1887

Chapter 9 : Morphogenesis and Properties of the Bacterial Spore

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Morphogenesis and Properties of the Bacterial Spore, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap09-2.gif

Abstract:

This chapter focuses on the spore nucleoid, concentrating on the small acid-soluble spore proteins (SASP), which saturate the spore chromosome and play an important role in protecting spore DNA from damage. It also discusses spore cortex and germ cell wall, which concentrates on the precise structure of the peptidoglycan (PG) in these two layers, as well as the synthesis and function of these two structures. The spore coat is also discussed in the chapter, which covers the properties and functions of indi­vidual coat proteins, as well as the function and assembly of the coat structure itself. The spore cortex surrounds the spore core, between the inner and outer forespore membranes, and is composed predominantly of PG, although there may also be some proteins present. While the identities of such cortical proteins have not been established, good candidates are enzymes involved in cortex lysis during spore germination. The outermost structure common to spores of all species is called the coat. This complex shell consists of a series of one or more morphologically distinct layers (depending on the species) that protect the spore from a variety of noxious molecules and from mechanical damage. The primary role of the coat is to protect the spore. It does this, at the very least, by acting as a sieve that excludes all but the smallest molecules from the spore interior and by providing mechanical strength.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Thin-section electron micrograph of a spore. Preparation of spores and fixation were performed as described previously (Resnekov et al., 1996). The outer coat (oc), inner coat (ic), cortex (ex), inner forespore membrane (ifm), and core (cr) are indicated. The inset shows a region of the spore coat magnified 1.8 times. The bar represents 500 nm and corresponds to the whole spore.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Amino acid sequences of α/β-type SASP from gram-positive spore formers. Amino acids are given in the one-letter code, and at positions denoted by dashes, the residue present is identical to that in Bcel. The numbers in parentheses in the Cac, Cbi, and Cpe sequences are the number of residues in this region in these clostridial proteins; this number is almost always larger than that in the sequences from aerobic spore formers. The vertical arrow denotes the site of cleavage of α/β-type SASP by the germination-specific protease GPR. Bam, Bee, Bfi, Bme, Bst, Bsu, Sha, Sur, Tth, Cac, Cbi, Cpe, (The data are from ; GenBank accession no. AF084104; and the unfinished sequence of the C. acetobutylicum genome available on the Web at www.cric.com.)

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Structure of PG in the cortexes of spores species. The structure of spore cortex PG was determined by ). NAG, -acetylglucosamine. Note that ∼13% of the Dpm in NAM-TP is involved in cross-link formation between the Є-amino group of the Dpm and the carboxyl group of a D-Ala in another TP linked to NAM in a glycan strand, as shown with the TP in parentheses.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

A four-step model for the assembly of the spore coat. For each stage, an arc of the forespore and the associated proteins is diagrammed, with the genes for the coat proteins assembled at each step listed below. (A) In the first step, under the control of σ, SpoIVA is synthesized and assembles at the mother cell side of the forespore membranes. (B) Next, a layer of CotE forms, separated from SpoIVA by a gap, which is filled with the matrix. (C) In the third stage, under the control of σ, inner and outer coat protein synthesis and assembly begins. The cortex is deposited between the two forespore membranes, which are now separated. (D) In the fourth stage, inner and outer coat synthesis and assembly is completed and the coat is further modified by cross-linking and glycosylation. The notion that the products of the GerE-controlled genes are incorporated after the others is especially speculative.

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap9
1. Abe, A.,, H. Koide,, T. Kohno,, and K. Watabe. 1995. A Bacillus subtilis spore coat polypeptide gene, cotS. Microbiology 141: 1433 1442.
2. Arnott, S.,, and E. Seising. 1974. Structures for the polynucleotide complexes poly(dA)-poly(dT) and poly(dT)-poly(dA)-poly(dT). J. Mol. Biol. 88: 509 521.
3. Arnott, S.,, and E. Seising. 1974b. The structure of polydeoxyguanylic acid-polydeoxycytidylic acid. J. Mol. Biol. 88: 551 552.
4. Aronson, A. I.,, and P. Fitz-James. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol. Rev. 40: 360 402.
5. Aronson, A. I.,, and P. C. Fitz-James. 1975. Properties of Bacillus cereus spore coat mutants. J. Bacteriol. 123: 354 365.
6. Aronson, A. I.,, and D. Horn,. 1972. Characterization of the spore coat protein of Bacillus cereus T, p. 19 27. In H. O. Halvorson,, R. Hansen,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C..
7. Atrih, A.,, P. Zollner,, G. AUmaier,, and S. F. Foster. 1996. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J. Bacteriol. 178: 6173 6183.
8. Bagyan, I.,, L. Casillas-Martinez,, and P. Setlow. 1998a. The katX gene which codes for the catalase in spores of Bacillus subtilis is a forespore specific gene controlled by σ F, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180: 2057 2062.
9. Bagyan, I.,, B. Setlow,, and P. Setlow. 1998b. New small, acid soluble proteins unique to spores of Bacillus subtilis: identification of the coding genes and studies of the regulation and function of two of these genes. J. Bacteriol. 180: 6704 6712.
