis in appears to be driven by internal cues, with stages of the cell division cycle acting as checkpoints for specific developmental events. Genetic studies have identified signal transduction pathways mediated by members of the His-Asp phosphorelay proteins that are essential both for cell cycle control and developmental regulation. These pathways provide a molecular mechanism for the coordination of developmental events with cell cycle progression. The strains were classified as either or mutants, depending on whether DNA replication is blocked at the nonpermissive temperature. mutants blocked in either DNA chain initiation (DNAi) or DNA chain elongation (DNAe) fail to complete DNA synthesis (DNAc). In addition to their functions in adaptation to environmental changes, some of these signal transduction proteins also play essential roles in developmental and cell cycle regulation. In one model, activation of the signal transduction pathway controlling PleD during the swarmer-to-stalked-cell transition leads to flagellum ejection and loss of motility, and the PleC-DivK signal transduction pathway functions in late predivisional cells to initiate motility. Other signal transduction proteins that remain to be identified are those regulating activation of flagellar rotation in response to the PleC kinase and the protein kinase or kinases that presumably regulate the PleD-mediated loss of motility and stalk formation. A major goal of future research will be to identify the cell cycle, and possibly environmental, cues to which these and other signal transduction pathways respond.

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

cell cycle. Developmental events in the wild-type strain CB15 include flagellum formation (Fla), activation of flagellum rotation (Mot), appearance of polar bacteriophage receptors (ϕ), pilus formation (Pili), flagellum ejection and loss of motility (Mot), and stalk formation (Stk). The periods corresponding to presynthetic gap (G1), DNA synthesis (S), and postsynthetic gap (G2) are indicated.

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Organization of DNA synthetic and cell division pathways. Cell cycle events on the DNA synthetic and cell division pathways are defined in the text. The functional dependency of the gene-mediated steps was determined by reciprocal shift experiments with TS mutations in or genes (shown in parentheses) in combination with the reversible inhibitor hydroxyurea (HU) or penicillin G (Pen) ( ). †, homologues of genes expected to act in initiation of DNA replication and DNA chain elongation (see the text and chapter 18). These genes were not examined in the epistasis experiments. G1, S, G2, see the legend to Fig. 1 .

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Developmental phenotypes of cell division cycle and mutant cells. The diagrams depict the cellular morphology of mutations in cell cycle and developmental genes that affect polar morphogenesis. (A) mutant blocked in DNAe; mutant blocked in DIVp; (C) mutant blocked in CS; (D) mutant blocked in the swarmer-to-stalked-cell transition. The ability or failure of the mutants to execute flagellum biosynthesis (Fla), gain motility (Mot), and make stalks (Stk) is shown by + and -, respectively.

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Predicted domain organization of HPKs and response regulators. The cross-hatched boxes in kinases PleC, DivJ, and DivL indicate predicted transmembrane regions. The conserved sequence motifs in the H, N, D, F, and G boxes of the catalytic domains are shown in Table 1 . The receiver domains of response regulators DivK, PleD, CtrA, and FlbD are shown by cross-hatched boxes. Residues corresponding to Asp-57 (D), the presumptive site of phosphorylation, and the conserved Asp-13 (D) and Lys-109 (K) in CheY are indicated for each of the proteins. The helix-turn-helix (HTH) motifs of CtrA and FlbD represent the predicted DNA binding domains. D and D′ (cross-hatched boxes) are the two putative receiver domains, and GGEEF is the carboxy-terminal conserved domain of PleD.

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Model for the organization of signal transduction pathways regulating differentiation and cell division. This model indicates possible cell cycle cues or checkpoints that may regulate signal transduction and development (see the text). The DivL-CtrA and DivJ-DivK pathways presumably function during mid-S phase. CtrA accumulates at this time in early predivisional cells, when it is required for repression of premature initiation of DNA replication, activation of class II flagellar genes, and regulation of other cell cycle genes (reviewed in chapter 18). Dashed arrows indicate proposed signal transduction pathways.

