1887

Chapter 18 : Regulation of the Cell Cycle

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of the Cell Cycle, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap18-2.gif

Abstract:

This chapter focuses on the aquatic bacterium , which divides asymmetrically during each cell division cycle, yielding progeny cells that differ both structurally and functionally. The initially motile swarmer cell progeny sheds its flagellum and differentiates into a nonmotile stalked cell. In addition to morphological differences, the stalked- and swarmer cell progeny inherit different competencies for chromosome replication. A central component of any cell cycle is the initiation of chromosome replication coupled with strict controls to prevent repeated rounds of DNA replication without intervening cell divisions. The origin of replication was identified and cloned by taking advantage of the observation that replication is always initiated in the stalked cell. Microbial cells are able to monitor changes in their environment, detect changes in cell density, and communicate with each other and with other organisms through signals. The DnaA protein is a likely candidate for a positive regulator of the initiation of DNA replication. The generation of dissimilar progeny cells in both prokaryotes and eukaryotes frequently depends on asymmetric localization of regulatory factors prior to division. The periodicity of DNA replication, cell division, and, in , cell cycle-dependent morphological and behavioral differences contrasts with the continuous nature of most metabolic reactions that produce cellular growth. Repression is relieved in time to initiate DNA replication when origin repression by CtrA is eliminated in the stalked cell.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Control of the G-to-S-phase transition and the asymmetric regulation of replication initiation in the predivisional cell. The shaded areas indicate the presence of CtrA. Dark circles indicate localization of McpA.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

chromosome origin of replication. The −10 and − 35 regions of the weak promoter (Pw) and the strong promoter (Ps) are indicated by hatched bars. The shaded regions in the predivisional cells indicate the presence of CtrA.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Relative timing of multiple cell cycle events during the swarmer and stalked-cell cycles. The synthesis of the CtrA, CcrM, and FtsZ proteins is indicated by solid bars, and the induction of transcription of and the gene encoding the FliQ class II flagellar gene is indicated by shaded bars.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Spatial and temporal deposition of cell cycle determinants during the and budding yeast cell cycles. The shaded areas in the cell cycle indicate the presence of CtrA, and the dot at the cell pole represents the McpA chemoreceptor. The shaded areas in the yeast cell cycle indicate the presence of the Sic1 replication inhibitor. Neither the swarmer cell progeny nor the yeast daughter cell (which is two-thirds the size of the mother cell) is competent for replication initiation (entry into S phase) until later in the cell cycle.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

A portion of the regulatory circuit that controls the cell cycle.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Temporal and spatial regulation of the CcrM DNA methyltransferase by the CtrA∼P response regulator. The shaded areas indicate the presence of CtrA.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap18
1. Agabian-Keshishian, N.,, and L. Shapiro. 1971. Bacterial differentiation and phage infection. Virology 44:4653.
2. Alley, M. R.,, J. R. Maddock,, and L. Shapiro. 1992. Polar localization of a bacterial chemorecep-tor. Genes Dev. 6:825836.
3. Alley, M. R.,, J. R. Maddock,, and L. Shapiro. 1993. Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis [see comments]. Science 259:17541757.
4. Amon, A. 1998. Controlling cell cycle and cell fate: common strategies in prokaryotes and eukaryotes. Proc. Nat. Acad. Sci. USA 95:8586.
5. Appleby, J. L.,, J. S. Parkinson,, and R. B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845848.
6. Bakker, A.,, and D. W. Smith. 1989. Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J. Bacteriol. 171:57385742.
7. Barrett, J. T.,, R. H. Croft,, D. M. Ferber,, C. J. Gerardot,, P. V. Schoenlein,, and B. Ely. 1982a. Genetic mapping with Tn J-derived auxotrophs of Caulobacter crescentus. J. Bacteriol. 151:888898.
8. Barrett, J. T.,, C. S. Rhodes,, D. M. Ferber,, B. Jenkins,, S. A. Kuhl,, and B. Ely. 1982b. Construction of a genetic map for Caulobacter crescentus. J. Bacteriol. 149:889896.