10. Beall, B.,, and C. P. Moran, Jr. 1994. Cloning and characterization of spo VR, a gene from Bacillus subtilis involved in spore cortex formation. J. Bacteriol. 176: 2003 2012.
11. Beall, B.,, A. Driks,, R. Losick,, and C. P. Moran, Jr. 1993. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coatj. Bacteriol. 175: 1705 1716.
12. Beaman, T. C.,, and P. Gerhardt. 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl. Environ. Microbiol. 52: 1242 1246.
13. Beaman, T. C.,, H. S. Pankratz,, and P. Gerhardt. 1972. Ultrastructure of the exosporium and underlying inclusions in spores of Bacillus megaterium strains. J. Bacteriol. 109: 1198 1209.
14. Bloomfield, S. F.,, and M. Arthur. 1992. Interaction of Bacillus subtilis spores with sodium hypo-chlorite, sodium dichloroisocyanurate and chlora-mine-T.y. Appl. Bacteriol. 72: 166 172.
15. Bloomfield, S. F.,, and M. Arthur. 1994. Mechanisms of inactivation and resistance of spores to chemical biocides. J. Appl. Bacteriol. 76: 91S 104S.
16. Bloomfield, S. F., andR. Megid. 1994. Interaction of iodine with Bacillus subtilis spores and spore forms. J. Appl. Bacteriol. 76: 492 499.
17. Bourne, N.,, P. C. Fitz-James,, and A. I. Aronson. 1991. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J. Bacteriol. 173: 6618 6625.
18. Buchanan, C. E.,, and A. Gustafson. 1992. Muta-genesis and mapping of the gene for a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 5430 5435.
19. Buchanan, C. E.,, and M.-L. Ling. 1992. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 1717 1725.
20. Buchanan, C. E.,, A. O. Henriques,, and P. J. Pig-got,. 1994. Cell wall changes during bacterial endospore formation, p. 167 186. In J.-M. Ghuysen, and R. Hackenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
21. Bueno, A.,, J. R. Villanueva,, and T. G. Villa. 1986. Methylation of spore DNA in Bacillus coagulans. J. Gen. Microbiol. 132: 2899 2905.
22. Cabrera-Hernandez, A.,, J.-L. Sanchez-Salas,, M. Paidhungat,, and P. Setlow. 1999. Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 232: 1 10.
23. Cabrera-Martinez, R.,, J. M. Mason,, B. Setlow,, W. M. Waites,, and P. Setlow. 1989. Purification and amino acid sequence of two small, acid-soluble proteins from Clostridium bifermentans spores. FEMS Microbiol. Utt. 61: 139 144.
24. Cabrera-Martinez, R. M.,, and P. Sedow. 1991. Cloning and nucleotide sequence of three genes coding for small, acid-soluble proteins of Clostridium perfringens spores. FEMS Microbiol. Lett. 77: 127 132.
25. Casillas-Martinez, L.,, and P. Setlow. 1997. Alkyl hydroperoxide reductase, catalase, MrgA, and su-peroxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents. J. Bacteriol. 179: 7420 7425.
26. Chen, T.,, J. Younger,, and L. Glaser. 1968. Synthesis of teichoic acids. VII. Synthesis of teichoic acids during spore germination. J. Bacteriol. 95: 2044 2050.
27. Cleveland, E. F.,, and C. Gilvarg,. 1975. Selective degradation of peptidoglycan from Bacillus megater-ium spores during germination, p. 458 464. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff(ed.), Spores VI. American Society for Microbiology, Washington, D.C..
28. Cutting, S.,, L. Zheng,, and R. Losick. 1991. Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis. J. Bacteriol. 173: 2915 2919.
29. Daniel, R. A.,, S. Drake,, C. E. Buchanan,, R. Scholle, andj. Errington. 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235: 209 220.
30. Decker, S. J.,, and D. R. Lang. 1978. Membrane bioenergetic parameters in uncoupler-resistant mutants of Bacillus megaterium. J. Biol. Chem. 253: 6738 6743.
31. Deits, T. Personal communication.
32. Donnellan, J. E., Jr.,, and R. B. Setlow. 1965. Thy-mine photoproducts but not thymine dimers are found in ultraviolet irradiated bacterial spores. Science 149: 308 310.
33. Donovan, W.,, L. Zheng,, K. Sandman,, and R. Losick. 1987. Genes encoding spore coat polypep-tides from Bacillus subtilis. J. Mol. Biol. 196: 1 10.
34. Driks, A. 1999. The Bacillus subtilis spore coat. Miao-biol. Mol. Biol. Rev. 63: 1 20.
35. Driks, A.,, S. Roels,, B. Beall,, C. P. Moran, Jr.,, and R. Losick. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 8: 234 244.
36. Fairhead, H.,, and P. Setlow. 1992. Binding of DNA to α/β-type small, acid-soluble proteins from spores of Bacillus or Clostridium species prevents formation of cytosine dimers, cytosine-thymine dimers and dipyrimidine photoadducts upon ultraviolet irradiation. J. Bacteriol. 174: 2874 2880.
37. Fairhead, H.,, B. Setlow,, and P. Setlow. 1993. Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species. J. Bacteriol. 175: 1367 1374.
38. Fairhead, H.,, B. Setlow,, W. M. Waites,, and P. Setlow. 1994. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by freeze-drying. Appl. Environ. Microbiol. 60: 2647 2649.
