1887

Chapter 9 : Morphogenesis and Properties of the Bacterial Spore

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Morphogenesis and Properties of the Bacterial Spore, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap09-2.gif

Abstract:

This chapter focuses on the spore nucleoid, concentrating on the small acid-soluble spore proteins (SASP), which saturate the spore chromosome and play an important role in protecting spore DNA from damage. It also discusses spore cortex and germ cell wall, which concentrates on the precise structure of the peptidoglycan (PG) in these two layers, as well as the synthesis and function of these two structures. The spore coat is also discussed in the chapter, which covers the properties and functions of indi­vidual coat proteins, as well as the function and assembly of the coat structure itself. The spore cortex surrounds the spore core, between the inner and outer forespore membranes, and is composed predominantly of PG, although there may also be some proteins present. While the identities of such cortical proteins have not been established, good candidates are enzymes involved in cortex lysis during spore germination. The outermost structure common to spores of all species is called the coat. This complex shell consists of a series of one or more morphologically distinct layers (depending on the species) that protect the spore from a variety of noxious molecules and from mechanical damage. The primary role of the coat is to protect the spore. It does this, at the very least, by acting as a sieve that excludes all but the smallest molecules from the spore interior and by providing mechanical strength.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Thin-section electron micrograph of a spore. Preparation of spores and fixation were performed as described previously (Resnekov et al., 1996). The outer coat (oc), inner coat (ic), cortex (ex), inner forespore membrane (ifm), and core (cr) are indicated. The inset shows a region of the spore coat magnified 1.8 times. The bar represents 500 nm and corresponds to the whole spore.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Amino acid sequences of α/β-type SASP from gram-positive spore formers. Amino acids are given in the one-letter code, and at positions denoted by dashes, the residue present is identical to that in Bcel. The numbers in parentheses in the Cac, Cbi, and Cpe sequences are the number of residues in this region in these clostridial proteins; this number is almost always larger than that in the sequences from aerobic spore formers. The vertical arrow denotes the site of cleavage of α/β-type SASP by the germination-specific protease GPR. Bam, Bee, Bfi, Bme, Bst, Bsu, Sha, Sur, Tth, Cac, Cbi, Cpe, (The data are from ; GenBank accession no. AF084104; and the unfinished sequence of the C. acetobutylicum genome available on the Web at www.cric.com.)

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Structure of PG in the cortexes of spores species. The structure of spore cortex PG was determined by ). NAG, -acetylglucosamine. Note that ∼13% of the Dpm in NAM-TP is involved in cross-link formation between the Є-amino group of the Dpm and the carboxyl group of a D-Ala in another TP linked to NAM in a glycan strand, as shown with the TP in parentheses.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

A four-step model for the assembly of the spore coat. For each stage, an arc of the forespore and the associated proteins is diagrammed, with the genes for the coat proteins assembled at each step listed below. (A) In the first step, under the control of σ, SpoIVA is synthesized and assembles at the mother cell side of the forespore membranes. (B) Next, a layer of CotE forms, separated from SpoIVA by a gap, which is filled with the matrix. (C) In the third stage, under the control of σ, inner and outer coat protein synthesis and assembly begins. The cortex is deposited between the two forespore membranes, which are now separated. (D) In the fourth stage, inner and outer coat synthesis and assembly is completed and the coat is further modified by cross-linking and glycosylation. The notion that the products of the GerE-controlled genes are incorporated after the others is especially speculative.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap9
1. Abe, A.,, H. Koide,, T. Kohno,, and K. Watabe. 1995. A Bacillus subtilis spore coat polypeptide gene, cotS. Microbiology 141:14331442.
2. Arnott, S.,, and E. Seising. 1974. Structures for the polynucleotide complexes poly(dA)-poly(dT) and poly(dT)-poly(dA)-poly(dT). J. Mol. Biol. 88: 509521.
3. Arnott, S.,, and E. Seising. 1974b. The structure of polydeoxyguanylic acid-polydeoxycytidylic acid. J. Mol. Biol. 88:551552.
4. Aronson, A. I.,, and P. Fitz-James. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol. Rev. 40:360402.
5. Aronson, A. I.,, and P. C. Fitz-James. 1975. Properties of Bacillus cereus spore coat mutants. J. Bacteriol. 123:354365.
6. Aronson, A. I.,, and D. Horn,. 1972. Characterization of the spore coat protein of Bacillus cereus T, p. 1927. In H. O. Halvorson,, R. Hansen,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C..
7. Atrih, A.,, P. Zollner,, G. AUmaier,, and S. F. Foster. 1996. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J. Bacteriol. 178:61736183.
8. Bagyan, I.,, L. Casillas-Martinez,, and P. Setlow. 1998a. The katX gene which codes for the catalase in spores of Bacillus subtilis is a forespore specific gene controlled by σF, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180:20572062.
9. Bagyan, I.,, B. Setlow,, and P. Setlow. 1998b. New small, acid soluble proteins unique to spores of Bacillus subtilis: identification of the coding genes and studies of the regulation and function of two of these genes. J. Bacteriol. 180:67046712.
