1887

Chapter 6 : Endospore-Forming Bacteria: an Overview

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Endospore-Forming Bacteria: an Overview, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap06-2.gif

Abstract:

Bacterial endospores are distinguished by three characteristics: (i) they are metabolically dormant, principally because their cytoplasm is almost totally dehydrated, (ii) they are birefringent under phase-contrast microscopy (a trait usually referred to as "refractility" or "phase brightness"), and (iii) they are resistant to a number of chemical and physical agents that would kill growing cells of nearly all other bacterial species. The classical and strict distinction between aerobic (, , , and ) and anaerobic () spore formers no longer holds; it is now known that, given the right environment, and other species can grow quite well anaerobically. species include important human, animal, and insect pathogens (, , and ), as well as species of great importance in the detergent, antibiotic, and food industries. Sporulation-associated changes in the cell envelope and in the organization of the nucleoid are remarkably similar in and . Many spore-forming bacteria are important human and animal pathogens. For instance, is the causative agent of anthrax, a devastating disease of cows, sheep, and people and a major concern in the area of biological warfare. is an important cause of food poisoning. As spore formers other than , especially pathogenic species, are investigated in greater detail, one can anticipate that the vast body of knowledge obtained with the paradigmatic organism will serve well as a model for the less well-studied bacteria.

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Stages of sporulation in . Successive stages in spore formation of are shown. Vegetative cells (photo 1) divide medially. After the final medial septation at the entry into stationary phase, the two chromosomes of the cell form an axial filament structure (photo 2). Septation occurs near one pole of the cell (photo 3), after which the mother cell cytoplasmic membrane begins to engulf the forespore (photo 4). After completion of engulfment (photo 5), the forespore is surrounded by two membranes derived from the forespore and mother cell and lies fully within the cytoplasm of the mother cell. Cortex, a peptidoglycan-like substance, is synthesized between the two forespore membranes (gray-white material in photo 6). As cortex synthesis nears completion, spore coat proteins begin to assemble around the forespore (photo 7). The inside layers of coat protein are less electron dense than are the outside layers (photo 8). The fully assembled and mature spore is eventually released by lysis of the mother cell. (A version of this figure appeared in the doctoral thesis of [ ].)

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Sporulation in M. polyspora. Nomarski differential interference contrast micrographs show various stages in the life cycle of M. polyspora. (a) A germinated spore emerging from the spore coat; (b) a cell undergoing asymmetric septation at both poles; (c) a cell with three forespore compartments; (d) a mother cell containing four mature spores. (This figure was supplied by E. Angert, Harvard University.)

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The Spo0A phosphorelay. Three different histidine protein kinases autophosphorylate and then transfer their phosphate groups to Spo0F. Through the intermediary of a phosphotransferase, Spo0B, the phosphate is finally transferred to an aspartate residue on Spo0A. Spo0A-phosphate is active as a DNA-binding transcription factor, having both negative and positive effects on gene expression. For additional details, see ; and .

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The sporulation sigma factor cascade. At the onset of stationary phase, activation of Spo0A by phosphorylation ( Fig. 3 ) leads to expression of the spoIIA, spoIIG, and spoIIE operons. An additional Spo0A∼P-dependent gene of unknown identity is required for asymmetric septation. σF, a product of the spoIIA operon, interacts with core RNA polymerase to direct transcription of the early class of forespore-specific genes. Activation of σF requires its release from an inhibitory complex with SpoIIAB, a process that depends on SpoIIAA, after the latter is dephosphorylated by SpoIIE. One of the early forespore-specific genes is spoIIIG, which codes for σ. When activated, a step that requires the mother cell-expressed spoIIIA operon, σ directs transcription of late forespore-specific genes, including those that encode internal (Ssp) proteins of the spore, is encoded in the spoIIG operon as an inactive precursor; activation by cleavage depends on an early forespore protein, SpoIIR. Upon activation, σE-containing RNA polymerase transcribes genes for early mother cell-specific proteins. Among these proteins is the precursor of σκ. Activation by cleavage of pro-σK depends on a late forespore protein (SpoIVB), as well as on other mother cell proteins. When activated, σκ recognizes promoters for late mother cell genes, including spore coat protein genes.

