1887

Chapter 5 : The Paleobiologic Record of Cyanobacterial Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Paleobiologic Record of Cyanobacterial Evolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap05-2.gif

Abstract:

This chapter considers one of the broadest questions of microbial evolutionary development, namely, what does the paleobiological record suggest about the tempo and mode of prokaryotic, especially cyanobacterial evolution? By the mid-1800s, when Darwin unveiled his grand theory, major features o f the Phanerozoic history of life, spanning the most recent several hundred million years, had already been deciphered. By the late 1980s, these had coalesced to produce the first rRNA phylogenic trees, powerful new means to decipher evolutionary relations among organisms of the modern world. Microbial mat-building communities in such settings today are almost always dominated by members of the and , the same two families inferred to be present in the same environments during the Precambrian. The isotopic compositions of organic and carbonate carbon in the Apex chert and associated sedimentary units evidence the occurrence of photosynthetic CO fixation like that occurring in extant cyanobacterial populations grown in CO -rich environments. Other paleobiological issues have drawn less attention, among them biotic interactions with long-term environmental change and the physiology and biochemistry of ancient fife. The available isotopic geochemical data add support to this interpretation and, like the known record of cellularly preserved microbial fossils, evidence the presence of other early-evolved prokaryotic lineages as well. Like the concepts of bradytely and arrested evolution, inference of cyanobacterial evolutionary rates is based on morphologic comparison of fossils and their living relatives. The versatility of cyanobacteria is shown especially by the and .

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Timeline of prokaryotic history, based on the known Precambrian paleobiological record, compared with an estimate of the temporal distribution of geologic units that have survived to the present; check marks denote the presence of fossils inferred to probably belong to the groups listed in each of the 50-million-year-long segments indicated. (Data from ; and )

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Permineralized Precambrian chroococcaceans in pétrographie thin sections (A and ? to J) and acid-resistant residues (B, K, and L) of flat-laminated stromatolitic chert from the ∼850-million-years-old Bitter Springs Formation of Northern Territory, Australia, shown in optical photomicrographs (A to J) and scanning electron micrographs (K and L); (A, and A, C] to C, and D] and D) single specimens at differing focal depths. (A) (B) (C) (D) (E) (F) (G) (H and J) (I) (К and L) unnamed paired cells. (After .)

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Permineralized oscillatoriacean trichomes (A to I, К, and L) and a cylindrical sheath (J) in pétrographie thin sections of flat-laminated stromatolitic chert from the ∼850-million-year-old Bitter Springs Formation of Northern Territory, Australia. Because of the sinuous, three-dimensional preservation of these petrified carbonaceous microfossils, all except the specimen in panel J are shown in composite photomicrographs. (A, F, and L) (B) (C) (D) unnamed like trichome; (E) (G) (H) (I) (J) (K) (After )

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Modern cyanobacteria (A, C, E, and G) from mat-building stromatolitic communities of Baja, Mexico, compared with their Precambrian morphological counterparts (B, D, F, and H) (bars, 10 μπι). (A) encompassed by a cylindrical mucilagenous sheath; (B) a similarly ensheathed oscillatoriacean, shown in an acid-resistant residue of carbonaceous siltstone from the ∼950-million-year-old Lakhanda Formation of the Khabarovsk region of Siberia, Russia. (C) (D) a oscillatoriacean shown in an acid-resistant residue of carbonaceous siltstone from the ∼850-million-year-old Miroedikha Formation of the Turukhansk region of Siberia, Russia. (E) cf. a four-celled colony having a thick distinct encompassing sheath; (F) a similarly sheath-enclosed four-celled colonial chroococcacean shown in pétrographie thin section of bedded chert from the ∼1.5-billion-year-old Satka Formation of southern Bashkiria, Russia. (G) cf. (H) an colonial entophysalidacean from stromatolitic chert of the ∼2.15-billion-year-old Belcher Group of Northwest Territories, Canada. (After )

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Permineralized carbonaceous specimens of the colonial pleurocapsacean in pétrographie thin sections of domical stromatolitic chert from the ∼770-million-year-old Skillogalee Dolomite of South Australia, showing stages in its life cycle (a through e). (A) Single ellipsoidal cell; vertical (B) and horizontal (E) sections though a pincushion-like colony; (C and D) petrified, originally mucilagenous stalks like those reconstructed in panels d and e. (After .)