10. Beall, B.,, and C. P. Moran, Jr. 1994. Cloning and characterization of spo VR, a gene from Bacillus subtilis involved in spore cortex formation. J. Bacteriol. 176:20032012.
11. Beall, B.,, A. Driks,, R. Losick,, and C. P. Moran, Jr. 1993. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coatj. Bacteriol. 175:17051716.
12. Beaman, T. C.,, and P. Gerhardt. 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl. Environ. Microbiol. 52:12421246.
13. Beaman, T. C.,, H. S. Pankratz,, and P. Gerhardt. 1972. Ultrastructure of the exosporium and underlying inclusions in spores of Bacillus megaterium strains. J. Bacteriol. 109:11981209.
14. Bloomfield, S. F.,, and M. Arthur. 1992. Interaction of Bacillus subtilis spores with sodium hypo-chlorite, sodium dichloroisocyanurate and chlora-mine-T.y. Appl. Bacteriol. 72:166172.
15. Bloomfield, S. F.,, and M. Arthur. 1994. Mechanisms of inactivation and resistance of spores to chemical biocides.J. Appl. Bacteriol. 76:91S104S.
16. Bloomfield, S. F., andR. Megid. 1994. Interaction of iodine with Bacillus subtilis spores and spore forms. J. Appl. Bacteriol. 76:492499.
17. Bourne, N.,, P. C. Fitz-James,, and A. I. Aronson. 1991. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J. Bacteriol. 173:66186625.
18. Buchanan, C. E.,, and A. Gustafson. 1992. Muta-genesis and mapping of the gene for a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174:54305435.
19. Buchanan, C. E.,, and M.-L. Ling. 1992. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174:17171725.
20. Buchanan, C. E.,, A. O. Henriques,, and P. J. Pig-got,. 1994. Cell wall changes during bacterial endospore formation, p. 167186. In J.-M. Ghuysen, and R. Hackenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
21. Bueno, A.,, J. R. Villanueva,, and T. G. Villa. 1986. Methylation of spore DNA in Bacillus coagulans. J. Gen. Microbiol. 132:28992905.
22. Cabrera-Hernandez, A.,, J.-L. Sanchez-Salas,, M. Paidhungat,, and P. Setlow. 1999. Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 232:110.
23. Cabrera-Martinez, R.,, J. M. Mason,, B. Setlow,, W. M. Waites,, and P. Setlow. 1989. Purification and amino acid sequence of two small, acid-soluble proteins from Clostridium bifermentans spores. FEMS Microbiol. Utt. 61:139144.
24. Cabrera-Martinez, R. M.,, and P. Sedow. 1991. Cloning and nucleotide sequence of three genes coding for small, acid-soluble proteins of Clostridium perfringens spores. FEMS Microbiol. Lett. 77: 127132.
25. Casillas-Martinez, L.,, and P. Setlow. 1997. Alkyl hydroperoxide reductase, catalase, MrgA, and su-peroxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents. J. Bacteriol. 179:74207425.
26. Chen, T.,, J. Younger,, and L. Glaser. 1968. Synthesis of teichoic acids. VII. Synthesis of teichoic acids during spore germination. J. Bacteriol. 95:20442050.
27. Cleveland, E. F.,, and C. Gilvarg,. 1975. Selective degradation of peptidoglycan from Bacillus megater-ium spores during germination, p. 458464. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff(ed.), Spores VI. American Society for Microbiology, Washington, D.C..
28. Cutting, S.,, L. Zheng,, and R. Losick. 1991. Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis. J. Bacteriol. 173: 29152919.
29. Daniel, R. A.,, S. Drake,, C. E. Buchanan,, R. Scholle, andj. Errington. 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235:209220.
30. Decker, S. J.,, and D. R. Lang. 1978. Membrane bioenergetic parameters in uncoupler-resistant mutants of Bacillus megaterium. J. Biol. Chem. 253: 67386743.
31. Deits, T. Personal communication.
32. Donnellan, J. E., Jr.,, and R. B. Setlow. 1965. Thy-mine photoproducts but not thymine dimers are found in ultraviolet irradiated bacterial spores. Science 149:308310.
33. Donovan, W.,, L. Zheng,, K. Sandman,, and R. Losick. 1987. Genes encoding spore coat polypep-tides from Bacillus subtilis. J. Mol. Biol. 196:110.
34. Driks, A. 1999. The Bacillus subtilis spore coat. Miao-biol. Mol. Biol. Rev. 63:120.
35. Driks, A.,, S. Roels,, B. Beall,, C. P. Moran, Jr.,, and R. Losick. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 8:234244.
36. Fairhead, H.,, and P. Setlow. 1992. Binding of DNA to α/β-type small, acid-soluble proteins from spores of Bacillus or Clostridium species prevents formation of cytosine dimers, cytosine-thymine dimers and dipyrimidine photoadducts upon ultraviolet irradiation. J. Bacteriol. 174:28742880.
37. Fairhead, H.,, B. Setlow,, and P. Setlow. 1993. Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species. J. Bacteriol. 175:13671374.