9. Berdis, A. J.,, I. Lee,, J. K. Coward,, C. Stephens,, R. Wright,, L. Shapiro,, and S. J. Benkovic. 1998. A cell cycle-regulated adenine DNA methyl-transferase from Caulobacter crescentus processively methylates GANTC sites on hemimethylated DNA. Proc. Natl. Acad. Sci. USA 95:28742879.
10. Bobola, N.,, R. P. Jansen,, T. H. Shin,, and K. Nasmyth. 1996. Asymmetric accumulation of Ashlp in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84:699709.
11. Boye, E.,, and A. Lobner-Olesen. 1990. The role of dam methyltransferase in the control of DNA replication in E. coli. Cell 62:981989.
12. Braaten, B. A.,, X. Nou,, L. S. Kaltenbach,, and D. A. Low. 1994. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76:577588.
13. Bramhill, D.,, and A. Kornberg. 1988. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52:743755.
14. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545552.
15. Crooke, E. 1995. Regulation of chromosomal replication in E. coli: sequestration and beyond. Cell 82: 877880.
16. Degnen, S. T.,, and A. Newton. 1972. Dependence of cell division on the completion of chromosome replication in Caulobacter. J. Bacteriol. 110:852856.
17. Devos, D.,, and J. J. Letesson. Unpublished data.
18. Dingwall, A.,, and L. Shapiro. 1989. Rate, origin, and bidirectionahty of Caulobacter chromosome replication as determined by pulsed-field gel electrophoresis. Proc. Natl. Acad. Sci. USA 86:119123.
19. Domian, I.,, A. Reisenauer, andL. Shapiro. 1999. Feedback control of a master bacterial cell-cycle regulator. Proc. Natl. Acad. Sci. USA 96: 66486653.
20. Domian, I.J.,, K. C. Quon, andL. Shapiro. 1997. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the Gl-to-S transition in a bacterial cell cycle. Cell 90:415424.
21. Ely, B.,, and C. J. Gerardot. 1988. Use of pulsed-field-gradient gel electrophoresis to construct a physical map of the Caulobacter crescentus genome. Gene 68:323333.
22. Evinger, M.,, and N. Agabian. 1977. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132:294301.
23. Gegner, J. A.,, D. R. Graham,, A. F. Roth,, and F. W. Dahlquist. 1992. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70:975982.
24. Golden, J. W.,, and H.-S. Yoon. 1998. Heterocyst formation in Anabaena. Curt. Opin. Microbiol. 1: 623629.
25. Gomes, S. L.,, J. W. Gober,, and L. Shapiro. 1990. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures. J. Bacteriol. 172:30513059.
26. Grossman, A. D. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29:477508.
27. Guo, S.,, and K. J. Kemphues. 1996. Molecular genetics of asymmetric cleavage in the early Caeno-rhabditis elegans embryo. Curr. Opin. Genet. Dev. 6: 408415.
28. Hartwell, L., 1995. Introduction to cell cycle controls, p. 115. In C. Hutchison (ed.), Cell Cycle Control. Oxford University Press, New York, N.Y.
29. Hecht, G. B.,, T. Lane,, N. Ohta,, J. M. Sommer,, and A. Newton. 1995. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J. 14:39153924.
30. Hecht, G. B.,, and A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177:62236229.
31. Helmstetter, C. E.,, and A. C. Leonard. 1987. Coordinate initiation of chromosome and minichromosome replication in E. coli. J. Bacteriol. 169: 34893494.
32. Hoch, J. A. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47:441465.
33. Hoch, J. A.,, and T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
34. Horvitz, H. R.,, and I. Herskowitz. 1992. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68:237255.
35. Hultgren, S. J.,, and S. Normark. 1991. Biogenesis of the bacterial pilus. Curr. Opin. Genet. Dev. 1: 313318.
36. Hung, D.,, M. Barnett,, R. M. Long,, and L. Shapiro. Unpublished data.
37. Jacobs, C.,, I. Domian,, J. Maddock,, and L. Shapiro. 1999. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111120.
