Chapter 21 : Developmental Cycle of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Developmental Cycle of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap21-2.gif


Recent advances in the cloning of variant specific proteins has led to a new appreciation of the developmental cycle. This chapter summarizes the current state of research in this area and draws upon several recent reviews to present a more defined and testable model of development for this unusual pathogen. The moderate relatedness of and , revealed by 16S rRNA comparison, has proven consistent when sesuch as CbMveral cloned proteins, ip and LpMip, were compared and may prove valuable in understanding the similarities between and interactions with host cells. The first class of proteins that was identified consisted of basic DNA binding proteins. Heinzen and coworkers provide both single-and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of small-cell variants (SCV) and large-cell variants (LCV) proteins, noting several differences beyond PI, Hql, ScvA, EF-Ts, and EF-Tu. One of the observations that appear to distinguish a developmental cycle from that of is that a mixture of SCV and LCV appears in all vacuoles, whether newly occupied with a few organisms or containing hundreds of organisms. There are superficial similarities between the developmental cycles of and , since both are obligate intracellular bacterial pathogens that undergo an infectious cycle inside a membrane-bound vacuole. Cellular differentiation in prokaryotes is an adaptive response that involves alterations in gene expression.

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Transmission electron micrograph of bacteria in a vacuole and separated into SCV and LCV. (A) Persistently infected L929 cells were prepared for ТЕМ. Note a membrane-bound vacuole with multiple cells with pleo-morphic morphology, including large cells with diffuse nucleoids (LCV) and small cells with compact nucleoids (SCV). Purified ? cells were separated into LCV (B) and SCV (C) by cesium chloride equilibrium gradient centrifugation. Bars, 1 μm.

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Differential protein expression or proteins detected with monoclonal antibodies. LCV and SCV were separated by cesium chloride equilibrium gradient centrifugation, and proteins were subsequently separated by SDS-PAGE. Monoclonal antibodies specific for each antigen were reacted on Western blots. (A) Monoclonal antibody specific for Com-1 (27 kDa); (B) monoclonal antibody specific for CbMip (25 kDa); (C) monoclonal antibody specific for EF-Ts (32 kDa); (D) monoclonal antibody specific for EF-Tu (45 kDa).

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Surface-labeled proteins. LCV and SCV were surface iodinated with Iodogen beads, and proteins were separated by SDS-PAGE followed by auto-radiographic detection of labeled proteins. The major outer membrane protein, PI, is identified. An apparent SVC upregulated surface protein at ∼34 kDa is noted.

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Model of LCV, SCV, SDC, and SLP. A working model of developmental stages derived from studies summarized in this review. A single infected cell is represented containing a phagolysosome with all four forms. SLP have only been observed infrequently. The ability of each form to develop into one of the alternate forms is unconfirmed. The functional properties assigned to each form and the level of expression of specific proteins is indicated for high (↑↑), medium (↑), relatively low (↓), and not detected (ND).

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abshire, K. Z.,, and F. C. Neidhardt. 1993. Growth rate paradox of Salmonella typhimurium within host macrophages. J. Bacteriol. 175: 37443748.
2. Akporiaye, E. T.,, and O. G. Baca. 1983. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella bumetii. J. Bacteriol. 154:520523.
3. Amano, K.,, J. C. Williams,, T. E. McCaul,, and M. G. Peacock. 1984. Biochemical and immuno-logical properties of Coxiella bumetii cell wall and peptidoglycan-protein complex fractions. J. Bacteriol. 160:982988.
4. Anacker, R. L.,, K. Fukushi,, E. G. Pickens,, and D. B. Lackman. 1964. Electron microscopic observations of the development of Coxiella bumetii in the chick yolk sac. J Bacteriol. 88:11301138.
5. Babudieri, C. 1959. Q fever: a zoonosis. Adv. Vet. Sci. 5:8184.
6. Baca, O. G.,, and D. Paretsky. 1983. Q fever and Coxiella bumetii: a model for host-parasite interactions. Microbiol. Rev. 47:127149.