38. Fairhead, H.,, B. Setlow,, W. M. Waites,, and P. Setlow. 1994. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by freeze-drying. Appl. Environ. Microbiol. 60: 26472649.
39. Fajardo-Cavazos, P.,, F. Tovar-Rojo,, and P. Set-low. 1991. Effect of promoter mutations and upstream deletions on the expression of genes coding for small, acid-soluble spore proteins of Bacillus subtilis. J. Bacteriol. 173:20112016.
40. Fajardo-Cavazos, P.,, C. Salazar,, and W. L. Nicholson. 1993. Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in the repair of UV radiation-induced DNA damage during spore germination. J. Bacteriol. 175:17351744.
41. Foster, S. J.,, and K. Johnstone,. 1989. The trigger mechanism of bacterial spore germination, p. 223241. In I. Smith,, R. A. Slepecky,, and P. Set-low (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
42. Francesconi, S. C.,, T. J. MacAlister,, B. Setlow,, and P. Setlow. 1988. Immunoelectron microscopic localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilis. J. Bacteriol. 170:59635967.
43. Francis, C.,, and B. Tebo. 1999. Personal communication.
44. Gerhardt, P.,, and R. E. Marquis,. 1989. Spore ther-moresistance mechanisms, p. 4363. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Prokaryotic Development. American Society for Microbiology, Washington, D.C.
45. Gerhardt, P.,, R. Scherrer,, and S. H. Black,. 1972. Molecular sieving by dormant spore structures, p. 6874. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.). Spores V. American Society for Microbiology, Washington, D.C..
46. Goldman, R. C.,, and D. J. Tipper. 1978. Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component. J. Bacteriol. 135: 10911106.
47. Goldman, R. C, and D. J. Tipper. 1981. Coat protein synthesis during sporulation of Bacillus subtilis: immunological detection of soluble precursors to the 12,200-dalton spore coat protein. J. Bacteriol. 147:10401048.
48. Gould, G. W.,, J. M. Stubbs,, and W. L. King. 1970. Structure and composition of resistant layers in bacterial spore coats. J. Gen. Miaobiol. 60: 347355.
49. Griffith, J.,, A. Makhov,, L. Santiago-Lara,, and P. Setlow. 1994. Electron microscopic studies of the interaction between a Bacillus α/β-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA and induces negative supercoiling. Proc. Natl. Acad. Sci. USA 91: 82248228.
50. Guidibande, S. R.,, S. D. Jayasena,, and M. J. Behe. 1988. CD studies of double-stranded polydeoxynucleotides composed of repeating units of contiguous homopurine residues. Biopolymers 27:19051915.
51. Hachisuka, Y.,, and S. Kozuka. 1981. A new test of difFerentiation of Bacillus cereus and Bacillus anthracis based on the existence of spore appendages. Microbiol. Immunol. 25:12011207.
52. Hachisuka, Y.,, S. Kozuka,, and M. Tsujikawa. 1984. Exosporia and appendages of spores ofBacillus species. Miaobiol. Immunol. 28:619624.
53. Halvorson, H. O.,, J. C. Vary,, and W. Steinberg. 1966. Developmental changes during the formation and breaking of the dormant state in bacteria. Annu. Rev. Microbiol. 20:169188.
54. Hayes, C. S.,, and P. Setlow. 1997. Analysis of de-amidation of small, acid-soluble spore proteins from Bacillus subtilis in vitro and in vivo. J. Bacteriol. 179: 60206027.
55. Hayes, C. S.,, and P. Setlow. 1998a. Identification of protein-protein contacts between α/β-type small, acid-soluble spore proteins of Bacillus species bound to DNA. J. Biol. Chem. 273:1732617332.
56. Hayes, C. S.,, and P. Setlow. 1998b. Unpublished results.
57. Hayes, C. S.,, B. Illades-Aguiar,, L. Casillas-Mar-tinez,, and P. Setlow. 1998. In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species. J. Bacteriol. 180:26942700.
58. Heinemann, U.,, C. Alings,, and H. Lauble,. 1989. Structural features of G/C rich DNA going A or B, p. 3953. In R. H. Sarma, and M. A. Sarma (ed.), Structure and Methods: DNA and RNA, vol. 3. Academic Press, Guilderland, N.Y..
59. Henriques, A. O.,, B. W. Beall,, K. Roland,, and C. P. Moran, Jr. 1995. Characterization ofcotj, a sigma E-controlled operon affecting the polypep-tide composition of the coat of Bacillus subtilis spores. J. Bacteriol. 177:33943406.
60. Henriques, A. O.,, B. W. Beall,, and C. P. Moran, Jr. 1997. CotM of Bacillus subtilis, a member of the alpha-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179:18871897.
61. Henriques, A. O.,, L. R. Melsen,, and C. P. Moran, Jr. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 180:22852291.
62. Hiragi, Y. 1972. Physical, chemical and morphological studies of spore coat of Bacillus subtilis. J. Gen. Microbiol. 72:8799.
63. Hodges-Garcia, Y.,, P. J. Hagerman,, and D. E. Pettijohn. 1989. DNA ring closure mediated by protein HU.J. Biol. Chem. 264:1462114623.