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap6
1. Adams, L. F.,, K. L. Brown,, and H. R. Whiteley. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173: 3846 3854.
2. Agaisse, H.,, and D. Lereclus. 1994. Structural and functional analysis of the promoter region involved in full expression of the crylllA toxin gene of Bacillus thuringiensis. Mol. Microbiol. 13: 97 107.
3. Agaisse, H.,, M. Gominet,, O. A. Økstad,, A.-B. Kolsto,, and D. Lereclus. 1999. PlcR is a pleio-tropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32: 1043 1053.
4. Angert, E. R.,, and R. M. Losick. 1998. Propagation by sporulation in the guinea pig symbiont Metabac-teriutn polyspora. Proc. Natl. Acad. Sci. USA 95: 10218 10223.
5. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 3238 3242.
6. Baldus, J. M.,, B. D. Green,, P. Youngman,, and C. P. Moran, Jr. 1994. Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak OA boxes. J. Bacteriol. 176: 296 306.
7. Bird, T. H.,, J. K. Grimsley,, J. A. Hoch,, and G. B. Spiegelman. 1993. Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon. Mol. Microbiol. 9: 741 749.
8. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545 552.
9. Chapman, G. B. 1959. Electron microscopy of ultra-thin sections of bacteria. II. Sporulation of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 71: 348 355.
10. Chung, J. D.,, G. Stephanopoulos,, K. Ireton,, and A. D. Grossman. 1994. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176: 1977 1984.
11. Clouart, J.,, and A. L. Sonenshein. 1999. Unpublished results.
12. Cutting, S.,, A. Driks,, R. Schmidt,, B. Kunkel, andR. Losick. 1991. Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-sigma K processing in Bacillus subtilis. Genes Dev. 5: 456 466.
13. Dawes, I. W.,, and J. Mandelstam. 1970. Sporulation of Bacillus subtilis in continuous culture. J. Bacteriol. 103: 529 535.
14. Driks, A.,, S. Roels,, B. Beall,, C. Moran,, and R. Losick. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 8: 234 244.
15. Dubnau, D.,, and M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172: 4048 4055.
16. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-σ factor that binds to and inhibits transcription by regulatory protein σ F from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 90: 2325 2329.
17. Dupuy, B.,, and A. L. Sonenshein. 1998. Regulated transcription of Clostridium difficile toxin genes. Mol. Microbiol. 27: 107 120.
18. Estruch, J. J.,, G. W. Warren,, M. A. Mullins,, G. J. Nye,, and J. A. Craig. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93: 5389 5394.
19. Gordon, R. E.,, W. C. Haynes,, and C. H.-N. Pang. 1973. The Genus Bacillus. Agricultural Handbook No. 427. Agricultural Research Service, U.S. Department of Agriculture, Washington, D.C..
20. Granum, P. E.,, and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157: 223 228.
21. Grossman, A. D. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29: 477 508.
22. Grossman, A. D.,, and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85: 4369 4373.
23. Guidi-Rontani, C.,, M. Weber-Levy,, E. Labruy-ere,, and M. Mock. 1999. Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 31: 9 17.
24. Halberg, R.,, and L. Kroos. 1994. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J. Mol. Biol. 243: 425 436.
25. Heimpel, A. M.,, and T. A. Angus. 1959. The site of action of crystalliferous bacteria in Lepidoptera larvae. J. Insect Pathol. 1: 152 170.
26. Hoch, J. A. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47: 441 465.
27. Hofmeister, A.,, A. Londono-Vallejo,, E. Harry,, P. Stragier,, and R. Losick. 1995. Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83: 219 226.
28. Holt, J. G.,, N. R. Krieg,, P. H. A. Sneath,, J. T. Staley,, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th ed. Williams and Wilkins, Baltimore, Md..
29. Illing, N.,, and J. Errington. 1991. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the σE form of RNA polymerase. Mol. Microbiol. 5: 1927 1940.
30. Ireton, K.,, and A. D. Grossman. 1994. A developmental checkpoint couples the initiation of sporulation to DNA replication in Bacillus subtilis. EMBO J. 13: 1566 1573.
31. Ireton, K.,, N. W. Gunther IV,, and A. D. Grossman. 1994. spoOJ is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176: 5320 5329.
32. Jin, S. 1995. Ph.D. thesis. Tufts University, Boston, Mass..
33. Jin, S.,, P. A. Levin,, K. Matsuno,, A. D. Grossman,, and A. L. Sonenshein. 1997. Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation. J. Bacteriol. 179: 4725 4732.
