1887

Chapter 6 : Endospore-Forming Bacteria: an Overview

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Endospore-Forming Bacteria: an Overview, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap06-2.gif

Abstract:

Bacterial endospores are distinguished by three characteristics: (i) they are metabolically dormant, principally because their cytoplasm is almost totally dehydrated, (ii) they are birefringent under phase-contrast microscopy (a trait usually referred to as "refractility" or "phase brightness"), and (iii) they are resistant to a number of chemical and physical agents that would kill growing cells of nearly all other bacterial species. The classical and strict distinction between aerobic (, , , and ) and anaerobic () spore formers no longer holds; it is now known that, given the right environment, and other species can grow quite well anaerobically. species include important human, animal, and insect pathogens (, , and ), as well as species of great importance in the detergent, antibiotic, and food industries. Sporulation-associated changes in the cell envelope and in the organization of the nucleoid are remarkably similar in and . Many spore-forming bacteria are important human and animal pathogens. For instance, is the causative agent of anthrax, a devastating disease of cows, sheep, and people and a major concern in the area of biological warfare. is an important cause of food poisoning. As spore formers other than , especially pathogenic species, are investigated in greater detail, one can anticipate that the vast body of knowledge obtained with the paradigmatic organism will serve well as a model for the less well-studied bacteria.

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Stages of sporulation in . Successive stages in spore formation of are shown. Vegetative cells (photo 1) divide medially. After the final medial septation at the entry into stationary phase, the two chromosomes of the cell form an axial filament structure (photo 2). Septation occurs near one pole of the cell (photo 3), after which the mother cell cytoplasmic membrane begins to engulf the forespore (photo 4). After completion of engulfment (photo 5), the forespore is surrounded by two membranes derived from the forespore and mother cell and lies fully within the cytoplasm of the mother cell. Cortex, a peptidoglycan-like substance, is synthesized between the two forespore membranes (gray-white material in photo 6). As cortex synthesis nears completion, spore coat proteins begin to assemble around the forespore (photo 7). The inside layers of coat protein are less electron dense than are the outside layers (photo 8). The fully assembled and mature spore is eventually released by lysis of the mother cell. (A version of this figure appeared in the doctoral thesis of [ ].)

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Sporulation in M. polyspora. Nomarski differential interference contrast micrographs show various stages in the life cycle of M. polyspora. (a) A germinated spore emerging from the spore coat; (b) a cell undergoing asymmetric septation at both poles; (c) a cell with three forespore compartments; (d) a mother cell containing four mature spores. (This figure was supplied by E. Angert, Harvard University.)

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The Spo0A phosphorelay. Three different histidine protein kinases autophosphorylate and then transfer their phosphate groups to Spo0F. Through the intermediary of a phosphotransferase, Spo0B, the phosphate is finally transferred to an aspartate residue on Spo0A. Spo0A-phosphate is active as a DNA-binding transcription factor, having both negative and positive effects on gene expression. For additional details, see ; and .

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The sporulation sigma factor cascade. At the onset of stationary phase, activation of Spo0A by phosphorylation ( Fig. 3 ) leads to expression of the spoIIA, spoIIG, and spoIIE operons. An additional Spo0A∼P-dependent gene of unknown identity is required for asymmetric septation. σF, a product of the spoIIA operon, interacts with core RNA polymerase to direct transcription of the early class of forespore-specific genes. Activation of σF requires its release from an inhibitory complex with SpoIIAB, a process that depends on SpoIIAA, after the latter is dephosphorylated by SpoIIE. One of the early forespore-specific genes is spoIIIG, which codes for σ. When activated, a step that requires the mother cell-expressed spoIIIA operon, σ directs transcription of late forespore-specific genes, including those that encode internal (Ssp) proteins of the spore, is encoded in the spoIIG operon as an inactive precursor; activation by cleavage depends on an early forespore protein, SpoIIR. Upon activation, σE-containing RNA polymerase transcribes genes for early mother cell-specific proteins. Among these proteins is the precursor of σκ. Activation by cleavage of pro-σK depends on a late forespore protein (SpoIVB), as well as on other mother cell proteins. When activated, σκ recognizes promoters for late mother cell genes, including spore coat protein genes.

