1887

Chapter 1 : The Concept of Pathogenicity Islands

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Concept of Pathogenicity Islands, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap01-2.gif

Abstract:

In the early 1980s it was discovered that chromosomal regions may carry blocks of virulence-associated genes and may differ between related members of certain species or genera. These regions were termed pathogenicity islands (PAIs). The basic observation leading to the concept of PAIs was the finding that particular genomic regions of pathogens carry virulence-associated genes together with loci whose presence strongly indicates horizontal gene transfer of these regions between different species or even genera. PAIs occur in the genomes of various pathogens with the capacity to cause infections not only in humans but also in animals and even in plants. The list of PAIs described up to now includes those in bacteria for which frequent gene transfer via plasmids, bacteriophages, and conjugative transposons has been described. The existence of PAIs in eukaryotic pathogens can be predicted, because gene transfer also exists in eukaryotic organisms, transposable elements frequently occur, and retroviruses have a tendency to integrate into tRNA genes. It is now accepted that the generation of PAIs often starts with the integration of plasmids, phages, conjugative transposons, or cointegrates of these into specific target genes, preferentially on the chromosomes.

Citation: Hacker J, Kaper J. 1999. The Concept of Pathogenicity Islands, p 1-11. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Potential processes involved in the evolution of PAIs.

Citation: Hacker J, Kaper J. 1999. The Concept of Pathogenicity Islands, p 1-11. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genomic islands encode a variety of functions

