1887

Chapter 19 : Swarming Migration by Proteus and Related Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Swarming Migration by Proteus and Related Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap19-2.gif

Abstract:

This chapter reviews knowledge of bacterial swarming and the likely underlying mechanisms, focusing principally on studies of . Swarming produces very large spreading colonies in which concentric zonation, or terracing, results from periodic cycles of mass migration interspersed with population growth without expansion of the colony edge. A role for bacterial motility has been demonstrated in a variety of pathogen-host interactions. Histological analysis of renal tissues from mice infected by wild-type revealed that differentiated cells were the major invasive cell type. The chapter focuses on molecular analysis of swarming differentiation and migration. Environmental attractants or repellents are recognized by transmembrane receptors, the methyl-accepting chemotaxis proteins (MCPs), that transduce signals to the cytoplasmic components of the chemotaxis phosphorelay, CheWAY. The physiological status of cells affects their ability to swarm, as high growth rates of vegetative cells on nutrient-rich solid medium stimulate differentiation. Cell-cell contact is stabilized by the production of cell-surface polysaccharides that form a slime capsule around groups of swarm cells. The primary function of FlhDC is the control of flagella biogenesis, but in , , and FlhDC also represses cell division. The hyperexpression of the flagellar gene hierarchy in has highlighted induction and negative regulation barely evident in undifferentiated cells, and the coupling of swarming to virulence, whether through an intrinsic role in colonization or coregulation of motility and virulence genes, adds an additional level of significance.

Citation: Fraser G, Furness R, Hughes C. 2000. Swarming Migration by Proteus and Related Bacteria, p 381-401. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Possible mechanisms of swarming. A simple view of a swarm cell indicating putative underlying mechanisms that have been the foci of study.

Citation: Fraser G, Furness R, Hughes C. 2000. Swarming Migration by Proteus and Related Bacteria, p 381-401. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Swarming on solid growth medium by (A) Swarming of inoculated in the center of a Petri plate containing complex growth medium solidified by 2% agar. V, vegetative cells from the center of the colony; S, part of a hyperflagellated swarm cell from the migrating colony edge. (B) Stages in the swarming cycle of growing on solid medium. ( )

Citation: Fraser G, Furness R, Hughes C. 2000. Swarming Migration by Proteus and Related Bacteria, p 381-401. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

swarming-defective mutants. Wild-type (WT) and transposon mutants, nonmotile nonswarming (NMNS), motile non-swarming (MNS), dendritic swarming (DS), frequent consolidation (FC), and infrequent consolidation (IC), are shown. ( )

Citation: Fraser G, Furness R, Hughes C. 2000. Swarming Migration by Proteus and Related Bacteria, p 381-401. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The enterobacterial flagellum. A representation of an enterobacterial flagellum is shown, indicating the protein components of each flagellar substructure. The flagellum crosses both the cytoplasmic membrane (CM) and the outer membrane (OM) and is stabilized in the cell envelope by three ring structures: (i) the MS ring, (ii) the Ρ ring, and (iii) the L ring. The axial substructures of the flagellum, i.e., the rod, the hook, the HAPs, and the filament, make up a helical array of polymerized proteins that form a continuous hollow tube. The substructures involved in generating rotation are associated with the CM at the base of the flagellum. The flagellar export apparatus (shaded) is thought to be loosely associated with the base of the flagellum.

Citation: Fraser G, Furness R, Hughes C. 2000. Swarming Migration by Proteus and Related Bacteria, p 381-401. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

FlhDC, a major assimilatory checkpoint. Summary of the observed relationships between known (CRP, UmoA to D, Lrp, and OmpR) and as yet-uncharacterized (X) regulators of the flagellar gene hierarchy. FlhD and FlhC together serve as a regulatory fulcrum assimilating swarm signals and mediating responses. Negative feedback to , and arises from defects in flagellar assembly and class 2 gene repression by the accumulation of the anti-sigma factor FlgM, which binds the flagellum-specific σ. Arrows, positive regulation; barred lines, negative regulation.

