1887

Chapter 20 : The Chlamydial Developmental Cycle

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Chlamydial Developmental Cycle, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap20-2.gif

Abstract:

This chapter describes an account of what was learned by the earliest and possibly most astute chlamydiologists, and then describes current molecular and cellular biology approaches that have expanded upon these early observations. Collectively, the chapter provides a picture of the developmental cycle, a process common to all chlamydial species but unique among prokaryotes. The central core of the developmental cycle is the alternating and complementary nature of the distinct developmental forms. Elementary bodies (EBs) are small coccoid electron-dense structures. The electron-dense center is bound by inner and outer membranes that have lipid compositions more similar to that of the infected host cell mitochondria than to those of other bacteria. Experiments with truncated Hc1 proteins localized the DNA binding domain to the region that had identity with H1 and showed that the amino-terminal region of the protein likely had an alternate function. The activation and subsequent multiplication of RBs leads to an accumulation of these developmental forms within the young and "middle-aged" inclusions. The recent completion of the genome sequence as well as the anticipated availability of genetic transformation techniques will likely speed up these investigations, leading to a thorough understanding of the developmental cycle.

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Line drawing of a generalized chlamydial developmental cycle. Infection begins when an infectious but metabolically inactive EB comes in contact with a host cell (A) and is endocytosed (B). The phago-cytic vacuole (the inclusion) migrates toward the Golgi apparatus, and the EB differentiates into the noninfectious but metabolically active RB (C). RB division ensues, and the inclusion increases in size (D). Reticulate bodies then begin to reorganize back into EBs, and the inclusion grows until it occupies the entire cytoplasm of the infected cell (E). The inclusion lyses, the host cell lyses, and EBs are freed to infect another cell. While there are differences in this cycle among the different chlamydial strains and species, the general process is similar. N, nucleus.

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Electron micrographs of the sequential changes from attachment of EBs to host cells through the division of RBs. These micrographs show Cal 10 infecting L929 cells. (A and B) 30 min p.i. Electrostatic and receptor-mediated adhesions between the EB and the cell can be observed. (C) 60 min p.i. Note the nucleoid structure and the apparent fusion of a tiny vesicle to the phagocyte. (D) 100 min p.i. Two developmental forms can be observed: a typical EB very soon after phagocytosis (top) and another located in the deeper cytoplasm. Note the larger size and apparent reorganization of the nucleoid. The images in panels C and D also represent the sequential change from the EB to intermediate body—a structure that is found both at the beginning and the end of the cycle. (E and F) 6 h p.i. The conversion from EBs to RBs is complete. At this point inclusions will be found in the region of the Golgi apparatus. Note the larger size of the RB in panel F. This may represent growth prior to the initial division process. (G) 8 h p.i. Note the RB constriction prior to binary fission and the fine comb-like structure on the right side of the RB. (H and I) 10 h p.i. Terminal stages of first division. Mitochondria can be seen in the vicinity of the inclusion, but not associated with the inclusion membrane. Magnification of all micrographs, X 60,000; bar in panel I = 1 μm.

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Electron micrographs of the later stages of inclusion development in both C. and (A to C) Cal 10-infected L929 cells cultured at 37°C. (A) 18 h p.i.; (B) 24 h p.i.; (C) 34 h p.i. In each panel, note the relative numbers of RBs and EBs and the association between the inclusion and host cell mitochondria. (D to F) C. TW-183 in HEp-2 cells, cultured at 37°C. (D) 18 h p.i.; (E) 24 h p.i.; (F) 34 h p.i. Note the apparent lack of mitochondria! association, the more spherical nature of the inclusion, and the slight compression of the host nuclei. The inclusions in panels A, D, and E contain exclusively RBs, while the remaining panels show the asynchronous nature of the later inclusions. Bars = 1 μm.