Citation: Hacker J, Kaper J. 1999. The Concept of Pathogenicity Islands, p 1-11. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818173.chap1
1. Archer, G. L.,, and D. M. Niemeyer. 1994. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol. 2:343347.
2. Baumler, A. J.,, A. J. Gilde,, R. M. Tsolis,, A. W. M. van der Velden,, B. M. M. Ahmer,, and F. Heffron. 1997. Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J. Bacteriol. 179:317322.
3. Blum, G.,, M. Ott,, A. Lischewski,, A. Ritter,, H. Imrich,, H. Tschape,, and J. Hacker. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62:606614.
4. Blum, G.,, V. Falbo,, A. Caprioli,, and J. Hacker. 1995. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and a-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol. Lett. 126:189196.
5. Buchrieser, C.,, R. Brosch,, S. Bach,, A. Guiyoule,, and E. Carniel. 1998. The high pathogenicity island of Yersinia tuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol. Microbiol. 30:965978.
6. Censini, S.,, C. Lange,, Z. Xiang,, J. E. Crabtree,, P. Ghiara,, M. Borodovsky,, R. Rappuoli,, and A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93:1464814653.
7. Cheetham, B. F.,, and M. E. Katz. 1995. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18:201208.
8. Dobrindt, U.,, P. S. Cohen,, M. Utley,, I. Mühldorfer,, and J. Hacker. 1998. The leuX-encoded tRNA5Leu but not the pathogenicity islands I and II influence the survival of the uropathogenic Escherichia coli strain 536 in CD-1 mouse bladder mucus in the stationary phase. FEMS Microbiol. Lett. 162:135141.
9. Elliott, S. J.,, L. A. Wainwright,, T. K. McDaniel,, K. G. Jarvis,, Y. K. Deng,, L. C. Lai,, B. P. McNamara,, M. S. Donnenberg,, and J. B. Kaper. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28:14.
10. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revised. Microbiol. Mol. Biol. Rev. 61:136169.
11. Freiberg, C.,, R. Fellay,, A. Bairoch,, W. J. Broughton,, A. Rosenthal,, and X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394401.
12. Groisman, E. A.,, and H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791794.
13. Groisman, E. A.,, and H. Ochman. 1997. How Salmonella became a pathogen. Trends Microbiol. 5: 343349.
14. Hacker, J.,, S. Knapp,, and W. Goebel. 1983. Spontaneous deletions and flanking regions of the chromosomal inherited hemolysin determinant of an Escherichia coli 06 strain. J. Bacteriol. 154:11451152.
15. Hacker, J.,, L. Bender,, M. Ott,, J. Wingender,, B. Lund,, R. Marre,, and W. Goebel. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vivo and in vitro in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8:213225.
16. Hacker, J.,, G. Blum-Oehler,, I. Mühldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:10891097.
17. Hensel, M.,, J. E. Shea,, A. J. Baumler,, C. Gleeson,, F. Blattner,, and D. W. Holden. 1997. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J. Bacteriol. 179:11051111.
18. Hochhut, B.,, K. Jahreis,, J. W. Lengeler,, and K. Schmid. 1997. CTnscr94, a conjugative transposon found in enterobacteria. J. Bacteriol. 179:20972101.
19. Karaolis, D. K. R.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper,, and P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95:31343139.
20. Koch, R. 1876. Untersuchungen iiber Bakterien. V. Die Aetiologie der Milzbrandkrankheit, begriindet auf der Entwicklungsgeschichte des Bacillus anthracis. Beitr. Biol. Pflanz. 2:277310.
21. Kusters, G.,, and W. Gaastra,. 1994. Fimbrial operons and evolution, p. 179196. In P. Klemm (ed.), Fimbriae, Adhesion, Genetics, Biogenesis, and Vaccines. CRC Press, Inc., Boca Raton, Fla..
22. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95:94139417.
23. Lee, C. A. 1996. Pathogenicity islands and the evolution of bacterial pathogens. Infect. Agents Dis. 5:17. 24.
24. Low, D.,, V. David,, D. Lark,, G. Schoolnik,, and S. Falkow. 1984. Gene clusters governing the production of hemolysin and mannose-resistant hemagglutination are closely linked in Escherichia coli serotype 04 and 06 isolates from urinary tract infections. Infect. Immun. 43:353358.
25. Marschalek, R.,, T. Brechner,, E. Amon-Böhm,, and T. Dingermann. 1989. Transfer RNA genes: landmarks for integration of mobile genetic elements in Dictyostelium discoideum. Science 244:14931496.
26. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnersberg,, and J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92:16641668.
27. Mecsas, J.,, and E. J. Strauss. 1996. Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. Emerging Infect. Dis. 2:271288.
28. Meyer, T. 1991. Evasion mechanisms of pathogenic neisseriae. Behring Inst. Mitt. 88:194199.
29. Moncrief, J. S.,, A. J. Duncan,, R. L. Wright,, L. A. Barroso,, and T. D. Wilkins. 1998. Molecular characterization of the fragilysin pathogenicity islet of enterotoxigenic Bacteroides fragilis. Infect. Immun. 66: 17351739.
30. Munoz, R.,, C. G. Dowson,, M. Daniels,, T. J. Coffey,, C. Martin,, R. Hakenbeck,, and B. G. Spratt. 1992. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 6:24612465.
31. Pappenheimer, A. M. 1993. The story of a toxic protein, 1988-1992. Protein Sci. 2:292298.
32. Perna, N. T.,, G. F. Mayhew,, G. Posfai,, S. Elliott,, M. S. Donnenberg,, J. B. Kaper,, and F. R. Blattner. 1998. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66:38103817.
33. Ravatn, R.,, S. Studer,, D. Springael,, A. J. B. Zehnder,, and J. R. van der Meer. 1998. Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida Fl of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J. Bacteriol. 180:43604369.
34. Raynal, A.,, K. Tuphile,, C. Gerbaud,, T. Luther,, M. Guerlineau,, and J. L. Pernodet. 1998. Structure of the chromosomal insertion site for pSAM2: functional analysis in Escherichia coli. Mol. Microbiol. 28: 333342.
35. Ritter, A.,, D. Gaily,, P. B. Olsen,, U. Dobrindt,, A. Friedrich,, P. Klemm,, and J. Hacker. 1997. The Pai-associated leuX specific tRNAs5Leu affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression. Mol. Microbiol. 25:871882.
36. Schmidt, H.,, J. Scheef,, C. Janetzki-Mittermann,, M. Datz,, and H. Karch. 1997. An ileX tRNA gene is located close to the Shiga toxin II operon in enterohemorrhagic Escherichia coli 0157 and non-0157 strains. FEMS Microbiol. Lett. 149:3944.
37. Shoemaker, N. B.,, G. R. Wang,, and A. A. Salyers. 1996. The Bacteroides mobilizable insertion NBU1 integrates into the 3' end of a Leu-tRNA gene and has an integrase that is a member of the lambda integrase family. J. Bacteriol. 178:35943600.
38. Smith, H. W. 1968. The transmissible nature of the genetic factor in Escherichia coli that controls enterotoxin production. J. Gen. Microbiol. 52:319334.
39. So, M.,, H. W. Boyer,, M. Betlach,, and S. Falkow. 1976. Molecular cloning of an Escherichia coli plasmid determinant that encodes for the production of heat-stable enterotoxin. J. Bacteriol. 128:463472.
40. Stein, M. A.,, K. Y. Leung,, M. Zwick,, F. G. del Portillo,, and B. B. Finlay. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20:151164.
41. Strauss, E. J.,, and S. Falkow. 1997. Microbial pathogenesis: genomics and beyond. Science 216:707712.
42. Sullivan, J. T.,, and C. W. Ronson. 1998. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. USA 95:51455149.
43. Volkes, S. A.,, A. G. Torres,, S. A. Reeves,, and S. M. Payne. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol. Microbiol. in press.

Tables

Generic image for table
Table 1

Virulence features encoded by PAIs

Citation: Hacker J, Kaper J. 1999. The Concept of Pathogenicity Islands, p 1-11. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch1
Generic image for table
Table 2

PAIs and PAI-associated genes of various pathogens

Citation: Hacker J, Kaper J. 1999. The Concept of Pathogenicity Islands, p 1-11. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error