Citation: Fraser G, Furness R, Hughes C. 2000. Swarming Migration by Proteus and Related Bacteria, p 381-401. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Components and factors identified as involved in swarming. Studies of swarming differentiation in gram-negative organisms, including , have substantiated the early view of swarming portrayed in Fig. 1 .

Citation: Fraser G, Furness R, Hughes C. 2000. Swarming Migration by Proteus and Related Bacteria, p 381-401. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap19
1. Aizawa, S.-I. 1996. Flagellar assembly in Salmonella typhimurium. Mol. Microbiol. 19: 1 5.
2. Alberti, L.,, and R. M. Harshey. 1990. Differentiation of Serratia marcescens 274 into swimmer cells and swarmer cells. J. Bacteriol. 172: 4322 4328.
3. Allison, C.,, and C. Hughes. 1991a. Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci. Prog. (Edinburgh) 75: 403 422.
4. Allison, C.,, and C. Hughes. 1991b. Closely linked genetic loci required for swarm cell differentiation and multicellular migration by Proteus mirabilis. Mol. Microbiol. 5: 1975 1982.
5. Allison, C.,, P. Jones,, N. Coleman,, and C. Hughes. 1992a. Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect. Immun. 60: 4740 4746.
6. Allison, C.,, H.-C. Lai,, and C. Hughes. 1992b. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol. Miaobiol. 6: 1583 1591.
7. Allison, C.,, H.-C. Lai,, D. Gygi,, and C. Hughes. 1993. Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol. Microbiol. 8: 53 60.
8. Allison, C.,, L. Emody,, N. Coleman,, and C. Hughes. 1994. The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J. Infect. Dis. 169: 1155 1158.
9. Armitage, J. P. 1981. Changes in metabolic activity of Proteus mirabilis during swarming. J. Gen. Microbiol. 125: 445 450.
10. Arnosti, D. N.,, and M.J. Chamberlin. 1989. Secondary sigma factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 830 834..
11. Arricau, N.,, D. Hermant,, H. Waxin,, C. Ecobichon,, P. S. Duffey,, and M. Y. Popoff. 1998. The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolality. Mol. Microbiol. 29: 835 850.
12. Asai, T.,, M. Takanmi,, and M. Imae. 1990. The AT richness and gid transcription determine the left border of the replication origin of the E. coli chromosome. EMBOJ. 9: 4065 4072.
13. Bainton, N. J.,, B. W. Bycroft,, S. R. Chhabra,, P. Stead,, L. Gledhill,, P. J. Hill,, C. E. D. Rees,, M. K. Winson,, G. P. C. Salmond,, G. S. A. B. Stewart,, and P. Williams. 1992. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic synthesis in EruHnia. Gene 116: 87 91.
14. Bartlett, D. H.,, B. B. Frantz,, and P. Matsumura. 1988. Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and Flal control. J. Bacteriol. 170: 1575 1581.
15. Belas, R. 1992. The swarming phenomenon of Proteus mirabilis. ASM News 58: 15 22.
16. Belas, R. 1994. Expression of multiple flagellin-encoding genes of Proteus mirabilis. J. Bacteriol. 176: 7169 7181.
17. Belas, R.,, and D. Flaherty. 1994. Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. Gene 128: 33 41.
18. Belas, R.,, D. Erskine,, and D. Flaherty. 1991a. Transposon mutagenesis in Proteus mirabilis. J. Bacteriol. 173: 6289 6293.
19. Belas, R.,, D. Erskine,, and D. Flaherty. 1991b. Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J. Bacteriol. 173: 6279 6288.
20. Belas, R.,, M. Goldman,, and K. Ashliman. 1995. Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J. Bacteriol. 177: 823 828.
21. Belas, R.,, R. Schneider,, and M. Melch. 1998. Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J. Bacteriol. 180: 6126 6139.