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Effects of detergents and reducing agents on the integrity of EB and RB developmental forms. In both panels the arrows point to the 60-kDa EnvB (Omp2) and the 12-kDa EnvA (Omp3) proteins, and the arrowhead points to the 40-kDa MOMP band. (A) Sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE) profiles of insoluble residues of EBs and RBs after extraction with detergents plus or minus 2-mercaptoethanol (2-ME). Purified developmental forms were treated with the extracting agent and subjected to high-speed centrifugation. The material in the pellets was then prepared for standard PAGE. Lanes: 1, EB extracted with phosphate-buffered saline (PBS); 2, EBs extracted with Sarkosyl; 3, EBs extracted with SDS; 4, EBs extracted with SDS plus 2-ME; 5, RBs extracted with PBS; 6, RBs extracted with Sarkosyl; 7, RBs extracted with SDS; 8, RBs extracted with SDS plus 2-ME. Note the absence of detectable EnvA and EnvB in the RB preparations but the abundance of MOMP in both EBs and FU3s. (B) A similar experiment with EBs cultured in the presence of either [S]cysteine or [S]methionine. Purified EBs were then extracted with either PBS (lanes 1 and 2) or SDS (lanes 3 and 4). Insoluble material was collected by centrifugation and prepared for standard PAGE. The resulting gel was dried and exposed to film. The samples in lanes 1 and 3 represent EB labeled with [S]cysteine. The samples in lanes 2 and 4 represent EB labeled with [S]methionine. Note the distinction between detectable SDS-insoluble EB proteins under the two labeling conditions. (Data reproduced from , with permission of the authors and ASM.)

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Morphologies of highly purified EBs fixed differently prior to thin sectioning. (A) EBs were doubly fixed with glutaraldehyde and OsO and embedded in Epon. Thin sections were doubly stained with uranylacetate and lead citrate solutions. Note the lack of visible surface projections. (B) EBs were fixed with glutaraldehyde and treated with tannic acid. The sections were examined without subsequent staining with uranylacetate and lead citrate. While the internal structures are not visible, the regular nature of the surface projections is clearly demonstrated. (C) Purified EBs were fixed with glutaraldehyde and treated with ruthenium red. Thin sections were then stained with uranyl acetate and lead citrate. Note that the surface projections are located only on the EB surface opposite the nucleoid structure. Magnifications of all micrographs, X 90,000. Bar (panel C) = 0.1 μm.

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Freeze-etch micrographs of the external surfaces of chlamydial inclusions. (A) C. Cal 10 inclusion 16 h p.i. Note the surface projections enlarged in the inset (X76,000). (B) Similar micrograph of Cal 10 at 18 h p.i. Magnification, X 30,000. Bars = 1 μm (full-scale images) and 0.1 μm (inset).

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Aberrant RB forms produced during culture of L2/434/Bu in the presence of penicillin G (128 μg/ml). (A) Thin section of penicillin-treated, infected cells fixed 24 h p.i. Note the extremely large and vacuolated single RB within a spacious inclusion and the extra folds of membrane adjacent to the RB. (B) A higher magnification of the region of contact between the RB and the inclusion membrane (indicated by an arrow in panel A). Note the connections between the inclusion membrane and RB at the point of contact. (C) Freeze-etch preparation of a similar inclusion. Note the surface projections extending through the surface of the inclusion (arrowhead), as seen in Fig. 6 with normal inclusions. The effect of penicillin on is very similar to that seen with other chlamydiae.

Citation: Rockey D, Matsumoto A. 2000. The Chlamydial Developmental Cycle, p 403-425. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap20
1. Allan, I.,, T. P. Hatch,, and J. H. Pearce. 1985. Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms. J. Gen. Microbiol. 131:31713177.
2. Baehr, W.,, Y.-X. Zhang,, T. Joseph,, H. Su,, F. E. Nano,, K. D. E. Everett,, and H. D. Caldwell. 1988. Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc. Nail. Acad. Sci. USA 85: 40004004.