39. Fajardo-Cavazos, P.,, F. Tovar-Rojo,, and P. Set-low. 1991. Effect of promoter mutations and upstream deletions on the expression of genes coding for small, acid-soluble spore proteins of Bacillus subtilis. J. Bacteriol. 173: 2011 2016.
40. Fajardo-Cavazos, P.,, C. Salazar,, and W. L. Nicholson. 1993. Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in the repair of UV radiation-induced DNA damage during spore germination. J. Bacteriol. 175: 1735 1744.
41. Foster, S. J.,, and K. Johnstone,. 1989. The trigger mechanism of bacterial spore germination, p. 223 241. In I. Smith,, R. A. Slepecky,, and P. Set-low (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
42. Francesconi, S. C.,, T. J. MacAlister,, B. Setlow,, and P. Setlow. 1988. Immunoelectron microscopic localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilis. J. Bacteriol. 170: 5963 5967.
43. Francis, C.,, and B. Tebo. 1999. Personal communication.
44. Gerhardt, P.,, and R. E. Marquis,. 1989. Spore ther-moresistance mechanisms, p. 43 63. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Prokaryotic Development. American Society for Microbiology, Washington, D.C.
45. Gerhardt, P.,, R. Scherrer,, and S. H. Black,. 1972. Molecular sieving by dormant spore structures, p. 68 74. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.). Spores V. American Society for Microbiology, Washington, D.C..
46. Goldman, R. C.,, and D. J. Tipper. 1978. Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component. J. Bacteriol. 135: 1091 1106.
47. Goldman, R. C, and D. J. Tipper. 1981. Coat protein synthesis during sporulation of Bacillus subtilis: immunological detection of soluble precursors to the 12,200-dalton spore coat protein. J. Bacteriol. 147: 1040 1048.
48. Gould, G. W.,, J. M. Stubbs,, and W. L. King. 1970. Structure and composition of resistant layers in bacterial spore coats. J. Gen. Miaobiol. 60: 347 355.
49. Griffith, J.,, A. Makhov,, L. Santiago-Lara,, and P. Setlow. 1994. Electron microscopic studies of the interaction between a Bacillus α/β-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA and induces negative supercoiling. Proc. Natl. Acad. Sci. USA 91: 8224 8228.
50. Guidibande, S. R.,, S. D. Jayasena,, and M. J. Behe. 1988. CD studies of double-stranded polydeoxynucleotides composed of repeating units of contiguous homopurine residues. Biopolymers 27: 1905 1915.
51. Hachisuka, Y.,, and S. Kozuka. 1981. A new test of difFerentiation of Bacillus cereus and Bacillus anthracis based on the existence of spore appendages. Microbiol. Immunol. 25: 1201 1207.
52. Hachisuka, Y.,, S. Kozuka,, and M. Tsujikawa. 1984. Exosporia and appendages of spores of Bacillus species. Miaobiol. Immunol. 28: 619 624.
53. Halvorson, H. O.,, J. C. Vary,, and W. Steinberg. 1966. Developmental changes during the formation and breaking of the dormant state in bacteria. Annu. Rev. Microbiol. 20: 169 188.
54. Hayes, C. S.,, and P. Setlow. 1997. Analysis of de-amidation of small, acid-soluble spore proteins from Bacillus subtilis in vitro and in vivo. J. Bacteriol. 179: 6020 6027.
55. Hayes, C. S.,, and P. Setlow. 1998a. Identification of protein-protein contacts between α/β-type small, acid-soluble spore proteins of Bacillus species bound to DNA. J. Biol. Chem. 273: 17326 17332.
56. Hayes, C. S.,, and P. Setlow. 1998b. Unpublished results.
57. Hayes, C. S.,, B. Illades-Aguiar,, L. Casillas-Mar-tinez,, and P. Setlow. 1998. In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species. J. Bacteriol. 180: 2694 2700.
58. Heinemann, U.,, C. Alings,, and H. Lauble,. 1989. Structural features of G/C rich DNA going A or B, p. 39 53. In R. H. Sarma, and M. A. Sarma (ed.), Structure and Methods: DNA and RNA, vol. 3. Academic Press, Guilderland, N.Y..
59. Henriques, A. O.,, B. W. Beall,, K. Roland,, and C. P. Moran, Jr. 1995. Characterization ofcotj, a sigma E-controlled operon affecting the polypep-tide composition of the coat of Bacillus subtilis spores. J. Bacteriol. 177: 3394 3406.
60. Henriques, A. O.,, B. W. Beall,, and C. P. Moran, Jr. 1997. CotM of Bacillus subtilis, a member of the alpha-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179: 1887 1897.
61. Henriques, A. O.,, L. R. Melsen,, and C. P. Moran, Jr. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 180: 2285 2291.
62. Hiragi, Y. 1972. Physical, chemical and morphological studies of spore coat of Bacillus subtilis. J. Gen. Microbiol. 72: 87 99.
63. Hodges-Garcia, Y.,, P. J. Hagerman,, and D. E. Pettijohn. 1989. DNA ring closure mediated by protein HU. J. Biol. Chem. 264: 14621 14623.