22. Ben-Jacob, E.,, H. Shmueli,, O. Schochet,, and A. Tenenbaum. 1992. Adaptive self-organization during growth of bacterial colonies. Physica. A 187: 378 424.
23. Ben-Jacob, E.,, A. Tenenbaum,, O. Schochet,, and O. Avidan. 1994. Holotransformations ofbacterial colonies and genomic cybernetics. Physica. A 202: 1 47.
24. Bertin, P.,, E. Terao,, E. H. Lee,, P. Lejeune,, C. Colson,, A. Danchin,, and E. Collatz. 1994. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J. Bacteriol. 176: 5537 5540.
25. Bisset, K. A. 1973a. The motion of the swarm in Proteus mirabilis. J. Med. Microbiol. 6: 33 35.
26. Bisset, K. A. 1973b. The zonation phenomenon and structure of the swarm colony in Proteus mirabilis. J. Med. Microbiol. 6: 429 433.
27. Blair, D. E.,, and H. C. Berg. 1990. The MotA protein of E. coli is a proton conducting component of the flagellar motor. Cell 60: 439 449.
28. Block, S. M.,, and H. C. Berg. 1984. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309: 470 472.
29. Bowden, M. G.,, and H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30: 275 284.
30. Burkart, M.,, A. Toguchi,, and R. M. Harshey. 1998. The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc. Natl. Acad. Sci. USA 95: 2568 2573.
31. Calvo, J. M.,, and R. G. Matthews. 1994. Leucine-responsive regulatory protein—a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58: 466 490.
32. Chippendale, G. R., , J. W. Warren,, A. L. Trifillis,, and H. L. T. Mobley. 1994. Internalization of Proteus mirabilis by human renal epithelial cells. Infect. Immun. 62: 3115 3121.
33. Claret, L. Unpublished data.
34. Coetzee, J. N. 1961. Lysogenic conversion in the genus Proteus. Nature 189: 946 947.
35. Cooper, K. E.,, J. Davies,, and J. Wieseman. 1971. An investigation of an outbreak of food poisoning associated with organisms of the Proteus group. J. Pathol. Bacteriol. 52: 91 98.
36. Cosby, W. M.,, D. Vollenbroich,, O. H. Lee,, and P. Zuber. 1998. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J. Bacteriol. 180: 1438 1445.
37. Deighton, C. M. 1992. P blood group phenotype, Proteus antibody titres, and rheumatoid arthritis. Ann. Rheum. Dis. 51: 1242 1244.
38. DePamphilis, M. L.,, and J. Adler. 1971. Purification of intact flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 105: 376 383.
39. Dienes, L. 1946. Reproductive processes in Proteus colonies. Proc. Soc. Exp. Biol. Med. 63: 265 270.
40. Dienes, L. 1947. Further observations on the reproduction of bacilli from large bodies in Proteus cultures. Proc. Soc. Exp. Biol. Med. 66: 97 98.
41. Dufour, A.,, R. B. Furness,, and C. Hughes. 1998. Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol. Microbiol. 29: 741 751.
42. Dworkin, M. 1996. Recent advances in the social and developmental behaviour of the Myxobacteria. Microbiol. Rev. 60: 70 102.
43. Eberl, L.,, G. Christiansen,, S. Molin,, and M. Givskov. 1996a. Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. J. Bacteriol. 178: 554 559.
44. Eberl, L.,, G. K. Winson,, C. Sternberg,, G. S. A. B. Stewart,, G. Christiansen,, S. R. Chhabra,, B. Bycroft,, P. Williams,, S. Molin,, and M. Givskov. 1996b. Involvement of N-acyl-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol. Microbiol. 20: 127 136.
45. Ebringer, A. 1985. Antibodies to Proteus in rheumatoid arthritis. Lancet i: 305 307.
46. Esipov, S. E.,, and J. A. Shapiro. 1998. Kinetic model of Proteus mirabilis swarm colony development. J. Math. Biol. 36: 249 268.