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Optical photomicrographs and interpretive drawings showing cellular, carbonaceous, cyanobacterium-like filaments in pétrographie thin sections of the —3.465-billion-year-old Apex chert of northwestern Western Australia. Because the petrified microbes are three dimensional and sinuous, composite photomicrographs have been used to show the specimens in panels A, B, D, and F through J; the scale in panel F shows the magnification of ?Б fossils, except as otherwise indicated in panels A, B, and D. (A and B) (C through F) (G) (H, I, andj) (After )

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Carbon-isotopic compositions of inorganic-carbon reservoirs, prokaryotic autotrophs, and Précambrien kerogens. The fractionation ranges for cultures and anaerobic microbiotas are recalculated for a COsource with 5C of — 7%o. (Data from ; and )

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap5
1. Abeliovich, A., andM. Shilo. 1972. Photooxidative death in blue-green algae. J. Bacteriol. 111:682689.
2. Abelson, P. H.,, and T. Hoering. 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc. Natl. Acad. Sci. USA 47:623632.
3. Altermann, W.,, and J. W. Schopf. 1995. Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res. 75: 6590.
4. Barghoorn, E. S.,, and S. A. Tyler. 1965. Microorganisms of the Gunflint chert. Science 147:563577.
5. Barghoorn, E. S.,, A. H. Knoll,, H. Dembricki,, and W. G. Meinschein. 1977. Variation in stable carbon isotopes in organic matter from the Gunflint Iron Formation. Geochim. Cosmochitn. Ada 41: 425430.
6. Barley, M. E.,, J. S. R. Dunlop,, J. E. Glover,, and D. I. Groves. 1979. Sedimentary evidence for an Archean shallow-water volcanic-sedimentary facies, eastern Pilbara Block, Western Australia. Earth Planet. Sci. Lett. 43:7484.
7. Belyaev, S. S.,, R. Wolkin,, W. R. Kenealy,, M. J. DeNiro,, S. Epstein,, and J. G. Zeikus. 1983. Methanogenic bacteria from the Bondyuzhskoe Oil Field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol. 45:691697.
8. Blake, T. S.,, and N. J. McNaughton,. 1984. A geochronological framework for the Pilbara region, p. 122. In D. K. Muhling,, D. K. Groves,, and R. S. Blake (éd.), Archean & Proterozoic Basins of the Pilbara, Western Australia: Solution and Mineralization Potential. Publication 9. University of Western Australia Geology Department and University Extension, Perth, Australia.
9. Brock, T. D. 1978. Thermophilic Microorganisms and Life at High Temperatures. Springer, New York, N.Y. >
10. Calder, J. A.,, and P. L. Parker. 1973. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Ada 37:133140.
11. Cameron, R. E. 1963. Morphology of representative blue-green algae. Ann. N. Y. Acad. Sci. 108: 412420.
12. Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev. 33:476504.
13. Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47:551578.
14. Cloud, P., 1983. Early biogeologic history: the emergence of a paradigm, p. 1431. In J. W. Schopf (éd.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.
15. Darwin, C. R. 1859. The Origin of Species by Means of Natural Selection. John Murray, London, England.
16. Davidson, I. R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27:28.
17. Davis, J. S. 1972. Survival records of the algae, and the survival role of certain algal pigments, fat, and mucilagenous substances. Biologist 54:5293.
18. Desikachary, T. V. 1959. Cyanophyta. Indian Council Agricultural Research, New Delhi, India.
19. Des Marais, D. J.,, J. Bauld,, A. C. Palmisano,, R. E. Summons,, and D. M. Ward,. 1992. The bio-geochemistry of carbon in modern microbial mats, p. 299308. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge University Press, New York, N.Y..
20. Doolittle, R. F.,, D.-F. Feng,, S. Tsang,, G. Cho, andE. Little. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470477.
21. Drouet, F. 1968. Revision of the Classification of the Oscillatoriaceae. Academy of Natural Sciences Philadelphia, monograph 15, . Fulton, Lancaster, Pa..