64. Holt, S. C.,, and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol. Rev. 33: 346378.
65. Illades-Aguiar, B.,, and P. Setlow. 1994. Auto-processing of the protease that degrades small, acid-soluble proteins of spores of Bacillus species is triggered by low pH, dehydration, and dipicolinic acid. J. Bacteriol. 176:70327037.
66. Imae, Y.,, and J. L. Strominger. 1976. Relationship between cortex content and properties of Bacillus sphaericus spores. J. Bacteriol. 126:907913.
67. Jayasena, U. K.,, and M. J. Behe. 1991. Oligopur-ineoligopyrimidine tracts do not have the same conformation as polypurine-polypyrimidines. Bio-polymers 31:511518.'
68. Jenkinson, H. F.,, D. Kay,, and J. Mandelstam. 1980. Temporal dissociation of late events in Bacillus subtilis sporulation from expression of genes that determine them.J. Bacteriol. 141:793805.
69. Jenkinson, H. F.,, W. D. Sawyer, andj. Mandelstam. 1981. Synthesis and order of assembly of spore coat proteins in Bacillus subtilis. J. Gen. Microbiol. 123:116.
70. Johnstone, K. 1994. The trigger mechanism of spore germination. J. Appl. Bacteriol. 76:17S24S.
71. Johnstone, K.,, F. A. Simion,, and D. J. Ellar. 1982. Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM. Biochem. J. 202: 459467.
72. Kobayashi, K.,, Y. Kumazawa,, K. Miwa,, and S. Yamanaka. 1996. e-(y-Glutamyl)lysine crosslinks of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol. Lett. 144:157160.
73. Kobayashi, K.,, K. Hashiguchi,, K. Yokozeki,, and S. Yamanaka. 1998a. Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 62:11091114.
74. Kobayashi, K.,, S.-I. Suzuki,, Y. Izawa,, K. Yokozeki,, K. Miwa,, and S. Yamanaka. 1998b. Transglutaminase in sporulating cells of Bacillus subtilis. J. Gen. Appl. Microbiol. 44:8591.
75. Koehler, P.,, and M. A. Marahiel. 1997. Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J. Bacteriol. 179:20602064.
76. Kornberg, A.,, J. A. Spudich,, D. L. Nelson,, and M. Deutscher. 1968. Origin of proteins in sporulation. Annu. Rev. Biochem. 37:5178.
77. Kozuka, S.,, and K. Tochikubo. 1985. Properties and origin of filamentous appendages on spores of Bacillus cereus. Microbiol. Immunol. 29:2137.
78. Kunst, F.,, N. Ogasawara,, I. Moszer,, A. M. Al-bertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessieres,, A. Bolotin,, S. Borchert,, R. Bor-riss,, L. Boursier,, A. Brans,, M. Braun,, S. C. Brignell,, S. Bron,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S. K. Choi,, J. J. Codani,, I. F. Connerton,, and A. Danchin, et. al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus sub-tilis. Nature 390:249256.
79. Levin, P.,, A. N. Fan,, E. Ricca,, A. Driks,, R. Los-ick,, and S. Cutting. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9:761771.
80. Lewis, J. C.,, N. S. Snell,, and H. K. Burr. 1960. Water permeability of bacterial spores and the concept of a contractile cortex. Science 132:544545.
81. Lewis, P. J.,, and J. Errington. 1996. Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Miaobiology 142:733740.
82. Loshon, C. A.,, and P. Setlow. 1993. Levels of small molecules in dormant spores of Sporosarcina species and comparison with levels in spores of Bacillus and Clostridium species. Can. J. Miaobiol. 39:259262.
83. Loshon, C. A.,, E. Hernandez-Alarcon,, K. E. Beary,, E. Z. Grey,, L.-M. Santiago-Lara,, and P. Setlow. 1995. Unpublished results.
84. Loshon, C. A.,, P. Kraus,, B. Setlow,, and P. Set-low. 1997. Effects of inactivation or overexpression of the sspF gene on properties of Bacillus subtilis spores. J. Bacteriol. 179:272275.
85. Loshon, C. A.,, P. C. Genest,, B. Setlow,, and P. Setlow. 1999. Formaldehyde kills spores oiBacillus subtilis by DNA damage, and small, acid-soluble spore proteins of the α/β-type protect spores against this DNA damage. J Appl. Microbiol. 87:814.
86. Magill, N. G.,, and P. Setlow. 1992. Properties of purified sporlets produced by spoil mutants of Bacillus subtilis. J. Bacteriol. 174:81488151.
87. Magill, N. G.,, A. E. Cowan,, D. E. Koppel,, and P. Setlow. 1994. The internal pH of the forespore compartment of Bacillus megaterium decreases by about 1 pH unit during sporulation. J. Bacteriol. 176:22522258.
88. Magill, N. G.,, A. E. Cowan,, M. A. Leyva-Vazquez,, M. Brown,, D. E. Koppel,, and P. Setlow. 1996. Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyc-eric acid in developing forespores of Bacillus species. J. Bacteriol. 178:22042210.