47. Falkinham, J. O.,, and P. S. Hoffman. 1984. Unique developmental characteristics of the swarm and short cells of Proteus vulgaris and Proteus mirabilis. J. Bacteriol. 158: 1037 1040.
48. Fan, F.,, K. Ohnishi,, N. R. Francis,, and R. M. Macnab. 1997. The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body. Mol. Microbiol. 26: 1035 1046.
49. Francis, N. R.,, V. M. Irikura,, S. Yamaguchi,, D. J. DeRosier,, and R. M. Macnab. 1992. Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc. Natl. Acad. Sci. USA 89: 6304 6308.
50. Francis, N. R.,, G. E. Sosinsky,, D. Thomas,, and D.J. DeRosier. 1994. Isolation, characterisation and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235: 1216 1270.
51. Fraser, G. M. Unpublished data.
52. Fraser, G. M.,, J. C. Q. Bennett,, and C. Hughes. FlgN and FliT, substrate-specific chaperones that facilitate Salmonella flagellum assembly by binding hook-associated proteins. Submitted for publication.
53. Fraser, G. M.,, S. Gupta,, and R. B. Furness. Unpublished data.
54. Fujikawa, H.,, and M. Matsushita. 1989. Fractal growth of Bacillus subtilis on agar plates. J. Phys. Soc. Jpn. 58: 3875 3878.
55. Furness, R. B. Unpublished data.
56. Furness, R. B.,, G. M. Fraser,, N. A. Hay,, and C. Hughes. 1997. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J. Bacteriol. 179: 5585 5588.
57. Gaisser, S.,, and C. Hughes. 1997. A locus coding for putative non-ribosomal peptide/polyketide synthase functions is mutated in a swarming defective Proteus mirabilis strain. Mol. Gen. Genet. 253: 415 427.
58. Givskov, M.,, L. Eberl,, G. Christiansen,, M. J. Bendik,, and S. Molin. 1995a. Induction ofphospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the master operon flhD. Mol. Microbiol. 15: 445 454.
59. Givskov, M.,, L. Eberl,, and S. Molin. 1995b. Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol. Lett. 148: 115 122.
60. Givskov, M.,, J. Ostling,, L. Eberl,, P. W. Lindum,, A. B. Christensen,, G. Christensen,, S. Molin,, and S. Kjelleberg. 1998. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 742 745.
61. Grabow, W. O. K. 1972. Growth inhibiting metabolites of Proteus mirabilis. J. Med. Microbiol. 5: 191 204.
62. Gray, K. M. 1997. Intercellular communication and group behaviour in bacteria. Trends Microbiol. 5: 184 188.
63. Grossman, A. D.,, and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85: 4369 4373.
64. Guard-Petter, J. 1997. Induction of flagellation and a novel-agar-penetrating flagellar structure in Salmonella enterica grown on solid media: possible consequences for serological identification. FEMS Microbiol. Lett. 149: 173 180.
65. Guard-Petter, J. 1998. Variants of smooth Salmonella enterica serovar enteritidis that grow to higher cell density than the wild type are more virulent. Appl. Environ. Microbiol. 64: 2166 2172.
66. Guard-Petter, J.,, D.J. Henzler,, M. M. Rahman,, and R. W. Carlson. 1997. On-farm monitoring of mouse-invasive Salmonella enterica serovar enteritidis and a model for its association with the production of contaminated eggs. Appl. Environ. Microbiol. 63: 1588 1593.
67. Guo, M. M. S.,, and P. V. Lin. 1965. Serological specificities of ureases of Proteus species. J. Gen. Microbiol. 38: 417 422.
68. Gygi, D.,, and N. A. Hay. Unpublished data.
69. Gygi, D.,, M.J. Bailey,, C. Allison,, and C. Hughes. 1995a. Requirement for FlhA in flagella assembly and swarm cell differentiation by Proteus mirabilis. Mol. Microbiol. 15: 761 769.