22. Drouet, F.,, and W. A. Daily. 1973. Revision of the Coccoid Myxophyceae. Hafner, New York, N.Y..
23. Fairchild, T. R. 1975. The Geologic Setting and Paleobiology of a Late Precambrian Stromatolitic Microflora from South Australia. Ph.D. thesis, University of California, Los Angeles.
24. Flowers, S.,, and F. R. Evans,. 1966. The flora and fauna of the Great Salt Lake Region, Utah, p. 367393. In H. Boyko (éd.), Salinity and Aridity. Junk, The Hague, The Netherlands.
25. Fogg, G. E., 1973. Physiology and ecology of marine blue-green algae, p. 368378. In N. G. Carr, and B. A. Whitton (éd.), The Biology of Blue-Green Algae. University of California Press, Berkeley, Calif..
26. Fogg, G. E.,, W. D. P. Stewart,, P. Fay,, and A. E. Walsby. 1973. The Blue-Green AIgae. Academic, New York, N.Y..
27. Forest, H. S.,, and C. R. Weston. 1966. Blue-green algae from Atacama Desert of northern Chile. J. Phycol. 2:163164.
28. Frémy, P. 1972. Cyanophycées des Côtes D'Europe. Asher, Amsterdam, The Netherlands.
29. Fuchs, G.,, R. Thauer,, H. Ziegler,, and W. Stichler. 1979. Carbon isotopic fractionation by Methanobacterium thermoautotrophicum. Arch. Microbiol. 120:135139.
30. Fuex, A. N. 1977. The use of stable carbon isotopes in hydrocarbon exploration. J. Geochem. Explor. 7: 155158.
31. Fuhs, G. W., 1968. Cytology of blue-green algae: light microscopic aspects, p. 213233. In D. F. Jackson (éd.), Algae, Man, and the Environment. Syracuse University Press, Syracuse, N.Y..
32. Games, L. M.,, and J. M. Hayes,. 1976. On the mechanisms of C02 and CH4 production in natural anaerobic environments, p. 5173. In J. O. Nriagu (éd.), Environmental Biogeochemistry,> vol. 1. Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles. Ann Arbor Science, Ann Arbor, Mich..
33. Garcia-Pichel, F.,, and R. W. Castenholz. 1991. Characterization and biological implications of a scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27:395409.
34. Giavannoni, S. J.,, S. Turner,, G. J. Olsen,, S. Barns,, D. J. Lane,, and N. R. Pace. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacterial. 170:35843592.
35. Godward, M. B. E., 1962. Invisible radiations, p. 551566. In R. A. Lewin (éd.), Physiology and Biochemistry of Algae. Academic, New York, N.Y..
36. Golubic, S., 1976a. Organisms that build stromatolites, p. 113126. In M. R. Walter (ed.), Stromatolites, Developments in Sedimentology 20. Elsevier, Amsterdam, The Netherlands.
37. Golubic, S., 1976b. Taxonomy of extant stromatolite-building cyanophytes, p. 127140. In M. R. Walter (ed.), Stromatolites, Developments in Sedimentology 20. Elsevier, Amsterdam, The Netherlands.
38. Golubic, S.,, and H. J. Hofmann. 1976. Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic mats: cell division and degradation. J. Paleontol. 50:10741082.
39. Golubic, S.,, V. N. Sergeev,, and A. H. Knoll. 1995. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28: 285298.
40. Grant, W. D.,, and B. J. Tindall,. 1986. The alkaHne saline environment, p. 2554. In R. A. Herbert, and G. A. Codd (éd.), Microbes in Extreme Environments. Academic, New York, N.Y..
41. Green, J. W.,, A. H. Knoll,, S. Golubic,, and K. Swett. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite "Series," central East Greenland. Am. J. Bot. 74:928940.
42. Green, J. W.,, A. H. Knoll,, and K. Sweet. 1988. Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central East Greenland. J. Paleontol. 62:835852.
43. Groves, D. I.,, J. S. R. Dunlop,, and R. Buick. 1981. An early habitat of life. Sci. Am. 245:6473.
44. Hayes, J. M., 1983. Geochemical evidence bearing on the origin of aerobiosis: a speculative hypothesis, p. 291301. In J. W. Schopf (ed.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.
45. Hayes, J. M. 1993. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Marine Geol. 113:111125.
46. Hayes, J. M., 1994. Global methanotrophy at the Archean-Proterozoic transition, p. 220236. In S. Bengtson (ed.), Early Life on Earth. Columbia University Press, New York, N.Y.
