1887

Chapter 3 : Cyanobacterial Phylogeny and Development: Questions and Challenges

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cyanobacterial Phylogeny and Development: Questions and Challenges, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap03-2.gif

Abstract:

This chapter provides a selective overview of present knowledge of cyanobacterial morphological forms and their development. Due to the paucity of physiological variation among cyanobacteria, their classification has relied heavily on their morphological complexity. Recent work has revealed the cyanobacterial cell wall to be more complex than once thought. The generation of an anaerobic interior in the heterocyst requires a series of major modifications to the original vegetative cell. Due to their highly differentiated nature, heterocysts are readily distinguished from vegetative cells, usually being larger, with thickened cell walls and less-granular cytoplasm. The developmental control of gene expression was cleverly demonstrated by Elhai and Wolk with the genes, which encode bacterial luciferase, as transcriptional reporters. Many o f the properties of akinetes are suited to their role in surviving environmental conditions adverse for vegetative growth. The major stimulus for akinete germination appears to be an increase in light intensity, usually achieved in the laboratory by diluting an akinete-containing culture with fresh or used medium. Hormogonia are short, undifferentiated filaments produced by fragmentation of the parent trichome and which often possess gliding motility. Although the most clearly differentiated cells are heterocysts and akinetes, there is increasing evidence for more subtle forms of differentiation in at least two genera, and . Cyanobacteria pose many unanswered questions, some of which have been discussed in the chapter.

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic diagram illustrating some of the possibilities for morphological development in filamentous cyanobacteria. When grown in the presence of a source of combined nitrogen, the filament consists entirely of undifferentiated vegetative cells (2). At the end of the exponential growth phase, when light (energy) becomes limiting, some vegetative cells can differentiate into the spore-like cells called akinetes (A), which, in the absence of heterocysts, are randomly placed within the filament (1). In the absence of combined nitrogen, the vegetative filament differentiates the highly specialized N2-fixing cells, heterocysts, at spaced intervals within the filament (H) and in terminal positions (TH). Heterocysts are characterized by their thickened cell walls, relatively agranular cytoplasm, and polar bodies at the point of attachment to vegetative cells (two in heterocysts within the filament but only one in terminal heterocysts) (4). During their development heterocysts pass through an intermediate stage, the proheterocyst (PH), which, unlike the mature cell, does not have the thickened cell wall and polar bodies and is able to dedifferentiate in the presence of combined nitrogen (3). When akinetes develop in N-fixing cultures, they do so at locations with a spatial relationship to the heterocysts (see the text for details), such as midway between them (5). Akinetes can germinate and give rise to filaments with or without heterocysts, depending on the availability of combined nitrogen. Hormogonia are short, motile filaments lacking heterocysts, which develop as a result of a variety of stimuli (see the text for details). Their formation usually involves the rapid, synchronized division of vegetative cells without concomitant growth, followed by fragmentation of the filament to release heterocysts and motile hormogonia. The latter can give rise to heterocystous or nonheterocystous filaments, depending on the availability of combined nitrogen. Hormogonia can also serve as the infective agents in the establishment of symbiotic associations with plants. ( )

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Diagrammatic comparison of die developmental cycles of pleurocapsalean cyanobacteria. Stages A to F are defined in Table 1 . The small dotted circles represent baeocytes that are not surrounded by a fibrous outer wall layer at the time of release and are consequently motile. The small solid circles represent baeocytes that arc surrounded by a fibrous layer and are immotile. ( )

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic diagram of a thin section ofa cyanobacterial cell. C, carboxysome; CPG, cyanophycin granule; T, thylakoid; P, polyphosphate granule; N, nucleoplasm region; G, glycogen granules; PB, phycobilisome; GV, gas vesicle. Inset A is an enlarged view of a thylakoid, showing paired unit membranes. Inset B is an enlarged view of the cell envelope, showing the outer membrane, the peptidoglycan layer, and the cytoplasmic membrane. ( )

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

(A) Diagram of the cell wall of sp. The peptidoglycan layer (PG) is perforated by large pore pits (LP) up to 70 nm in diameter, which bring the cytoplasmic membrane (CM) close to the outer membrane (OM). The large pore pits are seen in cross-section in the lower half of the diagram and appear as circles when viewed from above in the top half of the diagram. Junctional pores (JP) traverse the peptidoglycan between cells and meet at the surface, appearing as a single row of small circles when viewed from above in the top half of the diagram. ( ) (B) Electron micrograph of a thin longitudinal section of an unidentified member of the order . The large pore pits (LP) can be seen as bright circles scattered throughout the peptidoglycan. The plane of the section is within the peptidoglycan layer, with the result that the junctional pores (JP) appear as parallel rows of small, closely positioned circles at the cell cross walls rather than the single rows that would be seen at the surface of the peptidoglycan. The sample was fixed in osmium tetroxide and stained with uranyl acetate. Bars, 0.2 µm. (Electron microscopy by Denise Ashworth.)