64. Holt, S. C.,, and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol. Rev. 33: 346 378.
65. Illades-Aguiar, B.,, and P. Setlow. 1994. Auto-processing of the protease that degrades small, acid-soluble proteins of spores of Bacillus species is triggered by low pH, dehydration, and dipicolinic acid. J. Bacteriol. 176: 7032 7037.
66. Imae, Y.,, and J. L. Strominger. 1976. Relationship between cortex content and properties of Bacillus sphaericus spores. J. Bacteriol. 126: 907 913.
67. Jayasena, U. K.,, and M. J. Behe. 1991. Oligopur-ineoligopyrimidine tracts do not have the same conformation as polypurine-polypyrimidines. Bio-polymers 31: 511 518.'
68. Jenkinson, H. F.,, D. Kay,, and J. Mandelstam. 1980. Temporal dissociation of late events in Bacillus subtilis sporulation from expression of genes that determine them.J. Bacteriol. 141: 793 805.
69. Jenkinson, H. F.,, W. D. Sawyer, andj. Mandelstam. 1981. Synthesis and order of assembly of spore coat proteins in Bacillus subtilis. J. Gen. Microbiol. 123: 1 16.
70. Johnstone, K. 1994. The trigger mechanism of spore germination. J. Appl. Bacteriol. 76: 17S 24S.
71. Johnstone, K.,, F. A. Simion,, and D. J. Ellar. 1982. Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM. Biochem. J. 202: 459 467.
72. Kobayashi, K.,, Y. Kumazawa,, K. Miwa,, and S. Yamanaka. 1996. e-(y-Glutamyl)lysine crosslinks of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol. Lett. 144: 157 160.
73. Kobayashi, K.,, K. Hashiguchi,, K. Yokozeki,, and S. Yamanaka. 1998a. Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 62: 1109 1114.
74. Kobayashi, K.,, S.-I. Suzuki,, Y. Izawa,, K. Yokozeki,, K. Miwa,, and S. Yamanaka. 1998b. Transglutaminase in sporulating cells of Bacillus subtilis. J. Gen. Appl. Microbiol. 44: 85 91.
75. Koehler, P.,, and M. A. Marahiel. 1997. Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J. Bacteriol. 179: 2060 2064.
76. Kornberg, A.,, J. A. Spudich,, D. L. Nelson,, and M. Deutscher. 1968. Origin of proteins in sporulation. Annu. Rev. Biochem. 37: 51 78.
77. Kozuka, S.,, and K. Tochikubo. 1985. Properties and origin of filamentous appendages on spores of Bacillus cereus. Microbiol. Immunol. 29: 21 37.
78. Kunst, F.,, N. Ogasawara,, I. Moszer,, A. M. Al-bertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessieres,, A. Bolotin,, S. Borchert,, R. Bor-riss,, L. Boursier,, A. Brans,, M. Braun,, S. C. Brignell,, S. Bron,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S. K. Choi,, J. J. Codani,, I. F. Connerton,, and A. Danchin, et. al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus sub-tilis. Nature 390: 249 256.
79. Levin, P.,, A. N. Fan,, E. Ricca,, A. Driks,, R. Los-ick,, and S. Cutting. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9: 761 771.
80. Lewis, J. C.,, N. S. Snell,, and H. K. Burr. 1960. Water permeability of bacterial spores and the concept of a contractile cortex. Science 132: 544 545.
81. Lewis, P. J.,, and J. Errington. 1996. Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Miaobiology 142: 733 740.
82. Loshon, C. A.,, and P. Setlow. 1993. Levels of small molecules in dormant spores of Sporosarcina species and comparison with levels in spores of Bacillus and Clostridium species. Can. J. Miaobiol. 39: 259 262.
83. Loshon, C. A.,, E. Hernandez-Alarcon,, K. E. Beary,, E. Z. Grey,, L.-M. Santiago-Lara,, and P. Setlow. 1995. Unpublished results.
84. Loshon, C. A.,, P. Kraus,, B. Setlow,, and P. Set-low. 1997. Effects of inactivation or overexpression of the sspF gene on properties of Bacillus subtilis spores. J. Bacteriol. 179: 272 275.
85. Loshon, C. A.,, P. C. Genest,, B. Setlow,, and P. Setlow. 1999. Formaldehyde kills spores oiBacillus subtilis by DNA damage, and small, acid-soluble spore proteins of the α/β-type protect spores against this DNA damage. J Appl. Microbiol. 87: 8 14.
86. Magill, N. G.,, and P. Setlow. 1992. Properties of purified sporlets produced by spoil mutants of Bacillus subtilis. J. Bacteriol. 174: 8148 8151.
87. Magill, N. G.,, A. E. Cowan,, D. E. Koppel,, and P. Setlow. 1994. The internal pH of the forespore compartment of Bacillus megaterium decreases by about 1 pH unit during sporulation. J. Bacteriol. 176: 2252 2258.
88. Magill, N. G.,, A. E. Cowan,, M. A. Leyva-Vazquez,, M. Brown,, D. E. Koppel,, and P. Setlow. 1996. Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyc-eric acid in developing forespores of Bacillus species. J. Bacteriol. 178: 2204 2210.
89. Marquis, R. E.,, and G. R. Bender. 1990. Compact structure of cortical peptidoglycans from bacterial spores. Can. J. Microbiol 36: 426 429.