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap17
1. Aldridge, P.,, and U. Jenal. 1999. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. Mol. Microbiol. 32: 379 391.
2. Alley, M. R. K. 1998. GenBank accession no. AJ006687.
3. Anderson, D. K.,, N. Ohta,, J. Wu,, and A. Newton. 1995. Regulation of the Caulobacter crescentus rpoNgene and function of the purified cr 54 in flagellar gene transcription. Mol. Gen. Genet. 246: 697 706.
4. Appleby, J. L.,, J. S. Parkinson,, and R. B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86: 845 848.
5. Benson, A. K.,, G. Ramakrishnan,, N. Ohta,, J. Feng,, A. Ninfa,, and A. Newton. 1994a. The Caulobacter crescentus FlbD protein acts at fir sequence elements both to activate and repress transcription of cell cycle regulated flagellar genes. Proc. Natl. Acad. Sci. USA 91: 4989 4993.
6. Benson, A. K.,, J. Wu,, and A. Newton. 1994b. The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus. Res. Microbiol. 12: 420 430.
7. Benson, A. K.,, N. Ohta,, J. Wu,, and A. Newton. 1999. Unpublished results.
8. Blattner, F. R.,, G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirk-patrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453 1474.
9. Brun, Y. V.,, and L. Shapiro. 1992. A temporally controlled cr-factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev. 6: 2395 2408.
10. Brun, Y. V.,, G. Marczynski,, and L. Shapiro. 1994. The expression of asymmetry during Caulobacter cell differentiation. Annu. Rev. Biochem. 63: 419 450.
11. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. CeU 64: 545 552.
12. Degnen, S. T.,, and A. Newton. 1972. Chromosome replication during development in Caulobacter crescentus. J. Mol. Biol. 64: 671 680.
13. DeRose, R.,, N. Ohta,, and A. Newton. 1999. Unpublished results.
14. Din, N.,, E. M. Quardokus,, M. J. Sackett,, and Y. V. Brun. 1998. Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol. Microbiol. 27: 1051 1063.
15. Dingwall, A.,, W. Y. Zhuang,, K. Quon,, and L. Shapiro. 1992. Expression of an early gene in the flagellar regulatory hierarchy is sensitive to an interruption in DNA replication. J. Bacteriol. 174: 1760 1768.
16. Domian, I. J.,, K. C. Quon,, and L. Shapiro. 1997. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the Gl-to-S transition in a bacterial cell cycle. Cell 90: 415 424.
17. Donachie, W. D. 1993. The cell cycle of Escherichia coli. Annu. Rev. Microbiol. 47: 199 230.
18. Grebe, T.,, and J. Stock. 1999. The histidine protein kinase superfamily. Adv. Microb. Physiol, 41.
19. Hahnenberger, K. M.,, and L. Shapiro. 1987. Identification of a gene cluster involved in flagellar basal body biogenesis in Caulobacter crescentus. J. Mol. Biol. 194: 91 103.
20. Heath, J. D.,, T. C. Charles,, and E. W. Nester,. 1995. Ti plasmid and chromosomally encoded two-component systems important in plant cell transformation by Agrobacterium species, p. 367 385. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, D.C.
21. Hecht, G. B.,, and A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177: 6223 6229.
22. Hecht, G. B.,, T. Lane,, N. Ohta,, J. N. Sommer,, and A. Newton. 1995. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J. 14: 3915 3924.
23. Hoch, J. A.,, and T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. ASM Press, Washington, D.C.
24. Hofmeister, T.S.,, and A. Newton. Unpublished data.
25. Horvitz, H. R.,, and I. Herskowitz. 1992. Mechanisms of asymmetric cell division: two B's or not two B's, that is the question. Cell 68: 237 255.
26. Huguenel, E. D.,, and A. Newton. 1982. Localization of surface structures during procaryotic differentiation: role of cell division in Caulobacter crescentus. Differentiation 21: 71 78.
27. Ireton, K.,, and A. D. Grossman. 1992. Coupling between gene expression and DNA synthesis early during development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 89: 8808 8812.
28. Ireton, K.,, and A. D. Grossman. 1994. A developmental checkpoint couples the initiation of sporulation to DNA replication in Bacillus subtilis. EMBO J. 13: 1566 1573.
29. Jenal, U.,, and L. Shapiro. 1996. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter pre-divisional cell. EMBOJ. 15: 2393 2406.