70. Gygi, D.,, M. M. Rahman,, H.-C. Lai,, R. Carlson,, J. Guard-Petter,, and C. Hughes. 1995b. A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol. Microbiol. 17: 1167 1175.
71. Gygi, D.,, G. Fraser,, A. Dufour,, and C. Hughes. 1997. A motile but non-swarming mutant of Proteus mirabilis lacks FlgN, a facilitator of flagella filament assembly. Mol. Microbiol. 25: 597 604.
72. Harshey, R. M. 1994. Bees aren't the only ones: swarming in Gram-negative bacteria. Mol. Microbiol. 13: 389 394.
73. Harshey, R. M.,, and P. Matsuyama. 1994. Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface induced differentiation into hyper-flagellate swarmer cells. Proc. Natl. Acad. Sci. USA 91: 8631 8635.
74. Hay, N. A.,, and D. J. Tipper. Unpublished data.
75. Hay, N. A.,, D. J. Tipper,, D. Gygi,, and C. Hughes. A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. Submitted for publication.
76. Hay, N. A.,, D. J. Tipper,, D. Gygi,, and C. Hughes. 1997. A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J. Bacteriol. 179: 4741 4746.
77. Henrichsen, J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36: 478 503.
78. Hoeniger, J. F. M. 1964. Cellular changes accompanying the swarming of Proteus mirabilis. I. Observations on living cultures. Can. J. Microbiol. 10: 1 9.
79. Hoeniger, J. F. M. 1965. Development of flagella by Proteus mirabilis. J. Gen. Microbiol. 40: 29 42.
80. Hoeniger, J. F. M. 1966. Cellular changes accompanying the swarming of Proteus mirabilis. I. Observations of stained organisms. Can. J. Microbiol. 12: 113 122.
81. Hughes, K. T.,, K. L. Gillen,, J. S. Melinda,, and J. E. Karlinsey. 1993. Sensing structural intermediates in bacterial flagella assembly by export of a negative regulator. Science 262: 1277 1280.
82. Jones, H. E.,, and R. W. A. Park. 1967a. The short and long forms of Proteus. J. Gen. Microbiol. 47: 359 367.
83. Jones, H. E.,, and R. W. A. Park. 1967. The influence of medium composition on the growth and swarming of Proteus. J. Gen. Microbiol. 47: 369 378.
84. Kaplan, H. B.,, and L. Plamann. 1996. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol. Lett. 139: 89 95.
85. Kawagashi, I.,, M. Imagawa,, Y. Imae,, L. McCarter,, and M. Homma. 1996. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 20: 693 699.
86. Khan, S. I.,, H. Khan,, and T. S. Reese. 1991. New structural features of the flagellar base in Salmonella typhimurium revealed by rapid-freeze electron microscopy. J. Bacteriol. 173: 2888 2896.
87. Kim, S. K.,, and D. Kaiser. 1990. Cell alignment required in differentiation of Myxococcus xanthus. Science 249: 926 928.
88. Klienberger-Nobel, E. 1947. Morphological appearances of various stages in B. proteus and E. coli. J. Hyg. 45: 410 412.
89. Krajden, S.,, M. Fuksa,, W. Lizewski,, L. Barton,, and A. Lee. 1984. Proteus penneri and urinary calculi formation., J. Clin. Microbiol. 19: 541 542.
90. Kubori, T.,, N. Shimamoto,, S. Yamaguchi,, K. Namba,, and S.-I. Aizawa. 1992. Morphological pathway of flagellar assembly in Salmonella typhimurium. J. Mol. Biol. 226: 433 446.
91. Kutsukake, K.,, and T. lino. 1994. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J. Bacteriol. 176: 3598 3605.
92. Kutsukake, K.,, Y. Ohya,, and T. lino. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172: 741 747.
93. Lai, H.-C. 1994. Ph.D. thesis. University of Cambridge, Cambridge, United Kingdom.
94. Lai, H.-C.,, J.-C. Shu,, S. Ang,, M.-J. Lai,, B. Fruta,, S. Lin,, K.-T. Lu,, and S.-W. Ho. 1997. Effect of glucose concentration on swimming motility in Enterobacteria. Biochem. Biophys. Res. Commun. 231: 692 695.