89. Marquis, R. E.,, and G. R. Bender. 1990. Compact structure of cortical peptidoglycans from bacterial spores. Can. J. Microbiol 36:426429.
90. Marquis, R. E.,, J. Sim,, and S. Y. Shin. 1994. Molecular mechanisms of resistance to heat and oxida-tive damage. J. Appl. Bacteriol. 76:40S48S.
91. Mason, J. M.,, and P. Setlow. 1986. Evidence for an essential role for small, acid-soluble, spore proteins in the resistance of Bacillus subtilis spores to ultraviolet light. J. Bacteriol. 167:174178.
92. Mason, J. M.,, and P. Setlow. 1987. Different small, acid-soluble proteins of the α/β-type have interchangeable roles in the heat and ultraviolet radiation resistance of Bacillus subtilis spores. J. Bacteriol. 169:36333637.
93. Mason, J. M.,, P. Fajardo-Cavazos,, and P. Set-low. 1988a. Levels of mRNAs which code for small, acid-soluble spore proteins and their lacZ gene fusions in sporulating cells of Bacillus subtilis. Nucleic Acids Res. 16:65676583.
94. Mason, J. M.,, R. H. Hackett,, and P. Setlow. 1988b. Studies on the regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores using lacZ gene fusions. J. Bacteriol. 170:239244.
95. McCall, M.,, T. Brown,, and O. Kennard. 1985. The crystal structure of d(GGGGCCCC). A model forpoly(dG)-poly(dC)J. Mol. Biol. 183:385396.
96. Micka, B.,, and M. A. Marahiel. 1992. The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74: 641650.
97. Micka, B.,, N. Groch,, U. Heinemann,, and M. A. Marahiel. 1991. Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA binding protein HBsu. J. Bacteriol. 173:31913198.
98. Milhaud, P.,, and G. Balassa. 1973. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistance to chemical and physical agents during sporulation of Bacillus subtilis. Mol. Gen. Genet. 125:241250.
99. Mizuki, E.,, M. Ohba,, T. Ichimatsu,, S.-H. Hwang,, K. Higuchi,, H. Saitoh,, and T. Akao. 1998. Unique appendages associated with spores of Bacillus cereus isolates. J. Basic Microbiol. 38:3339.
100. Mohr, S. .,, and P. Setlow. 1990. Unpublished results.
101. Mohr, S. C.,, N. V. H. A. Sokolov,, C. He,, and P. Setlow. 1991. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc. Natl. Acad. Sci. USA 88:7781.
102. Moir, A. 1981. Germination properties of a spore coat-defective mutant of Bacillus subtilis. J. Bacteriol. 146:11061116.
103. Moir, A.,, and D. A. Smith. 1990. The genetics of bacterial spore germination. Annu. Rev. Miaobiol. 44:531553.
104. Munakata, N.,, and C. S. Rupert. 1972. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. Mol. Gen. Genet. 104:258263.
105. Munoz, L.,, Y. Sadaie,, and R. H. Doi. 1978. Spore coat protein of Bacillus subtilis. J. Biol. Chem. 253: 66946701.
106. Murray, T.,, D. L. Popham,, and P. Setlow. 1997. Identification and characterization ofpbpA encod- ing Bacillus subtilis penicillin-binding protein 2A.J. Bacteriol. 179:30213029.
107. Murray, T.,, D. L. Popham,, C. B. Pearson,, A. R. Hand,, and P. Setlow. 1998. Analysis of the outgrowth of Bacillus subtilis spores lacking penicillin-binding protein 2a. J. Bacteriol. 180:64936502.
108. Murrell, W. G., 1967. The biochemistry of the bacterial endospore, p. 133251. In A. H. Rose, and J. F. Wilkinson (ed.), Advances in Microbial Physiology, vol. 1. Academic Press, London, England.
109. Naclerio, G.,, L. Baccigalupi,, R. Zilhao,, M. De Felice,, and E. Ricca. 1996. Bacillus subtilis spore coat assembly requires cotH gene expression. J. Bacteriol. 178:43754380.
110. Nicholson, W. L.,, and P. Setlow. 1990. Dramatic increase in the negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J. Bacteriol. 172:714.
111. Nicholson, W. L.,, D. Sun,, B. Setlow,, and P. Set-low. 1989. Promoter specificity of sigma-G-con-taining RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of fore-spore-specific promoters. J. Bacteriol. 171: 27082718.
112. Nicholson, W. L.,, B. Setlow,, and P. Setlow. 1990. Binding of DNA in vitro by a small, acid-soluble spore protein and its effect on DNA topology. J. Bacteriol. 172:69006906.
113. Nicholson, W. L.,, B. Setlow,, and P. Setlow. 1991. Ultraviolet irradiation of DNA complexed with α/β-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore pho-toproduct but not thymine dimers. Proc. Natl. Acad. Sci. USA 88:82888292.
114. Nishihara, T.,, Y. Takubo,, E. Kawamata,, T. Kos-hikawa,, J. Ogaki,, and M. Kondo. 1989. Role of outer coat in resistance of Bacillus megaterium spore. J. Biochem. 106:270273.