3. Baghian, A.,, K. Kousoulas,, R. Truax,, and J. Storz. 1996. Specific antigens of Chlamydiapecorutn and their homologues in C. psittaci and C. trachomatis. Am.J. Vet. Res. 57:17201725.
4. Bannantine, J. P.,, M. J. Parnell,, H. D. Caldwell,, and D. D. Rockey,. 1998a. Use of a primate model system for identification of Chlamydia trachomatis proteins recognized in the context of infection, p. 99102. In R. S. Stephens et al. (ed.), Chlamydial Infections. International Chlamydia Symposium, San Francisco, Calif.
5. Bannantine, J. P.,, D. D. Rockey,, and T. Hackstadt. 1998b. Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol. Microbiol. 28:10171026.
6. Barry, C. E.III,, S. F. Hayes,, and T. Hackstadt. 1992. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256: 377379.
7. Barry, C. E.Ill,, T. J. Brickman,, and T. Hackstadt. 1993. Hc1-mediated effects on DNA structure: a potential regulator of chlamydial development. Mol. Miaobiol. 9:273283.
8. Baumann, M.,, L. Brade,, E. Fasske,, and H. Brade. 1992. Staining of surface antigens of Chlamydia trachomatis L2 in tissue culture. Infect. Immun. 60: 44334438.
9. Bavoil, P.,, and R. Hsia. 1998. Type III secretion in Chlamydia: a case of deja vu? Mol. Microbiol. 28: 860862.
10. Bavoil, P.,, A. Ohlin, andj. Schachter. 1984. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44:479485.
11. Bavoil, P.,, R. C. Hsia,, and R. G. Rank. 1996. Prospects for a vaccine against chlamydial genital disease. I. Microbiology and pathogenesis. Bull. Inst. Pasteur 94:554.
12. Beatty, W. L.,, G. I. Byrne,, and R. P. Morrison. 1993. Morphologic and antigenic characterization of interferon-gamma mediated persistent Chlamydia trachomatis infection in vitro. Proc. Natl. Acad. Sci. USA 90:39984002.
13. Beatty, W. L.,, G. I. Byrne,, and R. P. Morrison. 1994. Repeated and persistent infection with Chlamydia and the development of chronic inflammation and disease. Trends Microbiol. 2:9498.
14. Beatty, W. L.,, R. P. Morrison,, and G. I. Byrne. 1995. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect. Immun. 63: 199205.
15. Bedson, S. P. 1932. The nature of the elementary bodies in psittacosis. J. Exp. Pathol. 13:6572.
16. Bedson, S. P. 1933. Observations of the developmental forms of psittacosis virus. J. Exp. Pathol. 14: 267277.
17. Bedson, S. P.,, and J. O. W. Bland. 1934. The developmental forms of psittacosis virus. J. Exp. Pathol. 15:243247.
18. Brade, H.,, L. Brade,, and F. E. Nano. 1987. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc. Natl. Acad. Sci. USA 84:25082512.
19. Brickman, T. J.,, I. Barry,, and T. Hackstadt. 1993. Molecular cloning and expression ofhctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J. Bacteriol. 175: 42744281.
20. Caldwell, H. D.,, and P. J. Hitchcock. 1984. Monoclonal antibody against a genus-specific antigen of Chlamydia species: location of the epitope on chlamydial lipopolysaccharide. Infect. Immun. 44:306314.
21. Caldwell, H. D.,, and L. J. Perry. 1982. Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. Infect. Immun. 38:745754.
22. Caldwell, H. D.,, J. Kromhout, andj. Schachter. 1981. Purification and partial characterization of the major outer membrane protein of Chlamydia tra-chomatis. Infect. Immun. 31:11611176.
23. Cevenini, R.,, M. Donati,, E. Brocchi,, F. De Si-mone,, and M. La Placa. 1991. Partial characterization of an 89-kDa highly immunoreactive protein from Chlamydia psittaci A/22 causing ovine abortion. FEMS Mkrobiol. Lett. 81:111116.