47. Hayes, J. M.,, I. R. Kaplan,, and K. M. Wedeking,. 1983. Precambrian organic geochemistry, preservation of the record, p. 93134. In J. W. Schopf (éd.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.
48. Hayes, J. M.,, R. Takigiku,, R. Ocampo,, H. J. Callot,, and P. Albrecht. 1987. Isotopic compositions and probable origins of organic molecules in the Eocene Messel Shale. Nature 329:4851.
49. Hofmann, H. J. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics.J. Paleontol. 50:10401073.
50. Hofmann, H. J.,, and J. W. Schopf,. 1983a. Early Proterozoic microfossils, p. 321360. In J. W. Schopf (éd.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.
51. Holland, H. D., 1994. Early Proterozoic atmospheric change, p. 237244. In S. Bengtson (éd.), Early Life on Earth. Columbia University Press, New York, N.Y..
52. Holo, H.,, and R. Sirevåg. 1986. Autotrophic growth and C02 fixation of Chloroflexus auranticus. Arch. Microbiol. 145:173180.
53. Horodyski, R. J.,, and J. A. Donaldson. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Res. 11: 125159.
54. House, C. H.,, J. W. Schopf,, T. M. Harrison,, and K. O. Stetter. 1999. Carbon isotopic analyses of individual microscopic fossils: a novel tool for astrobiology, abstr. P5.8 , p. 105. In Abstracts, 12th International Conference on the Origin of Life and 9th Meeting, International Society for the Study of the Origin of Life..
55. Jensen, T. E., 1993. Cyanobacterial ultrastructure, p. 751. In T. Berner (éd.), Ultrastructure ofMicroalgae. CRC, London, England.
56. Kakegawa, T.,, H. Kawai,, and H. Ohmoto. 1994. Biological activities and hydrothermal activity recorded in the ~2.5 Ga Mount McRae Shale, Hamersley District, Western Australia. II. Sulfur isotopic composition of pyrite. Resource Geol. 44: 284285.
57. Kaplan, I. R.,, and A. Nissenbaum. 1966. Anomalous carbon isotope ratios in nonvolatile organic material. Science 153:744745.
58. Klein, C.,, and N. J. Buekes,. 1992. Time distribution, stratigraphy, sedimentologic setting, and geochemistry of Precambrian iron-formations, p. 139146. In J. W. Schopf, and C. Klein (ed.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
59. Knoll, A. H., 1985. A paleobiological perspective on sabkhas, p. 407425. In G. M. Friedman, and W. E. Krumbein (éd.), Ecological Studies, vol. 53. Hyper-saline Ecosystems. Springer, New York, N.Y..
60. Knoll, A. H.,, and J. Bauld. 1989. The evolution and ecologie tolerance of prokaryotes. Trans. R. Soc. Edinburgh: Earth Sci. 80:209223.
61. Knoll, A. H.,, E. S. Barghoorn,, and S. Golubic. 1975. Palaeopleurocapsa wopfnerii gen. et sp. nov., a late-Precambrian blue-green alga and its modern counterpart. Proc. Natl. Acad. Sci. USA 72: 24882492.
62. Knoll, A. H.,, S. Golubic,, J. Green,, and K. Swett. 1986. Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature 321:856857.
63. Langworthy, T. A., 1978. Microbial life in extreme pH values, p. 279315. In D. J. Kushner (ed.), Microbial Life in Extreme Environments. Academic, New York, N.Y..
64. Lloyd, N. D. H.,, D. T. Cavin,, and D. A. Culver. 1977. Photosynthesis and photorespiration in algae. Plant Physiol. 59:936940.
65. Mendelson, C. V.,, and J. W. Schopf,. 1992. Proterozoic and selected Early Cambrian microfossils and microfossil-like objects, p. 865951. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
66. Mizutani, H.,, and E. Wada. 1982. Effect of high atmospheric CO2 on bdelta;13C of algae. Origins Life 12: 377390.
67. Mojzsis, S. J.,, G. Arrhenius,, K. D. McKeegan,, T. M. Harrison,, A. P. Nutman,, and C. R. Friend. 1996. Evidence of life on Earth before 3,800 million years ago. Nature 384:5559.
68. Ohmoto, H.,, T. Kakegawa,, and D. R. Lowe. 1993. 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Nature 262:555557.
69. O'Leary, M. H. 1981. Carbon isotopic fractionation in plants. Phytochemistry 20:553567.