7. Baca, O. G.,, D. A. Klassen,, and A. S. Aragon. 1993a. Entry of Coxiella bumetii into host cells. Acta Virol. 37:143155.
8. Baca, O. G.,, M. J. Roman,, R. H. Glew,, R. F. Christner,, J. E. Buhler,, and A. S. Aragon. 1993b. Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infect. Immun. 61: 42324239.
9. Banerjee-Bhatnagar, N.,, C. R. Bolt,, and J. C. Williams. 1996. Pore-forming activity of Coxiella bumetii outer membrane protein oligomer comprised of 29.5 and 31-kDa polypeptides. Ann. N.Y. Acad. Sci. 791:378401.
10. Barth, M.,, C. Marshall,, A. Muffler,, S. Fischer,, and R. Hengge-Aronis. 1995. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of σ5 and many σ5 -dependent genes in Escherichia coli. J. Bacteriol. 177: 34553464.
11. Brickman, T. J.,, C. E. Barry,, and T. Hackstadt. 1993. Molecular cloning and expression oikctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J. Bacteriol. 175: 42744281.
12. Burton, P. R.,, J. Stueckemann,, R. M. Welsh,, and D. Paretsky. 1978. Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infect. Immun. 21:556566.
13. Canonicao, P. G.,, M. J. Van Zwieten,, and W. A. Christmas. 1972. Purification oflarge quantities of Coxiella bumetii rickettsia by density gradient zonal centrifugation. Appl. Microbiol. 23:10151022.
14. Cianciotto, N. P.,, W. O'Connell,, G. A. Dasch,, and L. P. Mallavia. 1995. Detection of mip-like sequences and Mip-related proteins within the family Rickettsiaceae. Curr. Microbiol. 30:149153.
15. Claret, L.,, and J. Rouviere-Yaniv. 1997. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J. Mol. Biol. 273:93104.
16. Cousineau, R.,, C. Cerpa,, J. Lefebvre,, and R. Cedergren. 1992. The sequence of the gene encoding elongation factor Tu from Chlamydia trachomatis compared with those of other organisms. Gene 120:3341.
17. Davis, G. E.,, and H. R. Cox. 1938. A filter-passing infectious agent isolated from ticks. I. Isolation from Dermacentor andersonii, reactions in animals, and filtration. Public Health Rep. 53:2259.
18. De Groote, M. A.,, U. A. Ochsner,, M. U. Shiloh,, C. Nathan,, J. M. McCord,, M. C. Dinauer,, S. J. Libby,, A. Vazquez-Torres,, Y. Xu,, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NAPDH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94:1399714001.
19. Founder, P.-E.,, T. J. Marrie,, and D. Raoult. 1998. Diagnosis of Q fever. J. Clin. Miaobiol. 36:18231834.
20. Hackstadt, T. 1983. Estimation of the cytoplasmic pH of Coxiella bumetii and effect of substrate oxidation on proton motive force. J. Bacteriol. 154: 591597.
21. Hackstadt, T.,, and J. C. Williams. 1981. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella bumetii. Proc. Natl. Acad. Sci. 78: 32403244.
22. Hackstadt, T.,, and J. C. Williams. 1983. pH dependence of the Coxiella bumetii glutamate transport system. J. Bacteriol. 154:598603.
23. Hackstadt, T.,, and J. C. Williams,. 1984. Metabolic adaptations of Coxiella bumetii to intraphagolysosomal growth, p. 266268. In L. Lieve, and D. Schlessinger (ed.), Microbiology —1984. American Society for Microbiology, Washington, D.C.
24. Hackstadt, T.,, W. Baehr,, and Y. Ying. 1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone HI. Proc. Natl. Acad. Sci. USA 88:39373941.