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

A fibrillar array in the cell wall of a motile cyanobacterium. (A, C, and D) Transmission electron micrographs of thin sections of sp. strain FT2 filaments. (A) Longitudinal section. At the top of the figure, beyond a cell septum, the section has grazed the surface of the filament, revealing an array of parallel fibrils running at an angle of approximately 25 to 30° to the filament long axis. Bar, 400 nm. (C) Part of a transverse section showing an end view of the fibrillar array in the cell wall. Bar, 200 nm. (D) Enlarged view of part of panel C, showing the double line of the outer membrane (om) covering the fibrillar array and dipping between each pair of fibril (s) (f) to contact the electron-dense peptidoglycan layer (pg). Bar, 50 nm. (B) Transmission electron micrograph of part of a filament of sp. strain FT3. An actively motile sample was crushed between glass slides and negatively stained. The micrograph shows several cells from which the contents have been extruded and whose walls have been flattened, bringing the fibrils at the front and back of the filament into close contact, allowing them to be viewed simultaneously. The fibrils run helically around the entire surface of the filament, producing the observed criss-cross effect because those in the wall in the foreground run in a different direction than those in the wall in the background. Bar, 500 nm. ( )

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Photomicrographs illustrating some of the differentiated cell types of cyanobacteria. (A) sp. strain CA grown in the presence of nitrate, which completely suppresses heterocyst development. (B) sp. strain CA grown in the absence of combined nitrogen, showing the regular spacing of heterocysts, which are the sites of N fixation, and a developing proheterocyst (arrow). (C) , showing large, granular akinetes developing immediately adjacent to a heterocyst. The two akinetes below the heterocyst show a characteristic-gradient of maturity, with the largest and oldest closer to the heterocyst. (D) An old culture of nitrate-grown sp. strain CA in which all vegetative cells have transformed into spherical akinetes. Although the akinetes have become separated, as a result of pressure created by the coverslip being placed onto the sample, the line of the original filaments can still be seen. Dilution of such a culture leads to germination of the akinetes. If the medium used for dilution does not contain a source of fixed nitrogen, the short filaments which emerge from the akinete coats each contain a heterocyst (E). Bars, 10 µm. Panels C and D were made with phase-contrast optics. Panels A and B reproduced from with permission of the publisher (copyright CRC Press Inc.); panel C reproduced from with permission of the publisher; panels D and E reproduced from with permission of the publisher.

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Development of individual baeocytes of sp. strain PCC 7302 (A), sp. strain PCC 7312 (B), and sp. strain PCC 7516 (C) on agar medium. The number in each photomicrograph indicates the elapsed time, in hours, after the initial observation. The baeocytes follow the developmental cycles shown diagrammatically in Fig. 6 , culminating in multiple fission and the production of more baeocytes. The magnification is the same for all photomicrographs. Bars, 10 µm. ( )

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

(A) Electron micrograph of a thin section of a cell of sp. strain PCC 7307 which has divided into numerous baeocytes, each of which is surrounded by a distinct fibrous layer. (B) Electron micrograph of a thin section of a cell of sp. strain PCC 7326. The two basal cells, which are surrounded by a clear fibrous layer, are the products of the previous binary fission, while the apical cell has undergone multiple fission to produce many baeocytes, which do not have a fibrous layer. Bars, 1 µm. ( )

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Electron micrographs of thin sections of sp. strain PCC 7304 grown in liquid medium. (A) Cell immediately prior to multiple fission, containing many separate nucleoids (N) frequently associated with carboxysomes (C). (B) Cell which has completed multiple fission and is filled with baeocytes, each of which is surrounded by a peptidoglycan layer and outer membrane but not by an F layer. Bars, 1 µm. ( )