90. Marquis, R. E.,, J. Sim,, and S. Y. Shin. 1994. Molecular mechanisms of resistance to heat and oxida-tive damage. J. Appl. Bacteriol. 76: 40S 48S.
91. Mason, J. M.,, and P. Setlow. 1986. Evidence for an essential role for small, acid-soluble, spore proteins in the resistance of Bacillus subtilis spores to ultraviolet light. J. Bacteriol. 167: 174 178.
92. Mason, J. M.,, and P. Setlow. 1987. Different small, acid-soluble proteins of the α/β-type have interchangeable roles in the heat and ultraviolet radiation resistance of Bacillus subtilis spores. J. Bacteriol. 169: 3633 3637.
93. Mason, J. M.,, P. Fajardo-Cavazos,, and P. Set-low. 1988a. Levels of mRNAs which code for small, acid-soluble spore proteins and their lacZ gene fusions in sporulating cells of Bacillus subtilis. Nucleic Acids Res. 16: 6567 6583.
94. Mason, J. M.,, R. H. Hackett,, and P. Setlow. 1988b. Studies on the regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores using lacZ gene fusions. J. Bacteriol. 170: 239 244.
95. McCall, M.,, T. Brown,, and O. Kennard. 1985. The crystal structure of d(GGGGCCCC). A model forpoly(dG)-poly(dC)J. Mol. Biol. 183: 385 396.
96. Micka, B.,, and M. A. Marahiel. 1992. The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74: 641 650.
97. Micka, B.,, N. Groch,, U. Heinemann,, and M. A. Marahiel. 1991. Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA binding protein HBsu. J. Bacteriol. 173: 3191 3198.
98. Milhaud, P.,, and G. Balassa. 1973. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistance to chemical and physical agents during sporulation of Bacillus subtilis. Mol. Gen. Genet. 125: 241 250.
99. Mizuki, E.,, M. Ohba,, T. Ichimatsu,, S.-H. Hwang,, K. Higuchi,, H. Saitoh,, and T. Akao. 1998. Unique appendages associated with spores of Bacillus cereus isolates. J. Basic Microbiol. 38: 33 39.
100. Mohr, S. .,, and P. Setlow. 1990. Unpublished results.
101. Mohr, S. C.,, N. V. H. A. Sokolov,, C. He,, and P. Setlow. 1991. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc. Natl. Acad. Sci. USA 88: 77 81.
102. Moir, A. 1981. Germination properties of a spore coat-defective mutant of Bacillus subtilis. J. Bacteriol. 146: 1106 1116.
103. Moir, A.,, and D. A. Smith. 1990. The genetics of bacterial spore germination. Annu. Rev. Miaobiol. 44: 531 553.
104. Munakata, N.,, and C. S. Rupert. 1972. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. Mol. Gen. Genet. 104: 258 263.
105. Munoz, L.,, Y. Sadaie,, and R. H. Doi. 1978. Spore coat protein of Bacillus subtilis. J. Biol. Chem. 253: 6694 6701.
106. Murray, T.,, D. L. Popham,, and P. Setlow. 1997. Identification and characterization ofpbpA encod- ing Bacillus subtilis penicillin-binding protein 2A.J. Bacteriol. 179: 3021 3029.
107. Murray, T.,, D. L. Popham,, C. B. Pearson,, A. R. Hand,, and P. Setlow. 1998. Analysis of the outgrowth of Bacillus subtilis spores lacking penicillin-binding protein 2a. J. Bacteriol. 180: 6493 6502.
108. Murrell, W. G., 1967. The biochemistry of the bacterial endospore, p. 133 251. In A. H. Rose, and J. F. Wilkinson (ed.), Advances in Microbial Physiology, vol. 1. Academic Press, London, England.
109. Naclerio, G.,, L. Baccigalupi,, R. Zilhao,, M. De Felice,, and E. Ricca. 1996. Bacillus subtilis spore coat assembly requires cotH gene expression. J. Bacteriol. 178: 4375 4380.
110. Nicholson, W. L.,, and P. Setlow. 1990. Dramatic increase in the negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J. Bacteriol. 172: 7 14.
111. Nicholson, W. L.,, D. Sun,, B. Setlow,, and P. Set-low. 1989. Promoter specificity of sigma-G-con-taining RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of fore-spore-specific promoters. J. Bacteriol. 171: 2708 2718.
112. Nicholson, W. L.,, B. Setlow,, and P. Setlow. 1990. Binding of DNA in vitro by a small, acid-soluble spore protein and its effect on DNA topology. J. Bacteriol. 172: 6900 6906.
113. Nicholson, W. L.,, B. Setlow,, and P. Setlow. 1991. Ultraviolet irradiation of DNA complexed with α/β-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore pho-toproduct but not thymine dimers. Proc. Natl. Acad. Sci. USA 88: 8288 8292.
114. Nishihara, T.,, Y. Takubo,, E. Kawamata,, T. Kos-hikawa,, J. Ogaki,, and M. Kondo. 1989. Role of outer coat in resistance of Bacillus megaterium spore. J. Biochem. 106: 270 273.
115. Nishimura, Y.,, C. Torigoe,, and M. Tsuboi. 1985. An A-form poly(dG)-poly(dC) in H 20 solution. Biopolymers 24: 1841 1844.