25. Heinzen, R. A., 1997. Intracellular development of Coxiella bumetii, p. 99129. In B. Anderson,, M. Bendinelli,, and H. Friedman (ed.), Rickettsial Infection and Immunity. Plenum Press, New York, N.Y.
26. Heinzen, R. A.,, and T. Hackstadt. 1996. A developmental-stage-specific histone HI homolog of Coxiella bumetii. J. Bacteriol. 178:50495052.
27. Heinzen, R. A.,, M. E. Frazier,, and L. P. Mallavia. 1992. Coxiella bumetii superoxide dismutase gene: cloning, sequencing, and expression in Escherichia colt. Infect. Immun. 60:38143823.
28. Heinzen, R. A.,, D. Howe,, L. P. Mallavia,, D. D. Rockey,, and T. Hackstadt. 1996a. Developmentally regulated synthesis of an unusually small, basic peptide by Coxiella bumetii. Mol. Microbiol. 22: 919.
29. Heinzen, R. A.,, M. A. Scidmore,, D. D. Rockey,, and T. Hackstadt. 1996b. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella bumettii and Chlamydia trachomatis. Infect. Immun. 64:796809.
30. Heinzen, R. A.,, T. Hackstadt,, and J. E.. Samuel. 1999. Developmental biology of Coxiella bumetii. Trends Microbiol. 7:149154.
31. Hendrix, L.,, and P. Mallavia. 1984. Active transport of proline by Coxiella bumetti.J. Gen. Microbiol. 130:28572863.
32. Hendrix, L. R.,, J. E. Samuel,, and L. P. Mallavia. 1991. Differentiation of Coxiella bumetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J. Gen. Microbiol. 137: 269276.
33. Hendrix, L. R.,, L. P. Mallavia,, and J. E. Samuel. 1993. Cloning and sequencing of Coxiella bumetii outer membrane protein gene com1. Infect. Immun. 61:470477.
34. Hengge-Aronis, R. 1996. Back to log phase: Sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol. 21:887893.
35. Htwe, K. K.,, T. Yoshida,, S. Hayashi,, T. Miyake,, K.-I. Amano,, C. Morita,, T. Yamaguchi,, H. Fukushi,, and K. Hirai. 1993. Prevalence of antibodies to Coxiella bumetii in Japan. J. Clin. Microbiol. 31:722723.
36. Kordova, N. 1960. Study of antigenicity and immunogenicity of filterable particles of Coxiella bumetii. Ada Virol. 4:5662.
37. Kordova, N.,, and E. Kocacova. 1968. Appearance of antigens in tissue culture cells inoculated with filterable particles of Coxiella bumetii as revealed by fluorescent antibodies. Acta Virol. 12:40463.
38. Lennette, E. H.,, W. H. Clark,, M. M. Abinanti,, O. Burnetti,, and J. M. Covert. 1952. Q fever studies. XIII. The effect of pasteurization of Coxiella bumetii in naturally infected milk. Am.J. Hyg. 55:246.
39. Li, Y. P.,, G. Curley,, M. Lopez,, M. Chavez,, R. Glew,, A. Aragon,, H. Kumar,, and O. G. Baca. 1996. Protein-tyrosine phosphatase activity of Coxiella bumetii that inhibits human neutrophils. Acta Virol. 40:163172.
40. Mallavia, L. P. 1991. Genetics of rickettsiae. Eur.J. Epidemiol. 7:213221.
41. Marrie, T. J., 1990. Epidemiology of Q fever, p. 4970. In T. J. Marrie (ed.), Q Fever, vol. 1. The Disease. CRC Press, Boca Raton, Fla.
42. McCaul, T. F., 1991. The developmental cycle of Coxiella bumetii, p. 223258. In J. C. Williams, and H. A. Thompson (éd.), Q Fever: The Biology of Coxiella bumetii. CRC Press, Boca Raton, Fla.