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap3
1. Adams, D. G., 1992. Multicellularity in cyanobacteria, p. 341384. In S. Mohan,, C. Dow,, and J. A. Cole (éd.), Prokaryotic Structure and Function: a New Perspective. Society for General Microbiology Symposium, vol. 47. Cambridge University Press, Cambridge, United Kingdom.
2. Adams, D. G., 1997. Cyanobacteria, p. 109148. In J. Shapiro, and M. Dworkin (ed.), Bacteria as Multicellular Organisms. Oxford University Press, New-York, N.Y.
3. Adams, D. G., Symbiotic interactions. In B. Whitton, and M. Potts (ed.). Ecology of Cyanobacteria: Their Diversity in Time and Space, in press. Kluwer Academic Publishers, Dordrecht, The Netherlands.
4. Adams, D. G.,, and N. G. Carr. 1981. The developmental biology of heterocyst and akinete formation in cyanobacteria. Crit. Rev. Microbiol. 9:45100.
5. Adams, D. G.,, D. Ashworth,, and B. Nelmcs. 1999. Fibrillar array in the cell wall of a gliding filamentous cyanobacterium. J. Bacteriol. 181: 884892.
6. Allen, M. M. 1988. Inclusions: cyanophycin. Methods Enzymol. 167:207213.
7. Babic, S. 1996. Hormogonia formation and the establishment of symbiotic associations between cyanobacteria and the bryophytes Blasia and Phaeoceros. Ph.D. thesis, University of Leeds, Leeds, United Kingdom.
8. Barák, I.,, P. Prepiak,, and F. Schmeisser. 1998. MinCD proteins control the septation process during sporulation of Bacillus subtilis. J. Bacteriol. 180: 53275333.
9. Barbiero, R. P. 1993. A contribution to the life-history of the planktonic cyanophyte, Gloeotrichia echinulata. Arch. Hydrobiol. 127:87100.
10. Barbiero, R. P.,, and E. B. Welch. 1992. Contribution of benthic blue-green algal recruitment to lake populations and phosphorus translocation. Freshwater Biol. 27:249260.
11. Bergman B.,, A. Matveyev,, and U. Rasmussen. 1996. Chemical signalling in cyanobacterial-plant symbioses. Trends Plant Sci. 1:191197.
12. Bergman, B.,, J. R. Gallon,, A. N. Rai,, and L. J. Stal. 1997. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 19:139185.
13. Bermudes, D.,, G. Hinkle,, and L. Margulis. 1994. Do prokaryotes contain microtubules? Microbiol. Rev. 58:387400.
14. Bhattacharya, D.,, and L. Medlin. 1995. The phytogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J. Phycol. 31:489498.
15. Bi, E.,, and J. Lutkenhaus. 1991. FtsZ ring structure associated with division in Escherichia coli. Nature 354:161164.
16. Billi, D.,, and M. Grilli Caiola. 1996. Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol. 133:563571.
17. Böhme, H. 1998. Regulation of nitrogen fixation in heterocyst-forming cyanobacteria. Trends Plant Sci. 3:346351.
18. Bryant, D. A., 1991. Cyanobacterial phycobilisomes: progress towards complete structural and functional analysis via molecular genetics, p. 257300. In L. Bogorad, and I. K. Vasil (ed.). Cell Culture and Somatic Cell Genetics of Plants. Academic Press Inc., New York, N.Y.
19. Bryant, D. A. (ed.). 1994. The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
20. Campbell, D.,, J. Houmard,, and N. Tandeau de Marsac. 1993. Electron transport regulates cellular differentiation in the filamentous cyanobacterium Calothrix. Plant Cell 5:451463.
21. Campbell, E. L.,, and J. C. Meeks. 1989. Characteristics of hormogonia formation by symbiotic Nostoc spp. in response to the presence of Anthocerospunctatus or its extracellular products. Appl. Environ. Microbiol. 55:125131.
22. Campbell, E. L.,, K. D. Hagen,, M. F. Cohen,, M. L. Summers,, and J. C. Meeks. 1996. The devR gene product is characteristic of receivers of two-component regulatory systems and is essential for heterocyst development in the filamentous cyanobacterium Nostoc sp. strain ATCC 29133. J. Bacteriol. 178:20372043.
23. Cardcmil, L.,, and C. P. Wolk. 1976. The polysaccharides from heterocyst and spore envelopes of a blue-green alga. Methylation analysis and structure of the backbones. J. Biol. Chem. 251:29672975.
24. Cardemil, L.,, and C. P. Wolk. 1979. The polysaccharides from heterocyst and spore envelopes of a blue-green alga. Structure of the basic repeating unit. J. Biol. Chem. 254:736741.
25. Cardemil, L.,, and C. P. Wolk. 1981. Polysaccharides from the envelopes of heterocysts and spores of the blue-green algae Anabaena variabilis and Cylindrospermum licheniforme. J. Phycol. 17:234240.
26. Carr, N. G.,, and B. A. Whitten (ed.) 1982. The Biology of Cyanobacteria. Black well Scientific Publications, Oxford, United Kingdom.
27. Carter, H.J. 1856. Notes on the freshwater infusoria of the island of Bombay. No. 1. Organisation. Anu. Mag. Nat. Hist. (2nd series) 18:115132, 221249.
28. Castenholz, R. W., 1989a. Order Nostocales, p. 17801793. In J. T. Staley,, M. P. Bryant,, N. Pfennig,, and J. G. Holt (ed.), Beigey's Manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore, Md.