115. Nishimura, Y.,, C. Torigoe,, and M. Tsuboi. 1985. An A-form poly(dG)-poly(dC) in H20 solution. Biopolymers 24:18411844.
116. Ou, L.-T.,, and R. E. Marquis. 1970. Electromechanical interactions in cell walls of gram-positive cocci. J. Bacteriol. 101:92101.
117. Pandey, N. K.,, and A. I. Aronson. 1979. Properties of the Bacillus subtilis spore coat. J. Bacteriol. 137: 12081218.
118. Pedersen, L. B.,, T. Murray,, D. L. Popham,, and P. Setlow. 1998. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 180: 49674973.
119. Pedraza-Reyes, M.,, F. Gutierrez-Corona,, and W. L. Nicholson. 1997. Spore photoproduct lyase operon (splAB) regulation during Bacillus subtilis sporulation: modulation oisplB-lacZ fusion expression by PI promoter mutations and by an in-frame deletion of splA. Curr. Microbiol. 34:133137.
120. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908962.
121. Pogliano, K.,, E. Harry,, and R. Losick. 1995. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluores-cence microscopy. Mol. Microbiol. 18:459470.
122. Pooley, H. M.,, and D. Karamata,. 1994. Teichoic acid synthesis in Bacillus subtilis: genetic organization and biological roles, p. 187198. In J.-M. Ghuysen and R. Hackenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
123. Popham, D. L.,, and P. Setlow. 1993. Cloning, nu-cleotide sequence and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase.J. Bacteriol. 175:29172925.
124. Popham, D. L.,, and P. Setlow. 1996. Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins. J. Bacteriol. 178:20792085.
125. Popham, D. L.,, B. Illades-Aguiar,, and P. Setlow. 1995a. The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J. Bacteriol. 177: 47214729.
126. Popham, D. L.,, S. Sengupta,, and P. Setlow. 1995b. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA binding proteins. Appl. Environ. Miaobiol. 61: 36333638.
127. Popham, D. L.,, J. Helin,, C. E. Costello,, and P. Setlow. 1996a. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc. Natl. Acad. Sci. USA 93:1540515410.
128. Popham, D. L.,, J. Helin,, C. E. Costello,, and P. Setlow. 1996b. Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J. Bacteriol. 178:64516458.
129. Popham, D. L.,, M. E. Gilmore,, and P. Setlow. 1999. Analysis of the roles of low-molecular-weight penicillin-binding proteins in spore peptidoglycan synthesis and spore properties in Bacillus subtilis. J. Bacteriol. 181:126132.
130. Price, K. D.,, and R. Losick. 1999. A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J. Bacteriol. 181:781790.
131. Rebeil, R.,, Y. Sun,, L. Chooback,, M. Pedraza-Reyes,, C. Kinsland,, T. P. Begley,, and W. L. Nicholson. 1998. Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol. 180: 48794885.
132. Resnekov, O.,, A. Driks,, and R. Losick. 1995. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J. Bacteriol. 177: 56285635.
133. Roels, S.,, and R. Losick. 1995. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J. Bacteriol. 177:62636275.
134. Roels, S.,, A. Driks,, and R. Losick. 1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174:575585.
135. Ross, M. S.,, and P. Setlow. 1998. Unpublished results.
136. Ross, M. S.,, N. M. Magill,, and P. Setlow. 1998. Unpublished results.
137. Sacco, M.,, E. Ricca,, R. Losick,, and S. Cutting. 1995. An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J. Bacteriol. 177:372377.
138. Sanchez-Salas, J.-L.,, and P. Setlow. 1993. Proteo-lytic processing of the protease which initiates degradation of small, acid-soluble, proteins during germination of Bacillus subtilis spores. J. Bacteriol. 175: 25682577.
139. Sandman, K.,, L. Kroos,, S. Cutting,, P. Youngtnan,, and R. Losick. 1988. Identification of the promoter for a spore coat protein gene in Bacillus subtilis and studies on the regulation of its induction at a late stage of sporulation. J. Mol. Biol. 200:461473.
140. Sarma, M. H.,, G. Gupta,, and R. H. Sarma. 1986. 500-MH2 *H NMR study of poly(dG)-poly(dC) in solution using one-dimensional nuclear Over-hauser effect. Biochemistry 25:36593665.
141. Scherrer, R.,, T. C. Beaman,, and P. Gerhardt. 1971. Macromolecular sieving by the dormant spore of Bacillus cereus. J. Bacteriol. 108:868873.
142. Sekiguchi, J.,, K. Akeo,, H. Yamamoto,, F. K. Khasanou,, J. C. Alonso,, and A. Kuroda. 1995. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J. Bacteriol. 177: 55825589.
143. Setlow, B.,, and P. Setlow. 1979. Localization of low molecular weight basic proteins in Bacillus meg-aterium spores by irradiation with ultraviolet light. J. Bacteriol. 139:486.
144. Setlow, B.,, and P. Setlow. 1987. Thymine containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc. Natl. Acad. Set. USA 84:421423.
145. Setlow, B.,, and P. Setlow. 1993. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl. Environ. Microbiol. 59: 34183423.