Citation: Sonenshein A. 2000. Endospore-Forming Bacteria: an Overview, p 133-150. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap6
1. Adams, L. F.,, K. L. Brown,, and H. R. Whiteley. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173:38463854.
2. Agaisse, H.,, and D. Lereclus. 1994. Structural and functional analysis of the promoter region involved in full expression of the crylllA toxin gene ofBacillus thuringiensis. Mol. Microbiol. 13:97107.
3. Agaisse, H.,, M. Gominet,, O. A. Økstad,, A.-B. Kolsto,, and D. Lereclus. 1999. PlcR is a pleio-tropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32:10431053.
4. Angert, E. R.,, and R. M. Losick. 1998. Propagation by sporulation in the guinea pig symbiont Metabac-teriutn polyspora. Proc. Natl. Acad. Sci. USA 95: 1021810223.
5. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93:32383242.
6. Baldus, J. M.,, B. D. Green,, P. Youngman,, and C. P. Moran, Jr. 1994. Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak OA boxes. J. Bacteriol. 176: 296306.
7. Bird, T. H.,, J. K. Grimsley,, J. A. Hoch,, and G. B. Spiegelman. 1993. Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon. Mol. Microbiol. 9:741749.
8. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545552.
9. Chapman, G. B. 1959. Electron microscopy of ultra-thin sections of bacteria. II. Sporulation of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 71: 348355.
10. Chung, J. D.,, G. Stephanopoulos,, K. Ireton,, and A. D. Grossman. 1994. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176:19771984.
11. Clouart, J.,, and A. L. Sonenshein. 1999. Unpublished results.
12. Cutting, S.,, A. Driks,, R. Schmidt,, B. Kunkel, andR. Losick. 1991. Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-sigma K processing in Bacillus subtilis. Genes Dev. 5:456466.
13. Dawes, I. W.,, and J. Mandelstam. 1970. Sporulation of Bacillus subtilis in continuous culture. J. Bacteriol. 103:529535.
14. Driks, A.,, S. Roels,, B. Beall,, C. Moran,, and R. Losick. 1994. Subcellular localization of proteins involved in the assembly of the spore coat ofBacillus subtilis. Genes Dev. 8:234244.
15. Dubnau, D.,, and M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172:40484055.
16. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-σ factor that binds to and inhibits transcription by regulatory protein σF from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 90:23252329.
17. Dupuy, B.,, and A. L. Sonenshein. 1998. Regulated transcription of Clostridium difficile toxin genes. Mol. Microbiol. 27:107120.
18. Estruch, J. J.,, G. W. Warren,, M. A. Mullins,, G. J. Nye,, and J. A. Craig. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93: 53895394.
19. Gordon, R. E.,, W. C. Haynes,, and C. H.-N. Pang. 1973. The Genus Bacillus. Agricultural Handbook No. 427. Agricultural Research Service, U.S. Department of Agriculture, Washington, D.C..
20. Granum, P. E.,, and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157:223228.
21. Grossman, A. D. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29:477508.
22. Grossman, A. D.,, and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85:43694373.
23. Guidi-Rontani, C.,, M. Weber-Levy,, E. Labruy-ere,, and M. Mock. 1999. Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 31:917.
24. Halberg, R.,, and L. Kroos. 1994. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J. Mol. Biol. 243:425436.
25. Heimpel, A. M.,, and T. A. Angus. 1959. The site of action of crystalliferous bacteria in Lepidoptera larvae. J. Insect Pathol. 1:152170.
26. Hoch, J. A. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47:441465.
27. Hofmeister, A.,, A. Londono-Vallejo,, E. Harry,, P. Stragier,, and R. Losick. 1995. Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83:219226.
28. Holt, J. G.,, N. R. Krieg,, P. H. A. Sneath,, J. T. Staley,, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th ed. Williams and Wilkins, Baltimore, Md..
29. Illing, N.,, and J. Errington. 1991. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the σE form of RNA polymerase. Mol. Microbiol. 5:19271940.
30. Ireton, K.,, and A. D. Grossman. 1994. A developmental checkpoint couples the initiation of sporulation to DNA replication in Bacillus subtilis. EMBO J. 13:15661573.
31. Ireton, K.,, N. W. Gunther IV,, and A. D. Grossman. 1994. spoOJ is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176:53205329.
32. Jin, S. 1995. Ph.D. thesis. Tufts University, Boston, Mass..