24. Collier, L. H. 1962. Growth characteristics of inclusion blennorrhea virus in cell cultures. Ann. N. Y. Acad. Sci. 98:4249.
25. Everett, K. D. E.,, and T. P. Hatch. 1995. Architecture of the cell envelope of Chlamydia psittaci 6BC. J. Bacteriol. 177:877882.
26. Everett, K. D. E.,, D. M. Desiderio,, and T. P. Hatch. 1994. Characterization of lipoprotein EnvA in Chlamydia psittaci 6BC. J. Bacteriol. 176: 60826087.
27. Fox, A.,, J. C. Rogers,, J. Gilbart,, S. Morgan,, C. H. Davis,, S. Knight,, and P. B. Wyrick. 1990. Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect. Immun. 58:835837.
28. Girardi, A. J.,, E. G. Allen,, and M. M. Sigel. 1952. Studies on the psittacosis-lymphogranuloma group. II. A non-infectious phase in virus development following adsorption to host tissue. J. Exp. Med. 96:233246.
29. Gordon, M. H. 1930. Virus studies concerning the etiology of psittacosis. Lancet 218:11741177.
30. Grayston, J. T. 1992. Infections caused by Chlamydia pneumoniae strain TWAR. Gin. Infect. Dis. 15: 757761.
31. Gregory, W. W.,, M. Gardner,, G. I. Byrne,, and J. W. Moulder. 1979. Arrays of hemispheric surface projections on Chlamydia psittaci and Chlamydia trachomatis observed by scanning electron microscopy. J. Bacteriol. 138:241244.
32. Grimwood, J.,, W. Mitchell,, and R. S. Stephens,. 1998. Phylogenetic analysis of a multigene family conserved between Chlamydia trachomatis and Chlamydia pneumoniae, p. 263266. In R. S. Stephens et. al. (ed.), Chlamydial Infections. International Chlamydia Symposium, San Francisco, Calif.
33. Hackstadt, T. 1986. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components. J. Bacteriol. 165:1320.
34. Hackstadt, T.,, W. Baehr,, and Y. Yuan. 1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone HI. Proc. Natl. Acad. Sci. USA 88:39373941.
35. Hackstadt, T.,, T. J. Brickman,, C. E. Barry, III, and J. D. Sager. 1993. Diversity in the Chlamydia trachomatis histone homolog Hc2. Gene 132: 137141.
36. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis infected cells: directed trafficking of Golgiderived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92:48774881.
37. Hackstadt, T.,, D. D. Rockey,, R. A. Heinzen,, and M. A. Scidmore. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endoge-nously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBOJ. 15:964977.
38. Hackstadt, T.,, E. R. Fischer,, M. A. Scidmore,, D. D. Rockey,, and R. A. Heinzen. 1997. Origins and functions of the chlamydial inclusion. Trends Mkrobiol. 5:288293.
39. Hatch, T.,, and D. Rockey. Unpublished data.
40. Hatch, T. P.,, D. W. VanceJr.,, and E. Al-Hos-sainy. 1981. Identification of a major envelope protein in Chlamydiad spp.J. Bacteriol. 146:426429.
41. Hatch, T. P.,, I. Allan,, and J. H. Pearce. 1984. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp.J. Bacteriol. 157:1320.
42. Hatch, T. P.,, M. Miceli,, and J. E. Sublett. 1986. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: 379385.
43. Heinzen, R. A.,, M. A. Scidmore,, D. D. Rockey,, and T. Hackstadt. 1996. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64:796809.
44. Hsia, R.,, Y. Pannekoek,, E. Ingerowski,, and P. M. Bavoil. 1997. Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Mkrobiol. 25:351359.
45. Karimi, S. T.,, R. H. Schloemer,, and C. E. Wilde III. 1989. Accumulation of chlamydial lipopolysac-charide antigen in the plasma membranes of infected cells. Infect. Immun. 57:17801785.