29. Castenholz, R. W., 1989b. Order Stigonematales, p. 17941799. In J. T. Staley,, M. P. Bryant,, N. Pfennig,, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore, Md.
30. Castenholz, R. W. 1992. Species usage, concept, and evolution in the cyanobacteria (blue-green algae). J. Phycol. 28:737745.
31. Castenholz, R. W.,, and J. B. Waterbury,. 1989. Preface, p. 17101727. In J. T. Staley,, M. P. Bryant,, N. Pfennig,, and J. G. Holt (ed.), Beigey's Manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore, Md.
32. Cha, J. H.,, and G. C. Stewart. 1997. The divIVA locus of Bacillus subtilis. J. Bacteriol. 179:16711683.
33. Chauvat, F.,, B. Corre,, M. Herdman,, and F. Josct-Espardellicr. 1982. Energetic and metabolic requirements for the germination of akinetes of the cyanobacterium Nostoc PCC 7524. Arch. Microbiol. 133:4449.
34. Cohen, M. F.,, and J. C. Meeks. 1997. A hormogonium regulating locus, hnnUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatus. Mol. Plant-Microbe Interact. 10: 280289.
35. Cohen, M. F.,, J. G. Wallis,, E. L. Campbell,, and J. C. Meeks. 1994. Transposon mutagenesis of Nostoc sp. strain ATCC 29133, a filamentous cyanobacterium with multiple cellular differentiation alternatives. Microbiology 140:32333240.
36. Cohn, F. 1877. Untersuchungen über Bakterien. IV. Beitragc zur Biologie der Bacillen, Beitr. Biol. Pflanz. 2:249276.
37. Damerval, T.,, J. Houmard,, G. Guglielmi,, K. Csiszar,, and N. Tandeau deMarsac. 1987. A developmentally regulated gvpABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix 7601. Gene 54:8392.
38. Damerval, T.,, G. Guglielmi,, J. Houmard,, and N. Tandeau de Marsac. 1991. Hormogonium differentiation in the cyanobacterium Calothrix: a photoregulated developmental process. Plant Cell 3:191201.
39. de Bary, A. 1863. Beitrag zur Kenntnis der Nostoca-ceen insbesondere der Rivularien. Flora (Jena) 35: 553560.
40. Delwiche, C. F.,, and J. D. Palmer. 1997. The origin of plastids and their spread via secondary symbiosis. Plant Syst. Evol. S11:5386.
41. Doherty, H. M.,, and D. G. Adams. 1995. Cloning and sequence of ftsz and flanking regions from the cyanobacterium Anabaena PCC 7120. Gene 163: 9396.
42. Douglas, S. E. 1992. Eukaryote-eukaryote endosymbioses: insights from studies of a cryptomonad alga. BioSystems 28:5768.
43. Douglas, S. E., 1994. Chloroplast origins and evolution, p. 91118. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
44. Edwards, D. H.,, and J. Errington. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24:905915.
45. Elhai, J.,, and C. P. Wolk. 1990. Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J. 9:33793388.
46. Erickson, H. P. 1995. FtsZ, a prokaryotic homolog of tubulin? Cell 80:367370.
47. Erickson, H. P.,, D. W. Taylor,, K. A. Taylor,, and D. Bramhill. 1996. Bacterial cell division protein FtsZ assembles into protofilamcnt sheets and mini-rings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. USA 93:519523.
48. Ernst, A.,, T. Black,, Y. Cai,, J.-M. Panoff,, D. N. Tiwari,, and C. P. Wolk. 1992. Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism. J Bacteriol. 174:60256032.
49. Fay, P. 1969. Cell differentiation and pigment composition in Anabaena cylindrica. Arch. Mikrobiol. 67: 6270.
50. Fay, P. 1988. Viability of akinetes of the planktonic cyanobacterium Anabaena circinalis. Proc. R. Soc. Lond. B 234:283301.
51. Fay, P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev. 56:340373.
52. Fay, P.,, J. A. Lynn,, and S. C. Majer. 1984. Akinete development in the planktonic blue-green alga Anabaena circinalis. Br. Phycol. J. 19:163173.
53. Fisher, R. W.,, and C. P. Wolk. 1976. Substance stimulating the differentiation of spores of the blue-green alga Cylindrospermum licheniforme. Nature 259: 394395.
54. Fleming, H.,, and R. Haselkorn. 1973. Differentiation in Nostoc muscorum: nitrogenase is synthesized in heterocysts. Proc. Natl. Acad. Sci. USA 70: 27272731.
55. Fleming, H.,, and R. Haselkorn. 1974. The program of protein synthesis during heterocyst differentiation in nitrogen-fixing blue-green algae. Cell 3:159170.
56. Flores, E.,, and A. Herrero,. 1994. Assimilacory nitrogen metabolism and its regulation, p. 487517. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
57. Foulds, I. J.,, and N. G. Carr. 1981. Unequal cell division preceding heterocyst development in Chlorogloeopsis fritschii. FEMS Microbiol. Lett. 10: 223226.
58. Fredriksson, C.,, G. Malin,, P. J. A. Siddiqui,, and B. Bergman. 1998. Aerobic nitrogen fixation is confined to a subset of cells in the non-heterocystous cyanobacterium Symploca PCC 8002. New Phytol. 140:531538.
59. Friedmann, E. I.,, and R. Ocampo-Friedmann,. 1984. Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat, p. 177185. In M.J. Klug, and C. A. Reddy (ed.), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.
60. Friedmann, E. I.,, and R. Ocampo-Friedmann. 1985. Blue-green algae in arid cryptoendolithic habitats. Arch. Hydrobiol. Suppl. 71:349350.