95. Lai, H.-C.,, D. Gygi,, G. M. Fraser,, and C. Hughes. 1998. A swarming-defective mutant of Proteus mirabilis lacking a putative cation-transporting membrane P-type ATPase. Microbiology 144: 1957 1961.
96. Lindum, P. W.,, U. Anthoni,, C. ChristofFersen,, L. Eberl,, S. Molin,, and M. Givskov. 1998. N-acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosur-factant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 6384 6388.
97. Liu, X.,, and P. Matsumura. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176: 7345 7351.
98. Lominski, I.,, and A. C. Lendrum. 1947. The mechanism of swarming of Proteus. J. Pathol. Bacteriol. 59: 688 691.
99. Loomes, L. M.,, B. W. Senior,, and M. A. Kerr. 1990. A proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin Al (IgAl), IgA2, and IgG isotypes. Infect. Immun. 58: 1979 1985.
100. Macnab, R. M. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26: 131 158.
101. Macnab, R. M., 1996. Flagella and motility, p. 123 145. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. American Society for Microbiology, Washington, D.C.
102. Magnuson, R.,, J. Solomon,, and A. D. Grossman. 1994. Biochemical and genetic characterisation of a competence pheromone from B. subtilis. Cell 77: 207 216.
103. Matsuyama, T.,, M. Sogawa,, and Y. Nakagawa. 1989. Fractal spreading growth of Serratia marcescens which produces surface active exolipids. FEMS Microbiol. Lett. 61: 243 246.
104. Matsuyama, T.,, K. Kaneda,, Y. Nakagawa,, K. Isa,, H. Hara-Hotta,, and Y. Isuya. 1992. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J. Bacteriol. 174: 1769 1776.
105. McCarter, L.,, and M. Silverman. 1990. Surface induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol. Miaobiol. 4: 1057 1062.
106. McCarter, L.,, M. Hilmen,, and M. Silverman. 1988. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54: 345 351.
107. Mobley, H. L. T.,, and R. Belas. 1995. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol. 3: 280 284.
108. Mobley, H. L. T.,, G. R. Chippendale,, K. G. Swihart,, and R. A. Welch. 1991. Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect. Immun. 59: 2036 2042.
109. Moltke, O. 1927. Contributions to the Characterization and Systematic Classification of Bad. Proteus vulgaris (Hauser). Levin and Munksgaard, Copenhagen, Denmark.
110. Murphy, C. A.,, and R. Belas. 1999. Genomic rearrangements in the flagellin genes of Proteus mirabilis. Mol. Miaobiol. 31: 679 690.
111. Namba, K.,, and F. Vonderviszt. 1997. Molecular architecture of the bacterial flagellum. Q. Rev. Biophys. 30: 1 65.
112. Naylor, P. 1964. The effect of electrolytes or carbohydrates in a sodium chloride deficient medium on the formation of discrete colonies of Proteus and the influence of these substances on growth in liquid culture. J. Appl. Bacteriol. 27: 422 431.
113. Ohgiwari, M.,, M. Mutsushita,, and T. Matsuyama. 1992. Morphological changes in growth phenomena of bacterial colony patterns. J. Phys. Soc. Jpn. 61: 816 822.
114. Ohnishi, K.,, K. Kutsukake,, H. Suzuki,, and T. lino. 1992. A novel transcriptional mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor ? F. Mol. Microbiol. 6: 3149 3157.
115. Otteman, K. M.,, and J. F. Miller. 1997. Roles for motility in bacterial-host interactions. Mol. Microbiol. 24: 1109 1117.