116. Ou, L.-T.,, and R. E. Marquis. 1970. Electromechanical interactions in cell walls of gram-positive cocci. J. Bacteriol. 101: 92 101.
117. Pandey, N. K.,, and A. I. Aronson. 1979. Properties of the Bacillus subtilis spore coat. J. Bacteriol. 137: 1208 1218.
118. Pedersen, L. B.,, T. Murray,, D. L. Popham,, and P. Setlow. 1998. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 180: 4967 4973.
119. Pedraza-Reyes, M.,, F. Gutierrez-Corona,, and W. L. Nicholson. 1997. Spore photoproduct lyase operon (splAB) regulation during Bacillus subtilis sporulation: modulation oisplB-lacZ fusion expression by PI promoter mutations and by an in-frame deletion of splA. Curr. Microbiol. 34: 133 137.
120. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908 962.
121. Pogliano, K.,, E. Harry,, and R. Losick. 1995. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluores-cence microscopy. Mol. Microbiol. 18: 459 470.
122. Pooley, H. M.,, and D. Karamata,. 1994. Teichoic acid synthesis in Bacillus subtilis: genetic organization and biological roles, p. 187 198. In J.-M. Ghuysen and R. Hackenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
123. Popham, D. L.,, and P. Setlow. 1993. Cloning, nu-cleotide sequence and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase. J. Bacteriol. 175: 2917 2925.
124. Popham, D. L.,, and P. Setlow. 1996. Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins. J. Bacteriol. 178: 2079 2085.
125. Popham, D. L.,, B. Illades-Aguiar,, and P. Setlow. 1995a. The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J. Bacteriol. 177: 4721 4729.
126. Popham, D. L.,, S. Sengupta,, and P. Setlow. 1995b. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA binding proteins. Appl. Environ. Miaobiol. 61: 3633 3638.
127. Popham, D. L.,, J. Helin,, C. E. Costello,, and P. Setlow. 1996a. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc. Natl. Acad. Sci. USA 93: 15405 15410.
128. Popham, D. L.,, J. Helin,, C. E. Costello,, and P. Setlow. 1996b. Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J. Bacteriol. 178: 6451 6458.
129. Popham, D. L.,, M. E. Gilmore,, and P. Setlow. 1999. Analysis of the roles of low-molecular-weight penicillin-binding proteins in spore peptidoglycan synthesis and spore properties in Bacillus subtilis. J. Bacteriol. 181: 126 132.
130. Price, K. D.,, and R. Losick. 1999. A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J. Bacteriol. 181: 781 790.
131. Rebeil, R.,, Y. Sun,, L. Chooback,, M. Pedraza-Reyes,, C. Kinsland,, T. P. Begley,, and W. L. Nicholson. 1998. Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol. 180: 4879 4885.
132. Resnekov, O.,, A. Driks,, and R. Losick. 1995. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J. Bacteriol. 177: 5628 5635.
133. Roels, S.,, and R. Losick. 1995. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J. Bacteriol. 177: 6263 6275.
134. Roels, S.,, A. Driks,, and R. Losick. 1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174: 575 585.
135. Ross, M. S.,, and P. Setlow. 1998. Unpublished results.
136. Ross, M. S.,, N. M. Magill,, and P. Setlow. 1998. Unpublished results.
137. Sacco, M.,, E. Ricca,, R. Losick,, and S. Cutting. 1995. An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J. Bacteriol. 177: 372 377.
138. Sanchez-Salas, J.-L.,, and P. Setlow. 1993. Proteo-lytic processing of the protease which initiates degradation of small, acid-soluble, proteins during germination of Bacillus subtilis spores. J. Bacteriol. 175: 2568 2577.
139. Sandman, K.,, L. Kroos,, S. Cutting,, P. Youngtnan,, and R. Losick. 1988. Identification of the promoter for a spore coat protein gene in Bacillus subtilis and studies on the regulation of its induction at a late stage of sporulation. J. Mol. Biol. 200: 461 473.
140. Sarma, M. H.,, G. Gupta,, and R. H. Sarma. 1986. 500-MH 2 *H NMR study of poly(dG)-poly(dC) in solution using one-dimensional nuclear Over-hauser effect. Biochemistry 25: 3659 3665.
141. Scherrer, R.,, T. C. Beaman,, and P. Gerhardt. 1971. Macromolecular sieving by the dormant spore of Bacillus cereus. J. Bacteriol. 108: 868 873.
142. Sekiguchi, J.,, K. Akeo,, H. Yamamoto,, F. K. Khasanou,, J. C. Alonso,, and A. Kuroda. 1995. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J. Bacteriol. 177: 5582 5589.
143. Setlow, B.,, and P. Setlow. 1979. Localization of low molecular weight basic proteins in Bacillus meg-aterium spores by irradiation with ultraviolet light. J. Bacteriol. 139: 486.
144. Setlow, B.,, and P. Setlow. 1987. Thymine containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc. Natl. Acad. Set. USA 84: 421 423.
145. Setlow, B.,, and P. Setlow. 1993. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl. Environ. Microbiol. 59: 3418 3423.
146. Setlow, B.,, and P. Setlow. 1994. Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accomplished by generation of abasic sites in spore DNA. J. Bacteriol. 176: 2111 2113.