30. Kato, J.,, Y. Nishimura,, M. Yamada,, H. Suzuki,, and Y. Hirota. 1988. Gene organization in the region containing a new gene involved in chromosome partition in Escherichia coli. J. Bacteriol. 170: 3967 3977.
31. Klenk, H. P.,, R. A. Clayton,, J. F. Tomb,, O. White,, K. E. Nelson,, K. A. Ketchum,, R. J. Dodson,, M. Gwinn,, E. K. Hickey,, J. D. Peterson,, D. L. Richardson,, A. R. Kerlavage,, D. E. Graham,, N. C. Kyrpides,, R. D. Fleisch-mann,, J. Quackenbush,, N. H. Lee,, G. G. Sut-ton,, S. Gill,, E. F. Kirkness,, B. A. Dougherty,, K. McKenney,, M. D. Adams,, B. Loftus,, and J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364 370.
32. Kunst, F.,, N. Ogasawara,, I. Moszer,, A. M. Al-bertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessieres,, A. Bolotin,, S. Borchert,, R. Bor-riss,, L. Boursier,, A. Brans,, M. Braun,, S. C. Brignell,, S. Bron,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S. K. Choi,, J. J. Codani,, I. F. Connerton,, and A. Danchin. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
33. Kustu, S.,, E. Santero,, J. Keener,, D. Popham,, and D. Weiss. 1989. Expression of o -54 (ntrA)-depen-dent genes is probably united by a common mechanism. Microbiol. Rev. 53: 367 376.
34. Lutkenhaus, J.,, and S. G. Addinall. 1997. Bacterial cell division and the Z ring. Annu. Rev. Biochem. 66: 93 116.
35. Malakooti, J.,, S. P. Wang,, and B. Ely. 1995. A consensus promoter sequence for Cauhbacter crescentus genes involved in biosynthesis and housekeeping function. J. Bacteriol. 177: 4372 4376.
36. Marczynski, G. T.,, A. Dingwall,, and L. Shapiro. 1990. Plasmid and chromosomal DNA replication and partitioning during the Cauhbacter crescentus cell cycle. J. Mol. Biol. 212: 709 722.
37. Marczynski, G. T.,, K. Lentine,, and L. Shapiro. 1995. A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev. 9: 1543 1557.
38. Marques, M. D. V.,, S. L. Gomes,, and J. W. Gober. 1997. A gene coding for a putative sigma 54 activator is developmentally regulated in Cauhbacter crescentus. J. Bacteriol. 179: 5502 5510.
39. Messer, W.,, and C. Weigel,. 1996. Initiation of chromosome replication, p. 1579 1601. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. ReznikofF,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Molecular and Cellular Biology, 2nd ed. ASM Press, Washington, D.C.
40. Milton, D. L.,, A. Norqvist,, and H. Wolf-Watz. 1995. Sequence of a novel virulence-mediating gene, virC, from Vibrio anguillarum. Gene 164: 95 100.
41. Mullin, D. A.,, and A. Newton. 1989. Ntr-like promoters and upstream regulatory sequence/fr are required for transcription of a developmentally regulated Cauhbacter crescentus flagellar gene. J. Bacteriol. 171: 3218 3227.
42. Nakamura, M.,, I. N. Maruyama,, M. Soma,, J. I. Kato,, H. Suzuki,, and Y. Hirota. 1983. On the process of cellular division in Escherichia coli: nu-cleotide sequence of the gene for penicillin-binding protein 3. Mol. Gen. Genet. 191: 1 9.
43. Newton, A., 1984. Temporal and spatial control of the Cauhbacter cell cycle, p. 51 75. In P. Nurse, and E. Streiblova (ed.), Microbial Cell Cycle. CRC Press, Boca Raton, Fla.
44. Newton, A.,, N. Ohta,, G. Ramakrishnan,, D. Mullin,, and G. Raymond. 1989. Genetic switching in the flagellar gene hierarchy of Cauhbacter requires negative as well as positive regulation of transcription. Proc. Natl. Acad. Sci. USA 86: 6651 6655.
45. Ninfa, A. J.,, D. A. Mullin,, G. Ramakrishnan,, and A. Newton. 1989. Escherichia coli a-54 RNA polymerase recognizes Cauhbacter crescentus flak and flaN flagellar gene promoters in vitro. J. Bacteriol. 171: 383 391.
46. Ohta, N.,, and A. Newton. 1999. Unpublished results.
47. Ohta, N.,, and A. Newton. 1996. Signal transduction in the cell cycle regulation of Cauhbacter differentiation. Trends Microbiol. 4: 326 332.
48. Ohta, N.,, L. S. Chen,, E. Swanson,, and A. Newton. 1985. Transcriptional regulation of a periodically controlled flagellar gene operon in Cauhbacter crescentus. J. Mol. Biol. 186: 107 115.
49. Ohta, N.,, M. Masurekar,, and A. Newton. 1990. Cloning and cell cycle-dependent expression of DNA replication gene dnaC from Cauhbacter crescentus. J. Bacteriol. 172: 7027 7034.