70. Olson, J. M.,, and C. K. Pierson. 1987. Evolution of reaction centers of photosynthetic prokaryotes. Int. Rev. Cytol. 108:209248.
71. Pardue, J. W.,, R. S. Scalan,, C. Van Baaien,, and P. L. Parker. 1976. Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim. Cosmochim. Ada 40: 309312.
72. Parker, B. C.,, G. M. Simmons, Jr.,, G. Love,, R. A. Wharton,, and K. G. Seaburg. 1981. Modern stromatolites in Antarctic Dry Valley lakes. BioScience 31:656661.
73. Pierson, B. K.,, J. Bauld,, R. W. Castenholz,, E. D'Amelio,, D. J. Des Marais,, J. D. Farmer,, J. P. Grotzinger,, B. B. Jorgensen,, D. C. Nelso,, A. C. Palmisano,, J. W. Schopf,, R. E. Summons,, M. R. Walter,, and D. M. Ward,. 1992. Modern mat-building microbial communities: a key to the interpretation of Proterozoic stromatolitic communities, p. 245342. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
74. Roger, A. J.,, C. G. Clark,, and W. F. Doolittle. 1996. A possible mitochondrial gene in the amito-chondriate protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 93:1461814622.
75. Roger, A. J.,, S. G. Sâvard,, J. Tovar,, C. G. Clark,, M. W. Smith,, F. D. Gillin,, and M. L. Sogin. 1998. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl. Acad. Sci. USA 95: 229234.
76. Rubey, E. G.,, H. W. Jannasch,, and W. G. Deuser. 1987. Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 53:19401943.
77. Ruedemann, R. 1918. The paleontology of arrested evolution. N. Y. State Mus. Bull. 196:107134.
78. Ruedemann, R. 1922a. Additional studies of arrested evolution. Proc. Natl. Acad. Sci. USA 8:5455.
79. Ruedemann, R. 1922b. Further notes on the paleontology of arrested evolution. Am. Nat. 56:256272.
80. Schidlowski, M. 1988. A 3,800-million-yearisotopic record of life from carbon in sedimentary rocks. Nature 333:313318.
81. Schidlowski, M.,, J. M. Hayes,, and I. R. Kaplan,. 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen, p. 149186. In J. W. Schopf (ed.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.
82. Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. J. Paleontol. 42:651688.
83. Schopf, J. W. 1970. Precambrian micro-organisms and evolutionary events prior to the origin of vascular plants. Biol. Rev. Cambridge Phil. Soc. 45: 651688.
84. Schopf, J. W. 1972. Evolutionary significance of the Bitter Springs (Late Precambrian) microflora, p. 6877. In Proceedings of the 24th International Geologic Congress, Sect. 1. Precambrian Geology.
85. Schopf, J. W. 1974. The development and diversification of Precambrian life. Origins Life 5:119135.
86. Schopf, J. W. 1977. Biostratigraphic usefulness of stromatolitic Precambrian microbiotas: a preliminary analysis. Precambrian Res. 5:143173.
87. Schopf, J. W. 1987. "Hypobradytely": comparison of rates of Precambrian and Phanerozoic evolution. f. Vertebr. Paleontol. 7(Suppl. 3):25.
88. Schopf, J. W., 1992a. Historical development of Proterozoic micropaleontology, p. 179183. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
89. Schopf, J. W., 1992b. Times of origin and earliest evidence of major biologic groups, p. 587593. In J. W. Schopf, and C. Klein (ed.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
90. Schopf, J. W., 1992c. Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends, p. 195218. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
91. Schopf, J. W., 1992d. Informal revised classification of Proterozoic microfossils, p. 11191168. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
92. Schopf, J. W., 1992e. Paleobiology of the Archean, p. 2539. In J. W. Schopf, and C. Klein (ed.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
93. Schopf, J. W. 1993. Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640646.
94. Schopf, J. W. 1994a. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl. Acad. Sci. USA 91:67356742.
95. Schopf, J. W., 1994b. The oldest known records of life: stromatolites, microfossils, and organic matter from the Early Archean of South Africa and Western Australia, p. 193206. In S. Bengtson (éd.), Early Life on Earth. Columbia University Press, New York, N.Y..