116. Parker, C. T.,, A. W. Kloser,, C. A. Schnaitman,, M. A. Stein,, S. Gottesman,, and B. W. Gibson. 1992. Role of the rfaG and rafP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12 . J. Bacteriol. 174: 2525 2538.
117. Peerbooms, P. G. H.,, A. M. J. Verweij,, and D. M. MacLaren. 1984. Vero cell invasiveness of Proteus mirabilis. Infect. Immun. 43: 1068 1071.
118. Peerbooms, P. G. H.,, A. M. J. Verweij,, and D. M. MacLaren. 1985. Uropathogenic properties of Proteus mirabilis and Proteus vulgaris. J. Med. Microbiol. 19: 55 60.
119. Penner, J. L., 1992. The genera Proteus, Providencia, and Morganella, p. 2849 2853. In A. Balows et al., (ed.), The Prokaryotes, vol. III. Springer-Verlag KG, Berlin, Germany.
120. Proom, H.,, and A. Woiwod. 1951. Amine production in the genus Proteus. J. Gen. Microbiol. 5: 930 938.
121. Pruβ, B. M.,, and P. Matsumura. 1996. A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J. Bacteriol. 178: 668 674.
122. Pruβ, B. M.,, D. Maekovic,, and P. Matsumura. 1997. The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J. Bacteriol. 179: 3818 3821.
123. Rahman, M. M.,, J. Guard-Petter,, and R. W. Carlson. 1997. A virulent isolate of Salmonella enteritidis produces a Salmonella typhi-like lipopolysaccharide. J. Bacteriol. 179: 2126 2131.
124. Rauprich, O.,, M. Matsushita,, C. J. Weijer,, F. Siegert,, S. E. Esipov,, and J. A. Shapiro. 1996. Periodic phenomena in Proteus mirabilis swarm colony development. J. Bacteriol. 178: 6525 6538.
125. Roberts, R. C.,, C. D. Mohr,, and L. Shapiro. 1996. Developmental programs in bacteria. Cun. Top. Dev. Biol. 34: 207 257.
126. Rosenstein, I.J. M. 1986. Urinary calculi: microbiological and crystallographic studies. Crit. Rev. Clin. Lab. Sci. 22: 245 277.
127. Rosenstein, I. J. M.,, J. M. Hamilton-Miller,, and W. Brumfitt. 1981. Role of urease in the formation of infection stones: comparison of ureases from different sources. Infect. Immun. 32: 32 37.
128. Rozalski, A.,, H. Dlugonska,, and K. Kotelko. 1986. Cell invasiveness of Proteus mirabilis and Proteus vulgaris strains. Arch. Immunol. Ther. Exp. 34: 505 511.
129. Rozalski, A.,, H. Sidorczyk,, and K. Kotelko. 1997. Potential virulence factors of Proteus bacilli. Microbiol. Mol. Biol. Rev. 61: 65 89.
130. Rudner, D. Z.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173: 1388 1398.
131. Salmond, G. P. C.,, B. W. Bycroft,, G. S. A. B. Stewart,, and P. Williams. 1995. The bacterial 'enigma': cracking the code of cell-cell communication. Mol. Microbiol. 16: 615 624.
132. Senior, B. W. 1977. The Dienes phenomenon: identification of the determinants of compatibility. J. Med. Microbiol. 102: 235 244.
133. Senior, B. W.,, and C. Hughes. 1987. Production and properties of haemolysins from clinical isolates of the Proteeae. J. Med. Miaobiol. 24: 17 25.
134. Senior, B. W.,, N. C. Bradford,, and D. S. Simpson. 1980. The ureases of Proteus strains in relation to virulence for the urinary tract. J. Med. Microbiol. 13: 507 512.
135. Shapiro, J. A. 1995. The significances of bacterial colony patterns. Bioessays 17: 597 607.
136. Shapiro, J. A. 1998. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52: 81 104.
137. Shapiro, L.,, and R. Losick. 1997. Protein localization and cell fate in bacteria. Science 276: 712 717.
138. Shin, S.,, and C. Park. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177: 4696 4702.
139. Silverman, M.,, and M. Simon. 1974. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 120: 1196 1203.
140. Skirrow, M. B. 1969. The Dienes (mutual inhibition) test in the investigation of Proteus infections. J. Med. Microbiol. 2: 471 477.