50. Ohta, N.,, T. Lane,, E. G. Ninfa,, J. M. Sommer,, and A. Newton. 1992. A histidine protein kinase homologue required for regulation of bacterial cell division and differentiation. Proc. Natl. Acad. Sri. USA 89: 10297 10301.
51. Ohta, N.,, A. J. Ninfa,, A. D. Allaire,, L. Kulick,, and A. Newton. 1997. Identification, characterization and chromosomal organization of cell division cycle genes in Cauhbacter crescentus. J. Bacteriol. 179: 2169 2180.
52. Osley, M. A.,, and A. Newton. 1974. Chromosome segregation and development in Cauhbacter crescentus. J. Mol. Biol. 90: 359 370.
53. Osley, M. A.,, and A. Newton. 1977. Mutational analysis of developmental control in Cauhbacter crescentus. Proc. Natl. Acad. Sci. USA 74: 124 128.
54. Osley, M. A.,, and A. Newton. 1980. Temporal control of the cell cycle in Cauhbacter crescentus: roles of DNA chain elongation and completion. J. Mol. Biol. 138: 109 128.
55. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71 112.
56. Quon, K. C.,, G. T. Marczynski,, and L. Shapiro. 1996. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84: 83 93.
57. Quon, K. C.,, B. Yang,, I. J. Domian,, L. Shapiro,, and G. T. Marczynski. 1998. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sri. USA 95: 120 125.
58. Ramakrishnan, G.,, and A. Newton. 1990. FlbD of Cauhbacter crescentus is a homologue of NtrC (NRi) and activates sigma-54 dependent flagellar gene promoters. Proc. Natl. Acad. Sci. USA 87: 2369 2373.
59. Reynes, J. P.,, M. Tiraby,, M. Baron,, D. Drocourt,, and G. Tiraby. 1996. Escherichia coli thymidylate kinase: molecular cloning, nucleotide sequence, and genetic organization of the corresponding tmk locus. J. Bacteriol. 178: 2804 2812.
60. Rizzo, M. F.,, L. Shapiro,, and J. Gober. 1993. Asymmetric expression of the gyrase B gene from the replication-competent chromosome in the Cauhbacter crescentus predivisional cell. J. Bacteriol. 175: 6970 6981.
61. Roberts, R. C.,, and L. Shapiro. 1997. Transcription of genes encoding DNA replication proteins is coincident with cell cycle control of DNA replication in Caulobacter crescentus. J. Bacteriol. 179: 2319 2330.
62. Schmid, M. B. 1990. A locus affecting nucleoid segregation in Salmonella typhimurium. J. Bacteriol. 172: 5416 5424.
63. Schuster, M.,, W. N. Abouhamad,, R. E. Silversmith,, and R. B. Bourret. 1998. Chemotactic response regulator mutant Che Y95IV exhibits enhanced binding to the flagellar switch and phosphorylation-dependent constitutive signaling. Mol. Microbiol. 27: 1065 1075.
64. ShefFery, M.,, and A. Newton. 1977. Reconstitution and purification of flagellar filaments from Caulobacter crescentus. J. Bacteriol. 132: 1027 1030.
65. ShefFery, M.,, and A. Newton. 1981. Regulation of periodic protein synthesis in the cell cycle: control of initiation and termination of flagellar gene expression. Cell 24: 49 57.
66. Smith, D. R.,, L. A. Doucette-Stamm,, C. De-loughery,, H. Lee,, J. Dubois,, T. Aldredge,, R. Bashirzadeh,, D. Blakely,, R. Cook,, K. Gilbert,, D. Harrison,, L. Hoang,, P. Keagle,, W. Lumm,, B. Pothier,, D. Qiu,, R. Spadafora,, R. Vicaire,, Y. Wang,, J. Wierzbowski,, R. Gibson,, N. Ji-wani,, A. Caruso,, D. Bush,, and J. N. Reeve. 1997. Complete genome sequence of Methanobac-terium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179: 7135 7155.
67. Sommer, J. M.,, and A. Newton. 1988. Sequential regulation of developmental events during polar morphogenesis in Caulobacter crescentus: assembly of pili on swarmer cells requires cell separation. J. Bacteriol. 170: 409 415.
68. Sommer, J. M.,, and A. Newton. 1989. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. J. Bacteriol. 171: 392 401.
69. Sommer, J. M.,, and A. Newton. 1991. Pseudore-version analysis indicates a direct role of cell division genes in polar morphogenesis and differentiation in Caulobacter crescentus. Genetics 129: 623 630.
70. Stephens, C. M.,, and L. Shapiro. 1993. An unusual promoter controls cell-cycle regulation and dependence on DNA replication of the Caulobacter fliLM early flagellar operon. Mol. Microbiol. 9: 1169 1179.