46. Kaul, R.,, and W. M. Wenman. 1986. Cyclic AMP inhibits developmental regulation of Chlamydia trachomatis. J. Bacteriol. 168:722727.
47. Kaul, R.,, A. Hoang,, P. Yau,, E. M. Bradbury,, and W. M. Wenman. 1997. The chlamydial EUO gene encodes a histone HI-specific protease. J. Bacteriol. 179:59285934.
48. Knudsen, K.,, A. S. Madsen,, P. Mygind,, G. Christiansen,, and S. Birkelund,. 1998. Surface localized proteins of Chlamydia pneumoniae, p. 267270. In R. S. Stephens et al. (ed.), Chlamydial Infections. International Chlamydia Symposium, San Francisco, Calif.
49. Krumwiede, C.,, M. McGrath,, and C. Old-enbusch. 1930. The etiology of the disease psittacosis. Science 71:262263.
50. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Ur-alil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602605.
51. Kuo, C. -C.,, J. T. Grayston,, L. A. Campbell,, Y. A. Goo,, R. W. Wissler,, and E. P. Benditt. 1995. Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old). Proc. Natl. Acad. Set. USA 92:69116914.
52. Lambden, P. R.,, J. S. Everson,, M. E. Ward,, and I. N. Clarke. 1990. Sulfur-rich proteins of Chlamydia trachomatis: developmentally regulated transcription of polycistronic mRNA from tandem promoters. Gene 87:105112.
53. Longbottom, D.,, M. Russel,, G. E. Jones,, A. Lainson,, and A. J. Herring. 1996. Identification of a multigene family coding for the 90 kDa proteins of the ovine abortion subtype of Chlamydia psittaci. FEMS Microbiol. Lett. 142:277281.
54. Longbottom, D.,, M. Russell,, S. M. Dunbar,, G. E. Jones,, and A. J. Herring. 1998. Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Inject. Immun. 66:13171324.
55. Louis, C.,, G. Nicolas,, F. Eb,, J.-F. Lefebvre,, and J. Orfila. 1980. Modifications of the envelope of Chlamydia psittaci during its developmental cycle: freeze-fracture study of complementary replicas. J. Bacteriol. 141:868875.
56. Lundemose, A. G.,, S. Birkelund,, P. M. Larsen,, S. J. Fey,, and G. Christiansen. 1990. Characterization and identification of early proteins in Chlamydia trachomatis serovar L2 by two-dimensional gel electrophoresis. Infect. Immun. 58:24782486.
57. Mardh, P.-A. 1992. Natural history of genital and allied chlamydial infections. Curr. Opin. Infect. Dis. 5:1217.
58. Matsumoto, A. 1973. Fine structures of cell envelopes of Chlamydia organisms as revealed by freeze-etching and negative staining techniques. J. Bacteriol. 116:13551363.
59. Matsumoto, A. 1982a. Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J. Bacteriol. 150:358364.
60. Matsumoto, A. 1982b. Surface projections of Chlamydia psittaci elementary bodies as revealed by freeze-deep-etching. J. Bacteriol. 151:10401042.
61. Matsumoto, A.,, E. Fujiwara,, and N. Higashi. 1976. Observations of the surface projections of infectious small cells of Chlamydia psittaci in thin sections. J. Electron Microsc. 25:169170.
62. McClarty, G. 1994. Chlamydiae and the biochemistry of intracellular parasitism. Microbiology 2: 157164.
63. Moulder, J. M. 1964. The Psittacosis Group as Bacteria. John Wiley and Sons, New York, N.Y.
64. Moulder, J. W. 1991. Interaction of Chlamydiae and host cells in vitro. Microbiol. Rev. 55:143190.
65. Moulder, J. W. 1993. Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect. Agents Dis. 2:8799.
66. Moulder, J. W.,, D. L. Novosel,, and J. E. Officer. 1963. Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J. Bacteriol. 85:707711.