33. Jin, S.,, P. A. Levin,, K. Matsuno,, A. D. Grossman,, and A. L. Sonenshein. 1997. Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation. J. Bacteriol. 179:47254732.
34. Johnstone, K. 1994. The trigger mechanism of spore germination: current concepts. J. Appl. Bacteriol.Symp. Suppl. 76:17S24S.
35. Karow, M. L.,, P. Glaser,, and P.J. Piggot. 1995. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 92:20122016.
36. Kok, J.,, K. A. Trach,, and J. A. Hoch. 1994. Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J. Bacteriol. 176:71557160.
37. Kuhner, C. H.,, C. Frank,, A. Griesshammer,, M. Schmittroth,, G. Acker,, A. Gossner,, and H. L. Drake. 1997. Sporomusa sivacetka sp. nov., an acetogenic bacterium isolated from aggregated forest soil. Int. J. Syst. Bacteriol. 47:352358.
38. Kunkel, B.,, R. Losick,, and P. Stragier. 1990. The Bacillus subtilis gene for the developmental transcription factor σK is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4:525535.
39. Lambert, B.,, and M. Peferoen. 1992. Insecticidal promise oí Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. Bioscience 42: 112122.
40. Lazazzera, B. A.,, and A. D. Grossman. 1998. The ins and outs of peptide signalling. Trends Microbiol. 6:288294.
41. LeDeaux, J. R.,, N. Yu,, and A. D. Grossman. 1995. Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177:861863.
42. Lereclus, D.,, H. Agaisse,, M. Gominet,, S. Salamitou,, and V. Sanchis. 1996. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J. Bacteriol. 178:27492756.
43. Levin, P. A.,, and R. Losick. 1996. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10:478488.
44. Londono-Vallejo, J. A.,, and P. Stragier. 1995. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev. 9:503508.
45. Mandic-Mulec, I.,, L. Doukhan,, and I. Smith. 1995. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol. 177: 46194627.
46. Margulis, L.,, J. Z. Jorgensen,, S. Dolan,, R. Kolchinsky,, F. A. Rainey,, and S.-C. Lo. 1998. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc. Natl. Acad. Sci. USA 95: 12361241.
47. Matsuno, K.,, T. Blais,, A. W. Serio,, T. Conway,, T. M. Henkin,, and A. L. Sonenshein. 1999. Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. J. Bacteriol. 181:33823391.
48. Melville, S. B.,, and A. L. Sonenshein. 1996. Unpublished results.
49. Mitani, T.,, J. E. Heinze,, and E. Freese. 1977. Induction of sporulation in Bacillus subtilis by decoyinine or hadacidin. Biochem. Biophys. Res. Commun. 77:11181125.
50. Moir, A.,, and D. A. Smith. 1990. The genetics of bacterial spore germination. Annu. Rev. Microbiol. 44:531553.
51. Nakano, M. M.,, and P. Zuber. 1998. Anaerobic growth of a "strict aerobe" (Bacillus subtilis). Annu. Rev. Microbiol. 52:165190.
52. Ohlsen, K. L.,, J. K. Grimsley,, and J. A. Hoch. 1994. Deactivation of the sporulation transcription factor Spo0A by the SpoOE protein phosphatase. Proc. Natl. Acad. Sci. USA 91:17561760.
53. Perego, M. 1998. Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol. 6:366370.
54. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908962.
55. Popham, D. L.,, and P. Stragier. 1992. Binding of the Bacillus subtilis spoIVCA product to the recombination sites of the element interrupting the sigma K-encoding gene. Proc. Natl. Acad. Sci. USA 89: 59915995.
56. Price, K. D.,, and R. Losick. 1999. A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J. Bacteriol. 181:781790.
57. Priest, F. G., 1993. Systematics and ecology of Bacillus, p. 316. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
58. Rood, J. I. 1998. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52:333360.
59. Roper, G.,, J. A. Short,, and P. D. Walker,. 1976. The ultrastructure of Clostridium perfringens spores, p. 279296. In A. M. Barker,, J. Wold,, D. J. Ellar,, G. H. Dring,, and G. W. Gould (ed.), Spore Research. Academic Press, London, England.
60. Ryan, P. A.,, J. D. MacMillan,, and B. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 25512556.
61. Ryter, A. 1965. Etude morphologique de la sporulation de Bacillus subtilis. Ann. Inst. Pasteur 108: 4060.
62. Sass, H.,, E. Wieringa,, H. Cypionka,, H. D. Babenzien,, and J. Overmann. 1998. High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch. Microbiol. 170:243251.
63. Sauer, U.,, A. Treuner,, M. Buchholz,, J. D. Santangelo,, and P. Durre. 1994. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J. Bacteriol. 176:65726582.