147. Setlow, B.,, and P. Setlow. 1995a. Binding to DNA protects α/β-type small, acid-soluble spore proteins of Bacillus and Clostridium species against digestion by their specific protease as well as other proteases. J. Bacteriol. 177: 4149 4151.
148. Setlow, B.,, and P. Setlow. 1995b. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl. Environ. Microbiol. 61: 2787 2790.
149. Setlow, B.,, and P. Setlow. 1995c. Role of DNA repair in Bacillus subtilis spore resistance. J. Bacteriol. 178: 3486 3495.
150. Setlow, B.,, A. R. Hand,, and P. Setlow. 1991a. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA. J. Bacteriol. 173: 1642 1653.
151. Setlow, B.,, N. Magill,, P. Febbroriello,, L. Nakhi-movsky,, D. E. Koppel,, and P. Setlow. 1991b. Condensation of the forespore nucleoid early in sporulation of Bacillus species. J. Bacteriol. 173: 6270 6278.
152. Setlow, B.,, D. Sun,, and P. Setlow. 1992. Studies of the interaction between DNA and α/β-type small, acid-soluble spore proteins: a new class of DNA binding protein. J. Bacteriol. 174: 2312 2322.
153. Setlow, B.,, C. A. Sedow,, and P. Sedow. 1997. Killing bacterial spores by organic hydroperoxides. J. Ind. Microbiol. 18: 384 388.
154. Setlow, B.,, K. J. Tautvydas,, and P. Sedow. 1998. Small, acid-soluble spore proteins of the α/β-type do not protect the DNA in Bacillus subtilis spores against base alkylation. Appl. Environ. Microbiol. 64: 1958 1962.
155. Setlow, P., 1983. Germination and outgrowth, p. 211 254. In A. Hurst, and G. W. Gould (ed.), The Bacterial Spore, vol. 2. Academic Press, London, England.
156. Setlow, P. 1988. Small acid-soluble, spore proteins of Bacillus species: structure, synthesis, genetics, function and degradation. Annu. Rev. Microbiol. 42: 319 338.
157. Setlow, P. 1991. Changes in forespore chromosome structure during sporulation in Bacillus species. Semin. Dev. Biol. 2: 55 62.
158. Setlow, P. 1992a. DNA in dormant spores of Bacillus species is in an A-like conformation. Mol. Mkrobiol. 6: 563 567.
159. Setlow, P. 1992b. I will survive: protecting and repairing spore DNA. J. Bacteriol. 174: 2737 2741.
160. Setlow, P. 1994. Mechanisms which contribute to the long-term survival of spores of Bacillus species. J. Appl. Bacteriol. 76: 49S 60S.
161. Setlow, P. 1995. Mechanisms for the prevention of damage to the DNA in spores of Bacillus species. Annu. Rev. Mkrobiol. 49: 29 54.
162. Seyler, R. W. J.,, A. O. Henriques,, A. J. Ozin,, and C. P. Moran, Jr. 1997. Assembly and interactions of coi/-encoded proteins, constituents of the inner layers of the Bacillus subtilis spore coat. Mol. Mkrobiol. 25: 955 966.
163. Shioi, J.-I.,, S. Matsura,, and Y. Imae. 1980. Quantitative measurements of proton motive force and motility in Bacillus subtilis. J. Bacteriol. 144: 891 897.
164. Simpson, F. B.,, T. W. Hancock,, and C. E. Buchanan. 1974. Transcriptional control of dacB, which encodes a major sporulation-specific penicillin-binding protein. J. Bacteriol. 176: 7767 7769.
165. Sousa, J. C.,, M. T. Silva,, and G. Balassa. 1976. An exosporium-like outer layer in Bacillus subtilis spores. Nature 263: 53 54.
166. Sousa, J. C., , M. T. Silva,, and G. Balassa. 1978. Ultrastructure and development of an exosporium-like outer spore envelope in Bacillus subtilis. Ann. Mikrobiol. (Paris) 129: 339 362.
167. Stevens, C. M.,, R. Daniel,, N. Ming, andj. Err-ington. 1992. Characterization of a sporulation gene spoIVA involved in spore coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174: 586 594.
168. Stewart, G. S. A. B.,, M. W. Eaton,, K. Johnstone,, M. D. Barrat,, and D. J. Ellar. 1980. An investigation of membrane fluidity changes during sporulation and germination of Bacillus megaterium K. M. measured by electron spin and nuclear magnetic resonance spectroscopy. Biochim. Biophys. Acta 600: 270 290.
169. Strange, R. E.,, and F. A. Dark. 1956. The composition of the spore coats of Bacillus megatherium, B. subtilis and B. cereus. Biochem.J. 62: 459 465.
170. Sun, D.,, P. Stragier,, and P. Setlow. 1989. Identification of a new σ-factor involved in compartmentalized gene expression during sporulation of Bacillus subtilis. Genes Dev. 3: 141 149.
171. Sun, D.,, P. Fajardo-Cavazos,, M. D. Sussman,, F. Tovar-Rojo,, R.-M. Cabrera-Martinez,, and P. Setlow. 1991. Analysis of the effect of chromosome location of Bacillus subtilis forespore specific genes on their spo gene dependence and transcription by Eσ F: identification of features of good Eσ F dependent promoters. J. Bacteriol. 173: 7867 7874.