34. Johnstone, K. 1994. The trigger mechanism of spore germination: current concepts. J. Appl. Bacteriol.Symp. Suppl. 76: 17S 24S.
35. Karow, M. L.,, P. Glaser,, and P.J. Piggot. 1995. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 92: 2012 2016.
36. Kok, J.,, K. A. Trach,, and J. A. Hoch. 1994. Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J. Bacteriol. 176: 7155 7160.
37. Kuhner, C. H.,, C. Frank,, A. Griesshammer,, M. Schmittroth,, G. Acker,, A. Gossner,, and H. L. Drake. 1997. Sporomusa sivacetka sp. nov., an acetogenic bacterium isolated from aggregated forest soil. Int. J. Syst. Bacteriol. 47: 352 358.
38. Kunkel, B.,, R. Losick,, and P. Stragier. 1990. The Bacillus subtilis gene for the developmental transcription factor σ K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4: 525 535.
39. Lambert, B.,, and M. Peferoen. 1992. Insecticidal promise oí Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. Bioscience 42: 112 122.
40. Lazazzera, B. A.,, and A. D. Grossman. 1998. The ins and outs of peptide signalling. Trends Microbiol. 6: 288 294.
41. LeDeaux, J. R.,, N. Yu,, and A. D. Grossman. 1995. Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177: 861 863.
42. Lereclus, D.,, H. Agaisse,, M. Gominet,, S. Salamitou,, and V. Sanchis. 1996. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J. Bacteriol. 178: 2749 2756.
43. Levin, P. A.,, and R. Losick. 1996. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10: 478 488.
44. Londono-Vallejo, J. A.,, and P. Stragier. 1995. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev. 9: 503 508.
45. Mandic-Mulec, I.,, L. Doukhan,, and I. Smith. 1995. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol. 177: 4619 4627.
46. Margulis, L.,, J. Z. Jorgensen,, S. Dolan,, R. Kolchinsky,, F. A. Rainey,, and S.-C. Lo. 1998. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc. Natl. Acad. Sci. USA 95: 1236 1241.
47. Matsuno, K.,, T. Blais,, A. W. Serio,, T. Conway,, T. M. Henkin,, and A. L. Sonenshein. 1999. Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. J. Bacteriol. 181: 3382 3391.
48. Melville, S. B.,, and A. L. Sonenshein. 1996. Unpublished results.
49. Mitani, T.,, J. E. Heinze,, and E. Freese. 1977. Induction of sporulation in Bacillus subtilis by decoyinine or hadacidin. Biochem. Biophys. Res. Commun. 77: 1118 1125.
50. Moir, A.,, and D. A. Smith. 1990. The genetics of bacterial spore germination. Annu. Rev. Microbiol. 44: 531 553.
51. Nakano, M. M.,, and P. Zuber. 1998. Anaerobic growth of a "strict aerobe" (Bacillus subtilis). Annu. Rev. Microbiol. 52: 165 190.
52. Ohlsen, K. L.,, J. K. Grimsley,, and J. A. Hoch. 1994. Deactivation of the sporulation transcription factor Spo0A by the SpoOE protein phosphatase. Proc. Natl. Acad. Sci. USA 91: 1756 1760.
53. Perego, M. 1998. Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol. 6: 366 370.
54. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908 962.
55. Popham, D. L.,, and P. Stragier. 1992. Binding of the Bacillus subtilis spoIVCA product to the recombination sites of the element interrupting the sigma K-encoding gene. Proc. Natl. Acad. Sci. USA 89: 5991 5995.
56. Price, K. D.,, and R. Losick. 1999. A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J. Bacteriol. 181: 781 790.
57. Priest, F. G., 1993. Systematics and ecology of Bacillus, p. 3 16. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
58. Rood, J. I. 1998. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52: 333 360.
59. Roper, G.,, J. A. Short,, and P. D. Walker,. 1976. The ultrastructure of Clostridium perfringens spores, p. 279 296. In A. M. Barker,, J. Wold,, D. J. Ellar,, G. H. Dring,, and G. W. Gould (ed.), Spore Research. Academic Press, London, England.
60. Ryan, P. A.,, J. D. MacMillan,, and B. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L 1 and L 2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 2551 2556.
61. Ryter, A. 1965. Etude morphologique de la sporulation de Bacillus subtilis. Ann. Inst. Pasteur 108: 40 60.
62. Sass, H.,, E. Wieringa,, H. Cypionka,, H. D. Babenzien,, and J. Overmann. 1998. High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch. Microbiol. 170: 243 251.
63. Sauer, U.,, A. Treuner,, M. Buchholz,, J. D. Santangelo,, and P. Durre. 1994. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J. Bacteriol. 176: 6572 6582.