64. Sauer, U.,, J. D. Santangelo,, A. Treuner,, M. Buchholz,, and P. Durre. 1995. Sigma factor and sporulation genes in Clostridium. FEMS Microbiol. Rev. 17:331340.
65. Schaefier, P.,, J. Millet,, and J.-P. Aubert. 1965. Catabolite repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54:704711.
66. Schnepf, E.,, N. Crickmore,, J. van Rie,, D. Lereclus,, J. Baum,, J. Feitelson,, D. R. Zeigler,, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775806.
67. Scholz, T.,, W. Demharter,, R. Hensel,, and O. Kandier. 1987. Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst. Appl. Microbiol. 9:9196.
68. Serror, P.,, and A. L. Sonenshein. 1996. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 178:59105915.
69. Setlow, P. 1973. Deoxyribonucleic acid synthesis and deoxynucleotide metabolism during bacterial spore germination. J. Bacteriol. 114:10991107.
70. Setlow, P. 1975. Protein metabolism during germination of Bacillus megaterium spores. II. Degradation of pre-existing and newly synthesized protein. J. Biol. Chem. 250:631637.
71. Setlow, P. 1995. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49:2954.
72. Setlow, P.,, and G. Primus. 1975. Protein metabolism during germination of Bacillus megaterium spores. I. Protein synthesis and amino acid metabolism. J. Biol. Chem. 250:623630.
73. Sirard, J.,- C. M. Malville,, A. Fouet,, and M. Mock. 1996. Physiopathologie moléculaire de la maladie du charbon. Rev. Med. Vet. 147:653670.
74. Slack, F. J.,, P. Serror,, E. Joyce,, and A. L. Sonenshein. 1995. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol. Microbiol. 15:689702.
75. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109130. In I. Smith,, R. A. Slepecky,, and P. Sedow (ed.), Regulation of Prokaryotic Development. American Society for Microbiology, Washington, D.C..
76. Sonenshein, A. L. 1998. Unpublished results.
77. Sterlini, J. M., andj. Mandelstam. 1969. Commitment to sporulation in Bacillus subtilis and its relationship to development of antibiotic resistance. Biochem. J. 113:2937.
78. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30:297341.
79. Stragier, P.,, B. Kunkel,, L. Kroos,, and R. Losick. 1989. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243:507512.
80. Strauch, M. A.,, and J. A. Hoch. 1993. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7: 337342.
81. Takemaru, K.,, M. Mizuno,, T. Sato,, M. Takeuchi,, and Y. Kobayashi. 1995. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141:323327.
82. Vidwans, S. J.,, K. Ireton,, and A. D. Grossman. 1995. Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177:33083311.
83. Walters, B. A. J.,, R. Roberts,, R. Stafford,, and E. Seneviratne. 1982. Relapse of antibiotic-associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. Gut 24: 206212.
84. Wang, L.,, R. Grau,, M. Perego,, and J. A. Hoch. 1997. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11: 25692579.
85. Wendrich, T. M.,, and M. A. Marahiel. 1997. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol. Microbiol. 26: 6579.
86. Xue, Y.,, and W. L. Nicholson. 1996. The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation. Appl. Environ. Microbiol. 62:22212227.
87. Yoshisue, H.,, K. Ihara,, T. Nishimoto,, H. Sakai,, and T. Romano. 1995. Cloning and characterization of a Bacillus thuringiensis homolog of the spoIIID gene of Bacillus subtilis. Gene 154:2329.
88. Young, I. E.,, and P. C. Fitz-James. 1962. Chemical and morphological studies of bacterial spore formation. IV. The development of spore refractility. J. Cell Biol. 12:115133.
89. Young, M.,, and S. T. Cole,. 1993. Clostridium, p. 3552. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
90. Zhang, J.,, H. U. Schairer,, W. Schnetter,, D. Lereclus,, and H. Agaisse. 1998. Bacillus popilliae cryl8Aa operon is transcribed by sigmaE and sigmaK forms of RNA polymerase from a single initiation site. Nucleic Acids Res. 26:12881293.
91. Zhang, L.,, M. L. Higgins,, and P. J. Piggot. 1997. The division during bacterial sporulation is symmetrically located in Sporosarcina ureae. Mol. Microbiol. 25:10911098.
92. Zhao, Y.,, and S. B. Melville. 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J. Bacteriol. 180:136142.
93. Zheng, L. B.,, W. P. Donovan,, P. C. Fitz-James,, and R. Losick. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev. 2:10471054.
94. Zuber, P.,, M. M. Nakano,, and M. A. Marahiel. 1993. Peptide antibiotics, p. 897916. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error