61. Gallon, J. R. 1992. Tansley review no. 44. Reconciling the incompatible: N2 fixation and O2. New Phytol. 122:571609.
62. Gantar, M.,, N. W. Kerby,, and P. Rowell. 1993. Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria. III. The role of a hormogonia-promoting factor. New Phytol. 124:505513.
63. Giovannoni, S. J.,, R. Turner,, G. J. Olsen,, S. Bams,, D.J. Lane,, and N. R. Pace. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170:35843592.
64. Glazer, A. N., 1987. Phycobilisomes: assembly and attachment, p. 6994. In P. Fay,, and C. van Baalen (ed.), The Cyanobacteria. Elsevier Science Publishers 13. V., Amsterdam, The Netherlands.
65. Golubic, S.,, V. N. Sergeev,, and A. H. Knoll. 1995. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28: 285298.
66. Gorelova, O. A.,, O. I. Baulina,, T. G. Korzhencvskaya,, and M. V. Gusev. 1997. Formation of hormogonia and their taxis during the interaction of cyanobacteria and plants. Microbiology 66: 669675.
67. Grilli Caiola, M.,, R. Ocampo-Friedmann,, and E. I. Friedmann. 1993. Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32:315322.
68. Grilli Caiola, M.,, D. Billi,, and E. I. Friedmann. 1996a. Effect of desiccation on the envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur. J. Phycol. 31:97105.
69. Grilli Caiola, M.,, A. Canini,, and E. I. Friedmann. 1996b. Superoxide dismutase (Fe-SOD) localization in Chroococcidiopsis sp. (Chroococcales). Phycologia 35:9094.
70. Häder, D.-P.,, and E. Hoiczyk,. 1992. Gliding motility, p. 138. In M. Melkonian (ed.), Algal Cell Motility. Chapman and Hall, New York, N.Y.
71. Halfen, L. N., 1979. Gliding movements, p. 250267. In W. Haupt, and M. E. Feinleib (ed.), Encyclopedia of Plant Physiology, New Series, vol. 7. Springer-Verlag, Heidelberg, Germany.
72. Halfen, L. N., and R. W. Castenholz. 1971. Gliding in a blue-green alga, Oscillatoria princeps. J. Phycol. 7:133145.
73. Haselkorn, R. 1991. Genetic systems in cyanobacteria. Methods Enzymol. 204:418430.
74. Hayes, P. K.,, C. M. Lazarus,, A. Bees,, J. E. Walker,, and A. E. Walsby. 1988. The protein encoded by gvpC is a minor component of gas vesicles isolated from the cyanobacteria Anabaena flosaquae and Microcystis sp. Mol. Microbiol. 2:545552.
75. Helmchen, T. A.,, D. Bhattacharya,, and M. Melkonian. 1995. Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. J. Mol. Evol. 41:203210.
76. Herdman, M., 1987. Akinetes: structure and function, p. 227250. In P. Fay, and C. van Baalen (ed.), The Cyanobacteria. Elsevier Science Publishers B. V., Amsterdam, The Netherlands.
77. Herdman, M. 1988. Cellular differentiation: akinetes. Methods Enzymol. 167:222232.
78. Herdman, M.,, and R. Rippka. 1988. Cellular differentiation: hormogonia and baeocytes. Methods Enzymol. 167:232242.
79. Hernández-Muñiz, W. Personal communication.
80. Hernandez-Muñiz, W.,, and S. E. StevensJr.. 1987. Characterization of the motile hormogonia of Mastigocladus laminosus. J. Bacteriol. 169:218223.
81. Hernandez-Muñiz, W.,, and S. E. StevensJr.. 1994. Development of motility in cultures of the cyanobacterium Mastigocladus laminosus. FEMS Microbiol. Ecol. 15:259264.
82. Hirosawa, T.,, and C. P. Wolk. 1979a. Factors controlling the formation of akinetes adjacent to heterocysts in the cyanobacterium Cylindrospennum licheniforme Kütz. J. Gen. Microbiol. 114:423432.
83. Hirosawa, T.,, and C. P. Wölk. 1979b. Isolation and characterization of a substance which stimulates the formation of akinetes in the cyanobacterium Cylindrospennum lichenifomte Kütz. J. Gen. Microbiol. 114:433441.
84. Hoiczyk, E.,, and W. Baumeister. 1995. Envelope structure of four gliding filamentous cyanobacteria. J. Bacteriol. 177:23872395.
85. Hoiczyk, E.,, and W. Baumeister. 1997. Oscillin, an extracellular, Ca2+-binding glycoprotein essential for the gliding motility of cyanobacteria. Mol. Microbiol. 26:699708.
86. Hoiczyk, E.,, and W. Baumeister. 1998. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr. Biol. 8:11611168.
87. Holland, H. J.,, and N. J. Beukes. 1990. A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am. J. Sci. 290A:134.
88. Holt, J. G.,, N. R. Krieg,, P. H. A. Sneath,. J. T. Staley,, and S. T. Williams (ed.). 1994. Bergey's Manual of Determinative Bacteriology, vol. 9. Williams and Wilkins, Baltimore, Md.
89. Houmard, J. 1994. Gene transcription in filamentous cyanobacteria. Microbiology 140:433441.
90. Huber, A. L. 1985. Factors affecting the germination of akinetes of Nodularia spumigena (Cyanobacteriaceae). Appl. Environ. Microbiol. 49:7378.
91. Jarosch, R. 1964. Gleitbewegung und Torsion von Oscillatorien. Österreich Bol. Z. 111:143148.
92. Johansson, C.,, and B. Bergman. 1994. Reconstruction of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytol. 126: 643652.
93. Kinvan, I. G.,, and D. G. Adams. Unpublished observations.