141. Sogaard-Andersen, L.,, and D. Kaiser. 1996. C factor, a cell-surface-associated intercellular signalling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc. Natl. Acad. Sci USA 93: 2675 2679.
142. Stahl, S. J.,, K. R. Stewart,, and F. D. Williams. 1983. Extracellular slime associated with Proteus mirabilis during swarming. J. Bacteriol. 154: 930 937.
143. Stefansson, K. 1985. Sharing of antigenic determinants between the nicotinic acetylcholine receptor and proteins in E. coli, Proteus vulgaris and Klebsiella pneumoniae: possible role in the pathogenesis of myasthenia gravis. N. Engl. J. Med. 312: 221 225.
144. Stickler, D. J.,, J. B. King,, C. Winters,, and S. L. Morris. 1993a. Blockage of uretheral catheters by bacterial biofilms. J. Infect. 27: 133 135.
145. Stickler, D. J.,, L. Ganderton,, J. B. King,, J. Net-tleton,, and C. Winters. 1993b. Proteus mirabilis biofilms and the encrustation of urethral catheters. Urol. Res. 21: 407 411.
146. Stock, J. B.,, and M. Surette,. 1996. Chemotaxis, p. 1103 1129. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, C. B. Low,, B. Maga-sanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. American Society for Microbiology, Washington, DC.
147. Sturdza, S. A. 1973. La reaction d'immobilisation des filaments des Proteus sur les milieux geloses. Arch. Roum. Pathol. Exp. Microbiol. 32: 575 580.
148. Swihart, K. G.,, and R. A. Welch. 1990. Cytotoxic activity of the Proteus hemolysin HpmA. Infect. Immun. 58: 1861 1869.
149. Uphoff, T. S.,, and R. A. Welch. 1990. Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with Serratia marcescens hemolysin genes (shlA and shlB). J. Bacteriol. 172: 1206 1216.
150. von Meyenburg, K.,, B. Jorgensen,, J. Neilson,, and F. Hansen. 1982. Promoters of the atp operon coding for the membrane-bound ATP-synthase of Escherichia coli mapped by ?n 10 insertion mutations. Mol. Gen. Genet. 188: 240 248.
151. Warren, J. W.,, D. Damron,, J. H. Tenney,, J. M. Hoopes,, B. Deforge,, and H.J. Muncie. 1987. Fever, bacteremia and death as complications of bacteriuria in women with long-term urethral catheters J. Infect. Dis. 155: 1151 1158.
152. Wassif, C.,, D. Cheek,, and R. Belas. 1995. Molecular analysis of metalloprotease from Proteus mirabilis. J. Bacteriol. 177: 5790 5798.
153. Willey, J.,, J. Schwedock,, and R. Losick. 1993. Multiple extracellular signals govern the production of a morphogenetic protein involved in ariel mycelium formation by Streptomyces coelicolor. Genes Dev. 7: 895 903.
154. Williams, F. D.,, and R. H. Schwarzhoff. 1978. Nature of the swarming phenomenon in Proteus. Annu. Rev. Microbiol. 32: 101 122.
155. Williams, F. D.,, D. M. Anderson,, P. S. Hoffman,, R. H. Schwarzhoff,, and S. Leonard. 1976. Evidence against the involvement of chemotaxis in swarming of Proteus mirabilis. J. Bacteriol. 127: 237 248.
156. Zhao, H.,, R. B. Thompson,, V. Lockatell,, D. E. Johnson,, and H. L. T. Mobley. 1998. Use of green fluorescent protein to assess urease gene expression by uropathogenic Proteus mirabilis during experimental ascending urinary tract infection. Infect. Immun. 66: 330 335.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error