146. Setlow, B.,, and P. Setlow. 1994. Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accomplished by generation of abasic sites in spore DNA. J. Bacteriol. 176: 21112113.
147. Setlow, B.,, and P. Setlow. 1995a. Binding to DNA protects α/β-type small, acid-soluble spore proteins of Bacillus and Clostridium species against digestion by their specific protease as well as other proteases. J. Bacteriol. 177:41494151.
148. Setlow, B.,, and P. Setlow. 1995b. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl. Environ. Microbiol. 61:27872790.
149. Setlow, B.,, and P. Setlow. 1995c. Role of DNA repair in Bacillus subtilis spore resistance. J. Bacteriol. 178:34863495.
150. Setlow, B.,, A. R. Hand,, and P. Setlow. 1991a. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA. J. Bacteriol. 173:16421653.
151. Setlow, B.,, N. Magill,, P. Febbroriello,, L. Nakhi-movsky,, D. E. Koppel,, and P. Setlow. 1991b. Condensation of the forespore nucleoid early in sporulation of Bacillus species. J. Bacteriol. 173: 62706278.
152. Setlow, B.,, D. Sun,, and P. Setlow. 1992. Studies of the interaction between DNA and α/β-type small, acid-soluble spore proteins: a new class of DNA binding protein. J. Bacteriol. 174:23122322.
153. Setlow, B.,, C. A. Sedow,, and P. Sedow. 1997. Killing bacterial spores by organic hydroperoxides. J. Ind. Microbiol. 18:384388.
154. Setlow, B.,, K. J. Tautvydas,, and P. Sedow. 1998. Small, acid-soluble spore proteins of the α/β-type do not protect the DNA in Bacillus subtilis spores against base alkylation. Appl. Environ. Microbiol. 64:19581962.
155. Setlow, P., 1983. Germination and outgrowth, p. 211254. In A. Hurst, and G. W. Gould (ed.), The Bacterial Spore, vol. 2. Academic Press, London, England.
156. Setlow, P. 1988. Small acid-soluble, spore proteins of Bacillus species: structure, synthesis, genetics, function and degradation. Annu. Rev. Microbiol. 42: 319338.
157. Setlow, P. 1991. Changes in forespore chromosome structure during sporulation in Bacillus species. Semin. Dev. Biol. 2:5562.
158. Setlow, P. 1992a. DNA in dormant spores of Bacillus species is in an A-like conformation. Mol. Mkrobiol. 6:563567.
159. Setlow, P. 1992b. I will survive: protecting and repairing spore DNA. J. Bacteriol. 174:27372741.
160. Setlow, P. 1994. Mechanisms which contribute to the long-term survival of spores of Bacillus species. J. Appl. Bacteriol. 76:49S60S.
161. Setlow, P. 1995. Mechanisms for the prevention of damage to the DNA in spores of Bacillus species. Annu. Rev. Mkrobiol. 49:2954.
162. Seyler, R. W. J.,, A. O. Henriques,, A. J. Ozin,, and C. P. Moran, Jr. 1997. Assembly and interactions of coi/-encoded proteins, constituents of the inner layers of the Bacillus subtilis spore coat. Mol. Mkrobiol. 25:955966.
163. Shioi, J.-I.,, S. Matsura,, and Y. Imae. 1980. Quantitative measurements of proton motive force and motility in Bacillus subtilis. J. Bacteriol. 144: 891897.
164. Simpson, F. B.,, T. W. Hancock,, and C. E. Buchanan. 1974. Transcriptional control of dacB, which encodes a major sporulation-specific penicillin-binding protein. J. Bacteriol. 176:77677769.
165. Sousa, J. C.,, M. T. Silva,, and G. Balassa. 1976. An exosporium-like outer layer in Bacillus subtilis spores. Nature 263:5354.
166. Sousa, J. C., , M. T. Silva,, and G. Balassa. 1978. Ultrastructure and development of an exosporium-like outer spore envelope in Bacillus subtilis. Ann. Mikrobiol. (Paris) 129:339362.
167. Stevens, C. M.,, R. Daniel,, N. Ming, andj. Err-ington. 1992. Characterization of a sporulation gene spoIVA involved in spore coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174:586594.
168. Stewart, G. S. A. B.,, M. W. Eaton,, K. Johnstone,, M. D. Barrat,, and D. J. Ellar. 1980. An investigation of membrane fluidity changes during sporulation and germination of Bacillus megaterium K. M. measured by electron spin and nuclear magnetic resonance spectroscopy. Biochim. Biophys. Acta 600: 270290.
169. Strange, R. E.,, and F. A. Dark. 1956. The composition of the spore coats of Bacillus megatherium, B. subtilis and B. cereus. Biochem.J. 62:459465.
170. Sun, D.,, P. Stragier,, and P. Setlow. 1989. Identification of a new σ-factor involved in compartmentalized gene expression during sporulation of Bacillus subtilis. Genes Dev. 3:141149.