94. Knight, C. D.,, and D. G. Adams. 1996. A method for studying Chemotaxis in nitrogen-fixing cyano-bacterium-plant symbioses. Physiol. Mol. Plant Pathol. 49:7377.
95. Koch, R. 1877. Untersuchungen über Bakterien. V. Die Aetiologie der Milzbrand-Krankheit, begründet auf der Entwicklungsgeschichte des Bacillus anthracis. Beitr. Biol. Pflanz. 2:227310.
96. LazarofT, N., 1973. Photomorphogenesis and nostocacean development, p. 279319. In N. G. Carr, and B. A. Whitton (ed.), The Biology of Blue-Green Algae. Blackwell Scientific Publications, Oxford, United Kingdom.
97. Lazcano, A.,, and S. L. Miller. 1994. How long did it take for life to begin and evolve to cyanobacteria? J. Mol. Evol. 39:546554.
98. Leganés, F. 1994. Genetic evidence that hepA gene is involved in the normal deposition of the envelope of both heterocysts and akinetes in Anabaena variabilis ATCC 29413. FEMS Microbiol. Lett. 123: 6368.
99. Leganés, F.,, F. Fernández-Piñas,, and C. P. Wolk. 1994. Two mutations that block heterocyst differentiation have no effect on akinete differentiation in Nostoc ellipsosporum. Mol. Microbiol. 12:679684.
100. Leganés, F.,, F. Fernández-Piñas,, and C. P. Wolk. 1998. A transposition-induced mutant of Nostoc ellipsosporum implicates an arginine-biosynthetic gene in the formation of cyanophycin granules and of functional heterocysts and akinetes. Microbiology 144:17991805.
101. Li, R.,, M. Watanabc,, and M. M. Watanabe. 1997. Akinete formation in planktonic Anabaena spp. (cyanobacteria) by treatment with low temperature. J. Phycol. 33:576584.
102. Lin, S. J.,, S. Henze,, P. Lundgrcn,, B. Bergman,, and E.J. Carpenter. 1998. Whole-cell immuno-localization of nitrogenase in marine diazotrophie cyanobacteria, Trichodesmium spp. Appl. Environ. Microbiol. 64:30523058.
103. Livingstone, D.,, and G. H. M. Jaworski. 1980. The viability of akinetes of blue-green algae recovered from the sediments of Rostherne Mere. Br. Phycol. J. 15:357364.
104. Livingstone, D.,, T. M. Klioja,, and B. A. Whitton. 1983. Influence of phosphorus on physiology of a hair-forming blue-green alga (Calothrix parietina) from an upland stream. Phycologia 22:345350.
105. Löffelhardt, W.,, and H. J. Bohnert. 1994a. Structure and function of the cyanelle genome. Int. Rev. Cytol. 151:2965.
106. Löffelhardt, W.,, and H.J. Bohnert,. 1994b. Molecular biology of cyanelles, p. 6589. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
107. Lutkenhaus, J. 1993. FtsZ ring in bacterial cytokinesis. Mol. Microbiol. 9:404409.
108. Lutkenhaus, J.,, and A. Mukherjee,. 1996. Cell division, p. 16151626. In F. C. Neidhardt,, R. Curtiss III,. J. L. Ingraham,, E. C. C. Lin,. K. B. Low,, B. Magasanik,, W. S. Heznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
109. Mahasneh, I. A.,, S. L. J. Grainger,, and B. A. Whitton. 1990. Influence of salinity on hair formation and phosphatase activities of the blue-green alga (cyanobacterium) Calothrix viguieri D253. Br. Phycol. J. 25:2532.
110. Matthijs, H. C. P.,, G. W. M. van der Staay,, and L. R. Mux,. 1994. Prochlorophytes: the 'other' cyanobacteria? p. 4964. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
111. Meeks, J. C., 1990. Cyanobacterial-bryophyte associations, p. 4363. In A. N. Rai (ed.), CRC Handbook of Symbiotic Cyanobacteria. CRC Press Inc., Boca Raton, Fla.
112. Meeks, J. C. 1998. Symbiosis between nitrogen-fixing cyanobacteria and plants. Bioscience 48: 266276.
113. Merritt, M. V.,, S. S. Sid,, L. Mesh,, and M. M. Allen. 1994. Variations in the amino acid composition of cyanophycin in the cyanobacterium Synechocystis sp. PCC 6308 as a function of growth conditions. Arch. Microbiol. 162:158166.
114. Mukherjee, A.,, and J. Lutkenhaus. 1994. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176:27542758.
115. Mur, L. R.,, and T. Burger-Wiersma,. 1992. The order Prochlorales, p. 21052110. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes, vol. II. Springer-Verlag, Heidelberg, Germany.
116. Murry, M. A.,, P. C. Hallenbeck,, and J. R. Benemann. 1984. Immunochemical evidence that nitrogenase is restricted to the heterocysts of Anabaena cylindrica. Arch. Microbiol. 137:194199.
117. Nanninga, N. 1998. Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62:110129.
118. Neely-Fisher, D.,, W. White,, and R. Fisher. 1989. Fructose-induced dark germination of Anabaena akinetes. Curr. Microbiol. 19:139142.
119. Nichols, J. M.,, and D. G. Adams,. 1982. Akinetes, p. 387412. In N. G. Carr, and B. A. Whitton (ed.), The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford, United Kingdom.
120. Nichols, J. M.,, D. G. Adams,, and N. G. Carr. 1980. Effect of canavanine and other amino acid analogues on akinete formation in the cyanobacterium Anabaena cylindrica. Arch. Microbiol. 127:6775.
121. Padan, E.,, and Y. Cohen,. 1982. Anoxygenic photosynthesis, p. 215235. In N. G. Carr, and B. A. Whitton (ed.), The Biology of Cyanobacteria. Black-well Scientific Publications, Oxford, United Kingdom.