43. McCaul, T. F.,, and J. C. Williams. 1981. Developmental cycle of Coxiella bumetii: structure and morphogenesis of vegetative and sporogenic differentiations. J. Bacteriol. 147:10631076.
44. McCaul, T. F.,, T. Hackstadt,, and J. C.,. Williams. 1981. Ultrastructural and biological aspects of Coxiella bumetii under physical disruptions, p. 267. In W. Burgdorfer, and R. L. Anacker (ed.), Rickettsiae and Rickettsial Diseases. Academic Press, New York, N.Y.
45. McCaul, T. F.,, N. Banerjee-Bhatnagar,, and J. C. Williams. 1991a. Antigenic differences between Coxiella bumetii cells revealed by postembedding immunoelectron microscopy and immunoblotting. Infect. Immun. 59:32433253.
46. McCaul, T. F.,, J. C. Williams,, and H. A. Thompson. 1991b. Electron microscopy of Coxiella burnetii in tissue culture induction of cell types as products of developmental cycle. Acta Virol. 35: 545556.
47. McCaul, T. F.,, A. J. Dare,, J. P. Gannon,, and J. J. Galbraith. 1994. In vivo endogenous spore formation by Coxiella bumetii in Q fever endocarditis. J. Clin. Pathol. 47:978981.
48. Meconi, S.,, V. Jacomo,, P. Boquet,, D. Raoult,, J. Mege,, and C. Capo. 1998. Coxiella bumetii induces reorganization of the actin cytoskeleton in human monocytes. Infect. Immun. 66:55275533.
49. Mo, Y. Y.,, N. P. Cianciotto,, and L. P. Mallavia. 1995. Molecular cloning of a Coxiella bumetii gene encoding a macrophage infectivity potentiator (Mip) analogue. Microbiology 141:28612871.
50. Moulder, J. W. 1991. Interaction of Chlamydiae and host cells in vitro. Microbiol. Rev. 55:143190.
51. Nermut, M. V.,, S. Schramek,, and R. Brezina. 1968. Electron microscopy of Coxiella bumetii phase I and phase II. Acta Virol. 12:446452.
52. Raoult, D.,, and T. Marrie. 1995. Q fever. Clin. Infect. Dis. 20:489496.
53. Redd, T.,, and H. A. Thompson. 1995. Secretion of proteins by Coxiella bumetii. Microbiology 141: 363369.
54. Rosenberg, M.,, and N. Kordova. 1960. Study of intracellular forms of Coxiella bumetii in the electron microscope. Acta Virol. 4:5261.
55. Samuel, J. E.,, M. E. Frazier,, and L. P. Mallavia. 1985. Correlation of plasmid type and disease caused by Coxiella bumetii. Infect. Immun. 49: 775779.
56. Schaal, F.,, H. Krauss,, N. Jekov,, and L. Rantamaki. 1987. Electron micrographie observations on the morphogenesis of "spore-like particles" of Coxiella bumetii in cell culture. Ada Medit. Patol. Inf. Trop. 6:329338.
57. Seshadri, R.,, L. R. Hendrix,, and J. E. Samuel. Differential expression of translational elements by lifecycle variants of Coxiella bumetii. Submitted for publication.
58. Setlow, P. 1988. Small, acid soluble spore proteins of Bacillus species: structure, synthesis, genetics, and degradation. J. Bacteriol. 42:319338.
59. Snyder, C. E. J.,, and J. C. Williams. 1986. Purification and chemical characterization of a major outer membrane protein from Coxiella bumetii, p. 193. In Abstracts of the Annual Meeting of the American Society for Microbiology, 1986. American Society for Microbiology, Washington, D.C.
60. Snyder, C. E.,, R. F. Wachter,, and J. D. White,. 1984. Identification of Coxiella bumetii antigens and attempts at envelope fractionation, p. 263265. In L. Lieve, and D. Schlessinger (eds.), Microbiology — 1984. American Society for Microbiology, Washington, D.C.
61. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koo-nin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754759.
62. St. John, G.,, and H. M. Steinman. 1996. Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J. Bacteriol. 178:15781584.
63. Stocker, M. P.,, K. M. Smith,, and P. Fiset. 1956. Internal structure of Rickettsia bumetii as shown by electron microscopy of thin sections. J. Gen. Microbiol. 15:632635.
64. Suhan, M. L.,, C. Shu-Yin,, and H. A. Thompson. 1996. Transformation of Coxiella bumetii to ampi-cillin resistance. J. Bacteriol. 178:27012708.
65. Thompson, H. A.,, R. L. Zuerner,, and T. Tedd,. 1984. Protein synthesis in Coxiella bumetii, p. 288291. In L. Lieve, and D. Schlessinger (éd.), Microbiology—1984. American Society for Microbiology, Washington, D.C.
66. Varghees, S.,, K. Kiss,, and J. E. Samuel. 1998. Characterization of the Major Outer Membrane Protein from Coxiella bumetii. Texas Branch of the American Society for Microbiology.
67. Wachter, R. F.,, G. P. Briggs,, J. D. Gangemi,, and C. E. Pedersen. 1975. Changes in buoyant density relationships of two cell types of Coxiella bumetii phase I. Infect. Immun. 12:433436.
68. Watarai, M.,, T. Tobe,, M. Yoshikawa, and C. Sasakawa. 1995. Disulfide oxidoreductase activity of Shigellaflexneri is required for release of Ipa proteins and invasion of epithelial cells. Proc. Natl. Acad. Sri. USA 92:49274931.
69. Weisburg, W. G.,, C. R. Woese,, M. E. Dobson,, and E. Weiss. 1985. A common origin of rickettsiae and certain plant pathogens. Science 2230:556558.
70. Weisburg, W. G.,, M. E. Dobson,, J. E. Samuel,, G. A. Dasch,, L. P. Mallavia,, O. G. Baca,, L. Mandelco,, J. E. Sechrest,, E. Weiss,, and C. R. Woese. 1989. Phylogenetic diversity of the rickett-siae.J. Bacteriol. 171:42024206.
71. Wiebe, M. E.,, P. R. Burton,, and D. M. Shankel. 1972. Isolation and characterization of two cell types of Coxiella bumetii. J. Bacteriol. 110:368377.
72. Willems, H.,, C. Jager,, and G. Bajer. 1998. Physical and genetic map of the obligate intracellular bacterium Coxiella bumetii. J. Bacteriol. 180:38163822.
73. Williams, J. C., 1991. Infectivity, virulence, and pathogenicity of Coxiella bumetii for various hosts, p. 2172. In J. C. Williams, and H. A. Thompson (éd.), Q Fever: The Biology of Coxiella bumetii. CRC Press, Boca Raton, Fla.
74. Williams, J. C.,, and D. M. Waag,. 1991. Antigens, virulence factors and biological response modifiers of Coxiella bumetii: strategies for vaccine development, p. 175222. In J. C. Williams, and H. A. Thompson (ed.), Q Fever: The Biology of Coxiella bumetii. CRC Press, Boca Raton, Fla.
75. Williams, J. C.,, M. R. Johnston,, M. G. Peacock,, L. A. Thomas,, S. Stewart,, and J. L. Portis. 1984. Monoclonal antibodies distinguish phase variants of Coxiella bumetii. Infect. Immun. 43:421428.
76. Zhang, Y.,, Y. Shi,, M. Zhou,, and G. A. Petsko. 1994. Cloning, sequencing, and expression in Esch-erichia coli of the gene encoding a 45-kDa protein, elongation factor Tu, from Chlamydia trachomatis serovar F. J. Bacteriol. 176:11841187.
77. Zuerner, R. L.,, and H. A. Thompson. 1983. Protein synthesis by intact Coxiella bumetii cells. J. Bacteriol. 156:186191.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error