96. Schopf, J. W. 1996a. Cyanobacteria: pioneers of the early Earth. Nova Hedwigia 112:1332.
97. Schopf, J. W., 1996b. Metabolic memories of Earth's earliest biosphere, p. 73107. In C. R. Marshall, and J. W. Schopf (éd.), Evolution and the Molecular Revolution. Jones & Bardett, Boston, Mass..
98. Schopf, J. W., 1998. Tracing the roots of the universal tree of life, p. 336362. In A. Brack (éd.), The Molecular Origins of Life: Assembling the Pieces. Cambridge University Press, Cambridge, United Kingdom.
99. Schopf, J. W. 1999. Cradle of Life, The Discovery of Earth's Earliest Fossih. Princeton University Press, Princeton, NJ..
100. Schopf, J. W., andj. M. Blacic. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. J. Paleontol. 45:925961.
101. Schopf, J. W.,, and M. R. Walter,. 1983a Archean microfossils: new evidence of ancient microbes, p. 214239. In J. W. Schopf (éd.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ..
102. Schopf, J. W.,, J. M. Hayes,, and M. R. Walter,. 1983b. Evolution of Earth's earliest ecosystems: recent progress and unsolved problems, p. 361384. In J. W. Schopf (ed.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ..
103. Shields, L. M.,, and F. Drouet. 1962. Distribution of terrestrial algae within the Nevada test site. Am. J. Bot. 49:547554.
104. Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York, N.Y..
105. Sirevâg, R.,, B. B. Buchanan,, J. A. Berry,, and J. H. Troughton. 1977. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112:3538.
106. Stetter, K. O. 1996. Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18:149158.
107. Strauss, H.,, and T. B. Moore,. 1992. Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples, p. 709798. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
108. Strauss, H.,, D. J. Des Marais,, J. M. Hayes,, and R. E. Summons,. 1992. The carbon-isotopic record, p. 117127. In C. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
109. Summons, R. E.,, and J. M. Hayes,. 1992. Principles of molecular and isotopic biogeochemistry, p. 8393. In J. W. Schopf, and C. Klein (éd.), The Proterozoic Biosphere, a Multidisciplinary Study. Cambridge University Press, New York, N.Y..
110. Thorpe, R. I.,, A. H. Hickman,, D. W. Davis,, J. K. Mortensen,, and A. F. Trendall. 1992. U-Pb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambrian Res. 56:169189.
111. Towe, K. M. 1990. Aerobic respiration in the Archaean? Nature 348:5456.
112. Towe, K. M. 1991. Aerobic carbon cycling and cerium oxidation: significance for Archean oxygen levels and banded iron-formation deposition. Palaeogeog. Palaeodimatol. Palaeoecol. 97:113123.
113. Vallentyne, J. R. 1963. Environment biophysics and microbial ubiquity. Ann. N. Y. Acad. Sci. 108: 342352.
114. Vincent, W. F.,, R. W. Castenholz,, M. T. Downes, and C. Howard-Williams. 1993. Antarctic cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment. J Phycol. 29:745755.
115. Wilmotte, A., 1994. Molecular evolution and taxonomy of the Cyanobacteria, p. 125. In D. A. Bryant (éd.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
116. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
117. Woese, C. R.,, O. Kandler,, and M. L. Whellis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:45764579.
118. Wolfe, R. S. 1971. Microbial formation of methane. Adv. Microb. Physiol. 6:107146.
119. Wong, W.,, W. M. Sackett,, and C. R. B. Benedict. 1975. Isotope fractionation in photosynthetic bacteria during carbon dioxide assimilation. Plant Physiol. 55:475479.
120. Zhang, Y.,, and S. Golubic. 1987. Endolithic microfossils (Cyanophyta) from Early Proterozoic stromatolites, Hebei, China. Acta Micropaleontol. Sinica 4:112.

Tables

Generic image for table
TABLE 1

Growth and survival of modern cyanobacteria of the and

Citation: Schopf J. 2000. The Paleobiologic Record of Cyanobacterial Evolution, p 105-129. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error