64. Sauer, U.,, J. D. Santangelo,, A. Treuner,, M. Buchholz,, and P. Durre. 1995. Sigma factor and sporulation genes in Clostridium. FEMS Microbiol. Rev. 17: 331 340.
65. Schaefier, P.,, J. Millet,, and J.-P. Aubert. 1965. Catabolite repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54: 704 711.
66. Schnepf, E.,, N. Crickmore,, J. van Rie,, D. Lereclus,, J. Baum,, J. Feitelson,, D. R. Zeigler,, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775 806.
67. Scholz, T.,, W. Demharter,, R. Hensel,, and O. Kandier. 1987. Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst. Appl. Microbiol. 9: 91 96.
68. Serror, P.,, and A. L. Sonenshein. 1996. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 178: 5910 5915.
69. Setlow, P. 1973. Deoxyribonucleic acid synthesis and deoxynucleotide metabolism during bacterial spore germination. J. Bacteriol. 114: 1099 1107.
70. Setlow, P. 1975. Protein metabolism during germination of Bacillus megaterium spores. II. Degradation of pre-existing and newly synthesized protein. J. Biol. Chem. 250: 631 637.
71. Setlow, P. 1995. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49: 29 54.
72. Setlow, P.,, and G. Primus. 1975. Protein metabolism during germination of Bacillus megaterium spores. I. Protein synthesis and amino acid metabolism. J. Biol. Chem. 250: 623 630.
73. Sirard, J.,- C. M. Malville,, A. Fouet,, and M. Mock. 1996. Physiopathologie moléculaire de la maladie du charbon. Rev. Med. Vet. 147: 653 670.
74. Slack, F. J.,, P. Serror,, E. Joyce,, and A. L. Sonenshein. 1995. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol. Microbiol. 15: 689 702.
75. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109 130. In I. Smith,, R. A. Slepecky,, and P. Sedow (ed.), Regulation of Prokaryotic Development. American Society for Microbiology, Washington, D.C..
76. Sonenshein, A. L. 1998. Unpublished results.
77. Sterlini, J. M., andj. Mandelstam. 1969. Commitment to sporulation in Bacillus subtilis and its relationship to development of antibiotic resistance. Biochem. J. 113: 29 37.
78. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30: 297 341.
79. Stragier, P.,, B. Kunkel,, L. Kroos,, and R. Losick. 1989. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243: 507 512.
80. Strauch, M. A.,, and J. A. Hoch. 1993. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7: 337 342.
81. Takemaru, K.,, M. Mizuno,, T. Sato,, M. Takeuchi,, and Y. Kobayashi. 1995. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141: 323 327.
82. Vidwans, S. J.,, K. Ireton,, and A. D. Grossman. 1995. Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177: 3308 3311.
83. Walters, B. A. J.,, R. Roberts,, R. Stafford,, and E. Seneviratne. 1982. Relapse of antibiotic-associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. Gut 24: 206 212.
84. Wang, L.,, R. Grau,, M. Perego,, and J. A. Hoch. 1997. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11: 2569 2579.
85. Wendrich, T. M.,, and M. A. Marahiel. 1997. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol. Microbiol. 26: 65 79.
86. Xue, Y.,, and W. L. Nicholson. 1996. The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation. Appl. Environ. Microbiol. 62: 2221 2227.
87. Yoshisue, H.,, K. Ihara,, T. Nishimoto,, H. Sakai,, and T. Romano. 1995. Cloning and characterization of a Bacillus thuringiensis homolog of the spoIIID gene of Bacillus subtilis. Gene 154: 23 29.
88. Young, I. E.,, and P. C. Fitz-James. 1962. Chemical and morphological studies of bacterial spore formation. IV. The development of spore refractility. J. Cell Biol. 12: 115 133.
89. Young, M.,, and S. T. Cole,. 1993. Clostridium, p. 35 52. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
90. Zhang, J.,, H. U. Schairer,, W. Schnetter,, D. Lereclus,, and H. Agaisse. 1998. Bacillus popilliae cryl8Aa operon is transcribed by sigmaE and sigmaK forms of RNA polymerase from a single initiation site. Nucleic Acids Res. 26: 1288 1293.
91. Zhang, L.,, M. L. Higgins,, and P. J. Piggot. 1997. The division during bacterial sporulation is symmetrically located in Sporosarcina ureae. Mol. Microbiol. 25: 1091 1098.
92. Zhao, Y.,, and S. B. Melville. 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J. Bacteriol. 180: 136 142.
93. Zheng, L. B.,, W. P. Donovan,, P. C. Fitz-James,, and R. Losick. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev. 2: 1047 1054.
94. Zuber, P.,, M. M. Nakano,, and M. A. Marahiel. 1993. Peptide antibiotics, p. 897 916. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error