67. Nano, F. E.,, and H. D. Caldwell. 1985. Expression of the chlamydial genus-specific lipopolysaccharide epitope in Escherichia coli. Science 228:742744.
68. Newhall, W. J.,, and R. B. Jones. 1983. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J. Bacteriol. 154:9981001.
69. Nichols, B. A.,, P. Y. Setzer,, F. Pang,, and C. R. Dawson. 1985. New view of the surface projections of Chlamydia trachomatis. J. Bacteriol. 164: 344349.
70. Nurminen, M.,, M. Leinonen,, P. Saikku,, and P. H. Makela. 1983. The genus-specific antigen of Chlamydia: resemblance to the lipopolysaccharide of enteric bacteria. Science 220:12791281.
71. Pagano, R. E.,, O. C. Martin,, H. C. Kang,, and R. P. Haugland. 1991. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor J. CellBiol. 113:12671279.
72. Page, L. A. 1966. Revision of the Family Chlamyd-iaceae Rake (Rickettsiales): unification of the psit-tacosis-lymphogranuloma venereum-trachoma group of organisms in the genus Chlamydia Jones, Rake and Steams. Int. J. Syst. Bacteriol. 16: 223252.
73. Pedersen, L. B.,, S. Birkelund,, and G. Christiansen. 1996a. Purification of recombinant Chlamydia trachomatis Hl-like protein Hc2, and comparative functional analysis of Hc2 and Hc1. Mol. Microbiol. 20:295311.
74. Pedersen, L. B.,, S. Birkelund,, A. Holm,, S. Oster-gaard,, and G. Christiansen. 1996b. The 18-ki-lodalton Chlamydia trachomatis histone Hl-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain. J. Bacteriol. 178:9941002.
75. Perara, E.,, D. Ganem, andj. N. Engel. 1992. A developmentally regulated chlamydial gene with apparent homology to eukaryotic histone HI. Proc. Natl. Acad. Set. USA 89:21252129.
76. Plaunt, M. R.,, and T. P. Hatch. 1988. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect. Immun. 56:30213025.
77. Remacha, M.,, R. Kaul,, R. Sherburne,, and W. M. Wenman. 1996. Functional domains of chlamydial Hl-like protein. Biochem. J. 315:481486.
78. Rockey, D. D.,, and J. L. Rosquist. 1994. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body. Infect. Immun. 62:106112.
79. Rockey, D. D.,, R. A. Heinzen,, and T. Hackstadt. 1995. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized to the inclusion membrane of infected cells. Mol. Miaobiol. 15:617626.
80. Rockey, D. D.,, D. Grosenbach,, D. E. Hruby,, M. G. Peacock,, R. A. Heinzen,, and T. Hackstadt. 1997. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol. Miaobiol. 24: 217228.
81. Schachter, J. 1978. Chlamydial infections. N. Engl. J. Med. 298:428434.
82. Schachter, J.,, and C. R. Dawson. 1990. The epidemiology of trachoma predicts more blindness in the future. Scand.J. Infect. Dis. 69:5562.
83. Scidmore, M. A.,, D. D. Rockey,, E. R. Fischer,, R. A. Heinzen,, and T. Hackstadt. 1996. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64:53665372.
84. Scidmore-Carlson, M. A.,, E. I. Shaw,, C. A. Dooley,, E. R. Fischer,, and T. Hackstadt. 1999. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol. Microbiol. 33: 753765.
85. Shemer, Y.,, and I. Sarov. 1985. Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect. Immun. 48:592596.
86. Shemer-Avni, Y.,, D. Wallach,, and I. Sarov. 1988. Inhibition of Chlamydia trachomatis growth by re-combinant tumor necrosis factor. Infect. Immun. 56: 25032506.