122. Palinska, K. A.,, and W. E. Krumbcin. 1998. Patterns of growth in coccoid, aggregate forming cyanobacteria. Ann. Bot. Fennici 35:219227.
123. Post, A. F.,, and G. S. Bullerjahn. 1994. The photosynthetic machinery in Prochlorophytes: structural properties and ecological significance. FEMS Microbiol. Rev. 13:393414.
124. Rabenhorst, L. 1865. Flora Europaea Algarum, volume 2. Leipzig, Germany.
125. Rachel, R.,, D. Pum,, J. Šmarda,, D. Šmajs,, J. Komrska,, V. Krzyzánek,, G. Rieger,, and K. O. Stetter. 1997. Fine structure of S-layers. FEMS Microbiol. Rev. 20:1323.
126. Rasmussen, U.,, C. Johansson,, and B. Bergman. 1994. Early communication in the Gunnera-Nostoc symbiosis: plant-induced cell differentiation and protein synthesis in the cyanobacterium. Mol. Plant-Microbe Interact. 7:696702.
127. Rippka, R. 1988. Recognition and identification of cyanobacteria. Methods Enzymol. 167:2867.
128. Rippka, R.,, and R. Y. Stanier. 1978. The effects of anaerobiosis on nitrogenase synthesis and heterocyst development by Nostocacean cyanobacteria.J. Gen. Microbiol. 105:8394.
129. Rippka, R.,, J. Deruelles,, J. B. Waterbury,, M. Herdman,, and R. Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 161.
130. Rippka, R.,, J. B. Waterbury,, and R. Y. Stanier,. 1981. Provisional generic assignments for cyanobacteria in pure culture, p. 247256. In M. P. Starr,, H. Stolp,, H. G. Truper,, A. Balows,, and H. G. Schlegel (ed.), The Prokaryotes, vol. 1. Springer-Verlag, Heidelberg, Germany.
131. Robinson, B. L.,, and J. H. Miller. 1970. Photomorphogenesis in the blue-green alga Nostoc commune 584. Physiologia Plantarum 23:461472.
132. Rothfield, L. I.,, and S. S. Justice. 1997. Bacterial cell division; the cycle of the ring. Cell 88:581584.
133. Sarma, T. A.,, and J. I. S. Khattar. 1993. Akinete differentiation in phototrophic, photoheterotrophic and chemoheterotrophic conditions in Anabaena torulosa. Folia Microbiol. 38:335340.
134. Schmid, M. B.,, and U. von Freiesleben,. 1996. Nucleoid segregation, p. 16621671. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
135. Schmidt, A. 1988. Sulfur metabolism in cyanobacteria. Methods Enzymol. 167:572583.
136. Schopf, J. W. 1994. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl. Acad. Sci. USA 91:67356742.
137. Schopf, J. W., 1996. Are the oldest fossils cyanobacteria? p. 2361. In D. M. Roberts,, P. Sharp,, G. Alderson,, and M. Collins (ed.). Evolution of Microbial Life. Cambridge University Press, Cambridge, United Kingdom.
138. Sili, C.,, A. Ena,, R. Matcrassi,, and M. Vincenzini. 1994. Germination of desiccated aged akinetes of alkaliphilic cyanobacteria. Arch. Microbiol. 162: 2025.
139. Simon, R. D. 1977. Macromolecular composition of spores from the filamentous cyanobacterium Anabaena cylindrica. J. Bacteriol. 129:11541155.
140. Simon, R. D., 1987. Inclusion bodies in the cyanobacteria: cyanophycin, polyphosphate, polyhedral bodies, p. 199225. In P. Fay, and C. van Baalen (ed.), The Cyanobacteria. Elsevier Science Publishers B. V., Amsterdam, The Netherlands.
141. Sinclair, C.,, and B. A. Whitton. 1977a. Influence of nutrient deficiency on hair formation in the Rivulariaceae. Br. Phycol. J. 12:297313.
142. Sinclair, C.,, and B. A. Whitton. 1977b. Influence of nitrogen source on morphology of Rivulariaceae (Cyanophyta). J. Phycol. 13:335340.
143. Sleytr, U. B. 1997. Basic and applied S-layer research: an overview. FEMS Microbiol. Rev. 20:512.
144. Soriente, A.,, A. Gambacorta,, A. Trincone,, C. Sili,, M. Vincenzini,, and G. Sodano. 1993. Het-erocyst glycolipids of the cyanobacterium Cyanospira ripplikae. Phytochemistry 33:393396.
145. Stanier, G. 1988. Fine structure of cyanobacteria. Methods Enzymol. 167:157172.
146. Stanier, R. Y.,, and G. Cohen-Bazire. 1977. Phototrophic prokaryotes: the cyanobacteria. Annu. Rev. Microbiol. 31:225274.
147. Sutherland, J. M.,, M. Herdman,, and W. D. P. Stewart. 1979. Akinetes of the cyanobacterium Nostoc PCC 7524: macromolecular composition, structure and control of differentiation. J Gen. Microbiol. 115:273287.
148. Sutherland, J. M.,, J. Reaston,, W. D. P. Stewart,, and M. Herdman. 1985a. Akinetes of the cyanobacterium Nostoc PCC 7524: macromolecular and biochemical changes during synchronous germination. J. Gen. Microbiol. 131:28552863.
149. Sutherland, J. M.,, W. D. P. Stewart,, and M. Herdman. 1985b. Akinetes of the cyanobacterium Nostoc PCC 7524: morphological changes during synchronous germination. Arch. Microbiol. 142: 269274.
150. Tandeau de Marsac, N., 1994. Differentiation of hormogonia and relationships with other biological processes, p. 825842. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
151. Tandeau de Marsac, N.,, and J. Houmard. 1993. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol. Rev. 104:119190.