172. Takamatsu, H.,, Y. Chikahiro,, T. Kodama,, H. Koide,, S. Kozuka,, K. Tochikubo,, and K. Watabe. 1998. A spore coat protein, CotS, of Bacillus subtilis is synthesized under the regulation of sigmaK and GerE during development and is located in the inner coat layer of spores. J. Bacteriol. 180: 2968 2974.
173. Tebo, B. M.,, W. C. Ghiorse,, L. G. van Waasber-gen,, P. L. Siering,, and R. Caspi,. 1997. Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies, p. 225 266. In K. Nealson (ed.), Geomkrobiology. Mineralogical Society of America, Washington, D.C..
174. Tipper, D. J.,, and P. E. Linnett. 1976. Distribution of peptidoglycan synthetase activities between sporangia and forespores in sporulating cells of Bacillus sphaericus. J. Bacteriol. 126: 213 221.
175. Todd, J. A.,, E. J. Bone,, and D. J. Ellar. 1985. The sporulation-specific penicillin-binding protein 5a from Bacillus subtilis is a DD-carboxypeptidase. Biochem.J. 230: 825 828.
176. Tovar-Rojo, F.,, and P. Setlow. 1991. Analysis of the effects of mutant small, acid-soluble spore proteins from Bacillus subtilis on DNA in vivo and in vitro. J. Bacteriol. 173: 4827 4835.
177. van Waasbergen, L. G.,, J. A. Hoch,, and B. M. Tebo. 1993. Genetic analysis of the marine manganese-oxidizing Bacillus sp. strain SG-1: protoplast transformation, Tn9 J 7 mutagenesis, and identification of chromosomal loci involved in manganese oxidation. J. Bacteriol. 175: 7594 7603.
178. van Waasbergen, L. G.,, M. Hildebrand,, and B. M. Tebo. 1996. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-l. J. Bacteriol. 178: 3517 3530.
179. Vinter, V. 1965. Spores of microorganisms. XVII. The fate of preexisting diaminopimelic acid-containing structures during germination and postger-minative development of bacterial spores. Folia Mi-crobiol. 10: 280 287.
180. Warth, A. D., 1985. Mechanisms of heat resistance, p. 209 225. In G. J. Dring,, D. J. Ellar,, and G. W. Gould (ed.), Fundamental and Applied Aspects of Bacterial Spores. Academic Press Ltd., London, England.
181. Warth, A. D.,, and J. L. Strominger. 1969. Structure of the peptidoglycan ofbacterial spores: occurrence of the lactam of muramic acid. Proc. Natl. Acad. Sci. USA 64: 528 535.
182. Warth, A. D.,, and J. L. Strominger. 1971. Structure of the peptidoglycan from vegetative cell walls of Bacillus subtilis. Biochemistry 10: 4349 4358.
183. Warth, A. D.,, and J. L. Strominger. 1972. Structure of the peptidoglycan from spores of Bacillus subtilis. Biochemistry 11: 1389 1396.
184. Warth, A. D.,, D. F. Ohye,, and W. G. Murrell. 1963. The composition and structure of bacterial spores. J. Cell. Biol. 16: 579 592.
185. Wood, D. A. 1972. Sporulation in Bacillus subtilis. Properties and time of synthesis of alkali-soluble protein of the spore coat. Biochem.J. 130: 505 514.
186. Wu, J.-J.,, R. Schuch,, and P. J. Piggot. 1992. Characterization of a Bacillus subtilis sporulation operon that includes genes for an RNA polymerase σ factor and for a putative DD-carboxypeptidase. J. Bacteriol. 174: 4885 4892.
187. Wu, L. J.,, and J. Errington. 1998. Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol. Miaobiol. 27: 777 786.
188. Zhang, J.,, P. C. Fitz-James,, and A. I. Aronson. 1993. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J. Bacteriol. 175: 3757 3766.
189. Zhang, J.,, H. Ichikawa,, R. Halberg,, L. Kroos,, and A. I. Aronson. 1994. Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. J. Mol. Biol. 240: 405 415.
190. Zhang, L.,, M. L. Higgins,, and P. J. Piggot. 1997. The division during bacterial sporulation is symmetrically located in Sporosarcina ureae. Mol. Miao-biol. 25: 1091 1098.
191. Zheng, L.,, and R. Losick. 1990. Cascade regulation of spore coat gene expression in Bacillus subtilis. J. Mol. Biol. 212: 645 660.
192. Zheng, L.,, W. P. Donovan,, P. C. Fitz-James,, and R. Losick. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Deu. 2: 1047 1054.
193. Zheng, L.,, R. Halberg,, S. Roels,, H. Ichikawa,, L. Kroos,, and R. Losick. 1992. Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. J. Mol. Biol. 226: 1037 1050.

Tables

Generic image for table
Table 1

Levels of small molecules in cells and spores of species

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9
Generic image for table
Table 2

Cortex PG cross-linking, core water content, and heat resistance of spores of various strains

Citation: Driks A, Setlow P, Setlow P. 2000. Morphogenesis and Properties of the Bacterial Spore, p 191-218. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error