71. Stephens, C. M.,, G. Zweiger,, and L. Shapiro. 1995. Coordinate cell cycle control of a Caulobacter DNA methyltransferase and the flagellar genetic hierarchy. J. Bacteriol. 177: 1662 1669.
72. Stock, A.,, D. E. Koshland Jr.,, and J. Stock. 1985. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc. Natl. Acad. Sci. USA 82: 7989 7993.
73. Stock, J. B.,, M. G. Surette,, M. Levit,, and P. Park,. 1995. Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis, p. 25 51. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
74. Tinker-Kulberg, R. L.,, T.-J. Fu,, E. P. Gei-duschek,, and G. E. Kassavetis. 1996. A direct interaction between a DNA-tracking protein and a promoter recognition protein: Implications for searching DNA sequence. EMBO J. 15: 5032 5039.
75. Trach, K. A.,, J. W. Chapman,, P. Piggot,, D. leCoq,, and J. A. Hoch. 1988. Complete sequence and transcriptional analysis of the spoOF region of the Bacillus subtilis chromosome. J. Bacteriol. 170: 4194 4208.
76. VanWay, S. M.,, A. Newton,, A. H. Mullin,, and D. A. Mullin. 1993. Identification of the promoter and a negative regulatory element, ftr4, that is needed for cell cycle timing ofjliF operon expression in Caulobacter crescentus. J. Bacteriol. 175: 367 376.
77. Volz, K. 1993. Structural conservation in the CheY superfamily. Biochemistry 32: 11741 11753.
78. Wang, S. P.,, P. L. Sharma,, P. V. Schoenlein,, and B. Ely. 1993. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 90: 630 634.
79. Ward, D.,, and A. Newton. 1997. Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus. Mol. Microbiol. 26: 897 910.
80. Wingrove, J. A.,, and J. W. Gober. 1994. A σ 54 transcriptional activator also functions as a pole-specific repressor in Caulobacter. Genes Dev. 8: 1839 1852.
81. Wingrove, J. A., andj. W. Gober. 1996. Identification of an asymmetrically localized sensor histidine kinase responsible for temporally and spatially regulated transcription. Science 274: 597 601.
82. Wingrove, J. A.,, E. K. Mangan,, and J. W. Gober. 1993. Spatial and temporal phosphorylation of a transcriptional activator regulates pole-specific gene expression in Caulobacter. Genes Dev. 7: 1979 1992.
83. Winzeler, E.,, and L. Shapiro. 1997. Translation of the leaderless Caulobacter dnaX mRNA. J. Bacteriol. 179: 3981 3988.
84. Wu, J.,, A. Benson,, and A. Newton. 1995. FibD, a global regulator, is required for activation of transcription from σ 54 -dependent fla gene promoters. J. Bacteriol. 177: 3241 3250.
85. Wu, J.,, and A. Newton. 1997. Regulation of the Caulobacter flagellar gene hierarchy; not just for mo-tility. Mol. Microbiol, 24: 233 240.
86. Wu, J.,, N. Ohta,, A. K. Benson,, A. J. Ninfa,, and A. Newton. 1997. Purification, characterization, and reconstitution of DNA-dependent RNA poly-merases from Caulobacter crescentus. J. Biol. Chem. 272: 21558 21564.
87. Wu, J.,, N. Ohta,, J.-L. Zhao,, and A. Newton. A novel tyrosine protein kinase involved in signal transduction and cell cycle regulation in Caulobacter. Submitted for publication.
88. Wu, J.,, N. Ohta,, and A. Newton. 1998. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter. Proc. Natl. Acad. Sci. USA 95: 1443 1448.
89. Xu, H.,, A. Dingwall,, and L. Shapiro. 1989. Negative transcriptional regulation in the Caulobacter flagellar hierarchy. Proc. Natl. Acad. Sci. USA 86: 6656 6660.
90. Zechiedrich, E. L.,, and N. R. Cozzarelli. 1995. Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 9: 2859 2869.
91. Zweiger, G.,, and L. Shapiro. 1994. Expression of Caulobacter dnaA as a function of the cell cycle. J. Bacteriol. 176: 401 408.

Tables

Generic image for table
TABLE 1

Subfamilies of histidine protein kinases

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Generic image for table
TABLE 2

Histidine protein kinases of five bacterial species

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17
Generic image for table
TABLE 3

Classification of response regulators based on receiver and output domains members

Citation: Ohta N, Grebe T, Newton A. 2000. Signal Transduction and Cell Cycle Checkpoints in Developmental Regulation of , p 341-359. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error