38. Jacobs, C.,, and L. Shapiro. 1998. Microbial asymmetric cell division: localization of cell fate determinants. Curr. Opin. Genet. Dev. 8:386391.
39. Jenal, U.,, and T. Fuchs. 1998. An essential protease involved in bacterial cell-cycle control. EMBOJ. 17:56585669.
40. Jenal, U.,, and L. Shapiro. 1996. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter pre-divisional cell. EMBOJ. 15:23932406.
41. Keller, K.,, and L. Shapiro. Unpublished data.
42. Kelly, A. J.,, M. J. Sackett,, N. Din,, E. Quardokus,, and Y. V. Brun. 1998. Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12:880893.
43. Laachouch, J. E.,, L. Desmet,, V. Geuskens,, R. Grimaud,, and A. Toussaint. 1996. Bacterio-phage Mu repressor as a target for the Escherichia coli ATP-dependent Clp protease. EMBOJ. 15: 437444.
44. Levchenko, I.,, C. K. Smith,, N. P. Walsh,, R. T. Sauer,, and T. A. Baker. 1997. PDZ-like domains mediate binding specificity in the Clp/HsplOO family of chaperones and protease regulatory subunits. Cell 91:939947.
45. Long, R. M.,, R. H. Singer,, X. Meng,, I. Gonzales,, K. Nasmyth,, and R. Jensen. 1997. Mating-type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277:383387.
46. Lu, B.,, L. Y. Jan,, and Y. N. Jan. 1998. Asymmetric cell division: lessons from flies and worms [in process citation]. Curr. Opin. Genet. Dev. 8:392399.
47. Lu, M.,, J. L. Campbell,, E. Boye,, and N. Kleck-ner. 1994. SeqA: a negative modulator of replication initiation in E. coli. Cell 77:413426.
48. Maddock, J. R.,, and L. Shapiro. 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:17171723.
49. Marczynski, G. T.,, A. Dingwall,, and L. Shapiro. 1990. Plasmid and chromosomal DNA replication and partitioning during the Caulobacter crescentus cell cycle. J. Mol. Biol. 212:709722.
50. Marczynski, G. T.,, K. Lentine,, and L. Shapiro. 1995. A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev. 9:15431557.
51. Marczynski, G. T.,, and L. Shapiro. 1992. Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus. J. Mol. Biol. 226:959977.
52. Mendenhall, M. D. 1993. An inhibitor of p34CDC28 protein kinase activity from Saccharo-myces cerevisiae. Science 259:216219.
53. Messer, W.,, and M. Noyer-Weidner. 1988. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54:735737.
54. Modrich, P. 1989. Methyl-directed DNA mismatch correction. J. Biol. Chem. 264:65976600.
55. Ohta, N.,, and A. Newton. 1996. Signal transduction in the cell cycle regulation of Caulobacter differentiation. Trends Microbiol. 4:326332.
56. Osley, M. A.,, and A. Newton. 1974. Chromosomes segregation and development in Caulobacter crescentus. J. Mol. Biol. 90:359370.
57. Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73:857871.
58. Posas, F.,, and H. Saito. 1998. Activation of the yeast SSK2 MAP kinase by the SSK1 two-component response regulator. EMBOJ. 17:13851394.
59. Posas, F.,, S. M. Wurgler-Murphy,, T. Maeda,, E. A. Witten,, T. C. Thai,, and H. Saito. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86:865875.
60. Quon, K. C.,, G. T. Marczynski,, and L. Shapiro. 1996. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:8393.
61. Quon, K. C.,, B. Yang,, I. J. Domian,, L. Shapiro,, and G. T. Marczynski. 1998. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. USA 95:120125.
62. Reisenauer, A.,, K. Quon,, and L. Shapiro. 1999. The CtrA response regulator mediates temporal control gene expression during the Caulobacter cell cycle. J. Bacteriol. 181:24302439.