87. Stephens, R. S.,, G. Mullenbach,, R. Sanchez-Pes-cador,, and N. Agabian. 1986. Sequence analysis of the major outer membrane protein gene from Chlamydia trachomatis serovar L2. J. Bacteriol. 168: 12771282.
88. Stephens, R. S.,, R. Sanchez-Pescador,, E. A. Wagar,, C. Inouye,, and M. S. Urdea. 1987. Diversity of Chlamydia trachomatis major outer membrane protein genes. J. Bacteriol 169:38793885.
89. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Maratha,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. U. Kooning,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754759.
90. Su, H.,, and H. D. Caldwell. 1991. In vitro neutralization of Chlamydia trachomatis by monovalent Fab antibody specific to the major outer membrane protein. Infect. Immun. 59:28432845.
91. Su, H.,, N. G. Watkins,, Y.-X. Zhang,, and H. D. Caldwell. 1990. Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect. Immun. 58: 10171025.
92. Su, H.,, L. Raymond,, D. D. Rockey,, E. Fischer,, T. Hackstadt,, and H. D. Caldwell. 1996. A re-combinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc. Natl. Acad. Set. USA 93: 1114311148.
93. Tamura, A.,, A. Ma tsumo to,, and N. Higashi. 1967. Purification and chemical composition of reticulate bodies of the meningopneumonitis organisms. J. Bacteriol. 93:20032008.
94. Thygeson, P. 1962. Trachoma virus: historical background and review of isolates. Ann. N. Y. Acad. Sci. 98:613.
95. Ting, L. M.,, R. C. Hsia,, C. G. Haidaris,, and P. M. Bavoil. 1995. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect. Immun. 63:36003608.
96. Todd, W. J.,, and H. D. Caldwell. 1985. The interaction of Chlamydia trachomatis with host cells: ultra-structural studies of the mechanism of release of a biovar II strain from HeLa 229 cells. J. Infect. Dis. 151:10371044.
97. University of California, Berkeley. 1999. Chlamydia Genome Project Database. [Online.] http: //chlamydia-www.berkeley.edu:4231/.
98. Wagar, E. A.,, and R. S. Stephens. 1988. Development-form-specific DNA-binding proteins in Chlamydia spp. Infect. Immun. 56:16781684.
99. Washington, A. E.,, R. E. Johnson,, and L. L. SandersJr.. 1987. Chlamydia trachomatis infections in the United States: what are they costing us? JAMA 257:20702072.
100. Watson, M. W.,, I. N. Clarke,, J. S. Everson,, and P. R. Lambden. 1995. The CrP operon of Chlamydia psittaci and Chlamydia pneumoniae. Microbiology 141: 24892497.
101. Weiss, E. 1950. The effect of antibiotics on agents of the psittacosis-lymphogranuloma group. I. The effect of penicillin. J. Infect. Dis. 87:249263.
102. Wichlan, D. G.,, and T. P. Hatch. 1993. Identification of an early-stage gene of Chlamydia psittaci. J. Bacteriol. 175:29362942.
103. Wylie, J. L.,, G. M. Hatch,, and G. McClarty. 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179: 72337242.
104. Wyllie, S.,, R. H. Ashley,, D. Longbottom,, and A. J. Herring. 1998. The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect. Immun. 66:52025207.
105. Yuan, Y.,, Y.-X. Zhang,, N. G. Watkins,, and H. D. Caldwell. 1989. Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Inject. Immun. 57: 10401049.
106. Zhang, L.,, A. L. Douglas,, and T. P. Hatch. 1998. Characterization of a Chlamydia psittaci DNA binding protein (EUO) synthesized during the early and middle phases of the developmental cycle. Infect. Immun. 66:11671173.
107. Zhang, Y.-X.,, S. J. Stewart,, and H. D. Caldwell. 1989. Protective monoclonal antibodies to Chlamydia trachomatis serovar- and serogroup-specific major outer membrane protein determinants. Infect. Immun. 57:636638.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error