171. Sun, D.,, P. Fajardo-Cavazos,, M. D. Sussman,, F. Tovar-Rojo,, R.-M. Cabrera-Martinez,, and P. Setlow. 1991. Analysis of the effect of chromosome location of Bacillus subtilis forespore specific genes on their spo gene dependence and transcription by EσF: identification of features of good EσF dependent promoters. J. Bacteriol. 173:78677874.
172. Takamatsu, H.,, Y. Chikahiro,, T. Kodama,, H. Koide,, S. Kozuka,, K. Tochikubo,, and K. Watabe. 1998. A spore coat protein, CotS, of Bacillus subtilis is synthesized under the regulation of sigmaK and GerE during development and is located in the inner coat layer of spores. J. Bacteriol. 180: 29682974.
173. Tebo, B. M.,, W. C. Ghiorse,, L. G. van Waasber-gen,, P. L. Siering,, and R. Caspi,. 1997. Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies, p. 225266. In K. Nealson (ed.), Geomkrobiology. Mineralogical Society of America, Washington, D.C..
174. Tipper, D. J.,, and P. E. Linnett. 1976. Distribution of peptidoglycan synthetase activities between sporangia and forespores in sporulating cells of Bacillus sphaericus. J. Bacteriol. 126:213221.
175. Todd, J. A.,, E. J. Bone,, and D. J. Ellar. 1985. The sporulation-specific penicillin-binding protein 5a from Bacillus subtilis is a DD-carboxypeptidase. Biochem.J. 230:825828.
176. Tovar-Rojo, F.,, and P. Setlow. 1991. Analysis of the effects of mutant small, acid-soluble spore proteins from Bacillus subtilis on DNA in vivo and in vitro. J. Bacteriol. 173:48274835.
177. van Waasbergen, L. G.,, J. A. Hoch,, and B. M. Tebo. 1993. Genetic analysis of the marine manganese-oxidizing Bacillus sp. strain SG-1: protoplast transformation, Tn9 J 7 mutagenesis, and identification of chromosomal loci involved in manganese oxidation. J. Bacteriol. 175:75947603.
178. van Waasbergen, L. G.,, M. Hildebrand,, and B. M. Tebo. 1996. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-l.J. Bacteriol. 178:35173530.
179. Vinter, V. 1965. Spores of microorganisms. XVII. The fate of preexisting diaminopimelic acid-containing structures during germination and postger-minative development of bacterial spores. Folia Mi-crobiol. 10:280287.
180. Warth, A. D., 1985. Mechanisms of heat resistance, p. 209225. In G. J. Dring,, D. J. Ellar,, and G. W. Gould (ed.), Fundamental and Applied Aspects of Bacterial Spores. Academic Press Ltd., London, England.
181. Warth, A. D.,, and J. L. Strominger. 1969. Structure of the peptidoglycan ofbacterial spores: occurrence of the lactam of muramic acid. Proc. Natl. Acad. Sci. USA 64:528535.
182. Warth, A. D.,, and J. L. Strominger. 1971. Structure of the peptidoglycan from vegetative cell walls of Bacillus subtilis. Biochemistry 10:43494358.
183. Warth, A. D.,, and J. L. Strominger. 1972. Structure of the peptidoglycan from spores of Bacillus subtilis. Biochemistry 11:13891396.
184. Warth, A. D.,, D. F. Ohye,, and W. G. Murrell. 1963. The composition and structure of bacterial spores. J. Cell. Biol. 16:579592.
185. Wood, D. A. 1972. Sporulation in Bacillus subtilis. Properties and time of synthesis of alkali-soluble protein of the spore coat. Biochem.J. 130:505514.
186. Wu, J.-J.,, R. Schuch,, and P. J. Piggot. 1992. Characterization of a Bacillus subtilis sporulation operon that includes genes for an RNA polymerase σ factor and for a putative DD-carboxypeptidase. J. Bacteriol. 174:48854892.
187. Wu, L. J.,, and J. Errington. 1998. Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol. Miaobiol. 27:777786.
188. Zhang, J.,, P. C. Fitz-James,, and A. I. Aronson. 1993. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J. Bacteriol. 175:37573766.
189. Zhang, J.,, H. Ichikawa,, R. Halberg,, L. Kroos,, and A. I. Aronson. 1994. Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. J. Mol. Biol. 240:405415.
190. Zhang, L.,, M. L. Higgins,, and P. J. Piggot. 1997. The division during bacterial sporulation is symmetrically located in Sporosarcina ureae. Mol. Miao-biol. 25:10911098.
191. Zheng, L.,, and R. Losick. 1990. Cascade regulation of spore coat gene expression in Bacillus subtilis. J. Mol. Biol. 212:645660.
192. Zheng, L.,, W. P. Donovan,, P. C. Fitz-James,, and R. Losick. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Deu. 2: 10471054.
193. Zheng, L.,, R. Halberg,, S. Roels,, H. Ichikawa,, L. Kroos,, and R. Losick. 1992. Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. J. Mol. Biol. 226:10371050.

Tables

Generic image for table
Table 1

Levels of small molecules in cells and spores of species

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Generic image for table
Table 2

Cortex PG cross-linking, core water content, and heat resistance of spores of various strains

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error