63. Rizzo, M. F.,, L. Shapiro,, and J. Gober. 1993. Asymmetric expression of the gyrase B gene from the replication-competent chromosome in the Caulobacter crescentus predivisional cell. J. Bacteriol. 175:69706981.
64. Roberts, R. C.,, and L. Shapiro. 1997. Transcription of genes encoding DNA replication proteins is coincident with cell cycle control of DNA replication in Caulobacter crescentus. J. Bacteriol. 179: 23192330.
65. Schmidt, J. M. 1966. Observations on the adsorption of Caulobacter bacteriophages containing ribonucleic acid. J. Gen. Microbiol. 45:347353.
66. Schwob, E.,, T. Bohm,, M. D. Mendenhall,, and K. Nasmyth. 1994. The B-type cyclin kinase inhibitor p40SICl controls the Gl to S transition in S. cerevisiae. Cell 79:233244. (Erratum, 84:175, 1996.)
67. Shapiro, L.,, N. Agabian-Keshishian,, and I. Bendis. 1971. Bacterial differentiation. Science 173: 884892.
68. Shapiro, L.,, and R. Losick. 1997. Protein localization and cell fate in bacteria. Science 276:712718.
69. Sil, A.,, and I. Herskowitz. 1996. Identification of asymmetrically localized determinant, Ashlp, required for lineage-specific transcription of the yeast HO gene. Cell 84:711722.
70. Skarstad, K.,, and E. Boye. 1994. The initiator protein DnaA: evolution, properties and function. Bio-chim. Biophys. Ada 1217:111130.
71. Slater, S.,, S. Wold,, M. Lu,, E. Boye,, K. Skarstad,, and N. Kleckner. 1995. E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82:927936.
72. Smit, J.,, and N. Agabian. 1982. Caulobactercrescentus pili: analysis of production during development. Dev. Biol. 89:237247.
73. Sommer, J. M.,, and A. Newton. 1988. Sequential regulation of developmental events during polar morphogenesis in Caulobacter crescentus; assembly of pili on swarmer cells requires cell separation.J Bacteriol. 170:409415.
74. Stephens, C.,, A. Reisenauer,, R. Wright,, and L. Shapiro. 1996. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc. Natl. Acad. Sci. USA 93:12101214.
75. Stephens, C. M.,, G. Zweiger,, and L. Shapiro. 1995. Coordinate cell cycle control of a Caulobacter DNA methyltransferase and the flagellar genetic hierarchy. J. Bacteriol. 177:16621669.
76. Takizawa, P. A.,, A. Sil,, J. R. Swedlow,, I. Herskowitz,, and R. D. Vale. 1997. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389:9093.
77. Uhl, M. A.,, and J. F. Miller. 1996a. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J. Biol. Chem. 271:3317633180.
78. Uhl, M. A.,, and J. F. Miller. 1996b. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBOJ. 15:10281036.
79. Winzeler, E.,, and L. Shapiro. 1996. A novel promoter motif for Caulobacter cell cycle-controlled DNA replication genes. J. Mol. Biol. 264:412425.
80. Winzeler, E.,, R. Wheeler,, and L. Shapiro. 1997. Transcriptional analysis of the Caulobacter 4.5 S RNA ffi gene and the physiological basis of an ffs mutant with a Ts phenotype. J. Mol. Biol. 272: 665676.
81. Wright, R.,, C. Stephens,, and L. Shapiro. 1997. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meli-loti and Caulobacter crescentus. J. Bacteriol. 179: 58695877.
82. Wu, J.,, N. Ohta,, and A. Newton. 1998. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter. Proc. Natl. Acad. Sci. USA 95:14431448.
83. Zweiger, G.,, G. Marczynski,, and L. Shapiro. 1994. A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J. Mol. Biol. 235:472485.
84. Zweiger, G.,, and L. Shapiro. 1994. Expression of Caulobacter dnaA as a function of the cell cycle. J. Bacteriol. 176:401408.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error