152. Tandeau de Marsac, N.,, D. Mazel,, D. A. Bryant,, and J. Houmard. 1985. Molecular cloning and nucleotide sequence of a developmentally regulated gene from the cyanobacterium Calothrix PCC 7601: a gas vesicle protein gene. Nucleic Acids Res. 13:72237236.
153. Tandeau de Marsac, N.,, D. Mazel,, T. Damerval,, G. Guglielmi,, V. Capuano,, and J. Houmard. 1988. Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601: light-harvesting complexes and cell differentiation. Photosyuth. Res. 18:99132.
154. Thicl, T. 1990. Protein turnover and heterocyst differentiation in the cyanobacterium Anabaena variabilis. J. Phytol. 26:5054.
155. van Baalen, C.,, and P. Fay (ed.). 1987. The Cyanobacteria. Elsevier Science Publishers, New York, N.Y.
156. van Dok, W.,, and B. T. Hart. 1996. Akinete differentiation in Anabaena circinalis (Cyanophyta). J. Phycol. 32:557565.
157. van Dok, W.,, and B. T. Hart. 1997. Akinete germination in Anabaena circinalis (Cyanophyta).J. Phycol. 33:1217.
158. Vicente, M.,, and J. Errington. 1996. Structure. function and controls in microbial division. Mol. Microbiol. 20:17.
159. Walsby, A. E. 1985. The permeability of heterocysts to the gases nitrogen and oxygen. Proc. R. Soc. Land. B 226:345366.
160. Walsby, A. E. 1994. Gas vesicles. Microbiol. Rev. 58: 94144.
161. Waterbury, J. B., 1989. Order Pleurocapsales Geitler 1925, emend. Waterbury and Stanier 1978, p. 17461770. In J. T. Staley,, M. P. Bryant,, N. Pfennig,, and J. G. Holt, (ed.), Bergey's Manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore, Md.
162. Waterbury, J. B.,, and R. Y. Stanier. 1978. Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol. Rev. 42:244.
163. Waterbury, J. B.,, J. M. Willey,, D. G. Franks,, F. W. Valois,, and S. W. Watson. 1985. A cyanobacterium capable of swimming motility. Science 230:7476.
164. Weckesser, J.,, and U. J. Jurgcns. 1988. Cell walls and external layers. Methods Enzymol. 167: 173188.
165. Werner, D. 1992. Symbiosis of Plants and Microbes. Chapman and Hall, London, United Kingdom.
166. Whitton, B. A., 1987a. Survival and dormancy of blue-green algae, p. 109167. In Y. Henis (ed.). Survival and Dormancy of Microorganisms. Wiley, New York, N.Y.
167. Whitton, B. A., 1987b. The biology of Rivulariaceae, p. 513534. In P. Fay, and C. van Baalen (ed.), The Cyanobacteria. Elsevier Science Publishers B. V., Amsterdam, The Netherlands.
168. Whitton, B. A., 1989. Genus I. Calothrix Agardh 1824, p. 17911793. In J. T. Staley,, M. P. Bryant,, N. Pfennig,, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore, Md.
169. Whitton, B. A., 1992. Diversity, ecology, and taxonomy of the cyanobacteria, p. 151. In N. H. Mann, and N. G. Carr (ed.), Photosynthetic Prokaryotes. Plenum Press, New York, N.Y.
170. Whitton, B. A.,, and M. Potts (ed. The Ecology of Cyanobacteria: Their Diversity in Time and Space, in press. Kluwer Academic Publishers, Dordrecht, The Netherlands.
171. Wilmotte, A., 1994. Molecular evolution and taxonomy of the cyanobacteria, p. 125. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
172. Wolk, C. P. 1965. Control of sporulation in a blue-green alga. Dev. Biol. 12:1535.
173. Wolk, C. P. 1966. Evidence of a role of heterocysts in the sporulation of a blue-green alga. Am. J. Bot. 53:260262.
174. Wolk, C. P., 1982. Heterocysts, p. 359386. In N. G. Carr, and B. A. Whitton (ed.), The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford, United Kingdom.
175. Wolk, C. P.,, J. Elhai,, T. Kuritz,, and D. Holland. 1993. Amplified expression of a transcriptional pattern formed during development of Anabaena. Mol. Microbiol. 7:441445.
176. Wolk, C. P.,, A. Ernst,, and J. Elhai,. 1994. Heterocyst metabolism and development, p. 769823. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
177. Wyman, M.,, and P. Fay. 1986. Interaction between light quality and nutrient availability in the differentiation of akinetes in the planktonic cyanobacterium Gloeotrichia echinulata. Br. Phycol. J. 21: 147153.
178. Yamamoto, Y. 1975. Effect of desiccation on the germination of akinetes of Anabaena cylindrica. Plant Cell Physiol. (Tokyo) 16:749752.
179. Yelloly, J. M.,, and B. A. Whitton. 1996. Seasonal changes in ambient phosphate and phosphatase activities of the cyanobacterium Rivularia atra in inter-tidal pooh at Tyne Sands, Scotland. Hydrobiologia 325:201212.
180. Yoon, H.-S.,, and J. W. Golden. 1998. Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935938.
181. Zhang, C. -C,, S. Huguenin,, and A. Friry. 1995. Analysis of genes encoding the cell division protein FtsZ and a glutathione synthetase homologue in the cyanobacterium Anabaena sp. PCC 7120. Res. Microbiol. 146:445455.

Tables

Generic image for table
TABLE 1

Comparison of the developmental cycles of pleurocapsalean cyanobacteria

Citation: Adams D. 2000. Cyanobacterial Phylogeny and Development: Questions and Challenges, p 51-81. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error